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Molecular programming aims to systematically engineer molecular
and chemical systems of autonomous function and ever-increasing
complexity. A key goal is to develop embedded control circuitry
within a chemical system to direct molecular events. Here we show
that systems of DNA molecules can be constructed that closely ap-
proximate the dynamic behavior of arbitrary systems of coupled
chemical reactions. By using strand displacement reactions as a
primitive, we construct reaction cascades with effectively unimole-
cular and bimolecular kinetics. Our construction allows individual
reactions to be coupled in arbitrary ways such that reactants can
participate in multiple reactions simultaneously, reproducing the
desired dynamical properties. Thus arbitrary systems of chemical
equations can be compiled into real chemical systems. We illustrate
our method on the Lotka–Volterra oscillator, a limit-cycle oscillator,
a chaotic system, and systems implementing feedback digital logic
and algorithmic behavior.

molecular programming ∣ mass-action kinetics ∣ strand displacement
cascades ∣ chemical reaction networks ∣ nonlinear chemical dynamics

Chemical reaction equations and mass-action kinetics provide
a powerful mathematical language to describe and analyze

chemical systems. For well over a century, mass-action kinetics
has been used to model chemical experiments and to predict
and explain their dynamical properties. Both biological and non-
biological chemical systems can exhibit complex behaviors such as
oscillations, memory, logic and feedback control, chaos, and pat-
tern formation—all of which can be explained by the correspond-
ing systems of coupled chemical reactions (1–4). Whereas the use
of mass-action kinetics to describe existing chemical systems is
well established, the inverse problem of experimentally imple-
menting a given set of chemical reactions has not been considered
in full generality. Here, we ask: Given a set of formal chemical
reaction equations, involving formal species X1; X2;…; Xn, can
we find a set of actual molecules M1;M2;…;Mm that interact
in an appropriate buffer to approximate the formal system’s
mass-action kinetics? If this were possible, the formalism of
chemical reaction networks (CRNs) could be treated as an effec-
tive programming language for the design of complex network
behavior (5–9).

Unfortunately, a formally expressed system of coupled chemi-
cal equations may not have an obvious realization in known
chemistry. In a formal system of chemical reactions, a species
may participate in multiple reactions, both as a reactant and/or
as a product, and these reactions progress at relative rates deter-
mined by the corresponding rate constants, all of which imposes
formidable constraints on the chemical properties of the species
participating in the reactions. For example, it is likely hard to find
a physical implementation of arbitrary chemical reaction equa-
tions using small molecules, because small molecules have a lim-
ited set of reactivities.

Thus, formal CRNs may appear to be an unforgiving target for
general implementation strategies. Indeed, most experimental
work in chemical and biological engineering has started with
particular molecular systems—genetic regulatory networks (10),
RNA folding and processing (11), metabolic pathways (12), signal
transduction pathways (13), cell-free enzyme systems (14, 15),
and small molecules (16, 17)—and found ways to modify or re-

wire the components to achieve particular functions. Attempts to
systematically understand what functional behaviors can be ob-
tained by using such components have targeted connections to
analog and digital electronic circuits (10, 18, 19), neural networks
(20–22), and computing machines (15, 20, 23, 24); in each case,
complex systems are theoretically constructed by composing
modular chemical subsystems that carry out key functions, such
as boolean logic gates, binary memories, or neural computing
units. Despite its apparent difficulty, we directly targeted CRNs
for three reasons. First, shoehorning the design of synthetic
chemical circuits into familiar but possibly inappropriate comput-
ing models may not capture the natural potential and limitations
of the chemical substrate. Second, there is a vast literature on
the theory of CRNs (25, 26) and even on general methods to im-
plement arbitrary polynomial ordinary differential equations as
CRNs (27, 28). Third, as a fundamental model that captures
the essential formal structure of chemistry, implementation of
CRNs could provide a useful programming paradigm for mole-
cular systems.

Here we propose a method for compiling an arbitrary CRN
into nucleic-acid-based chemistry. Given a formal specification
of coupled chemical kinetics, we systematically design DNA mo-
lecules implementing an approximation of the system scaled to an
appropriate temporal and concentration regime. Formal species
are identified with certain DNA strands, whose interactions are
mediated by a set of auxiliary DNA complexes. Nonconserving
CRNs can be implemented because the auxiliary species implic-
itly supply energy and mass.

Conveniently, the base sequence of nucleic acids can deter-
mine reactivity not only through direct hybridization of single-
stranded species (29) but also through branch migration and
strand displacement reaction pathways (30–32). These powerful
reaction primitives have been used previously for designing
nucleic-acid-based molecular machines with complex behaviors,
such as motors, logic gates, and amplifiers (33–37). Here we use
these reaction mechanisms as the basis for the implementation of
arbitrary CRNs. Our work advances a systematic approach that
aims to provide a general mechanism for implementing a well-
specified class of behaviors.

Molecular Primitive: Strand Displacement Cascades
Because simple hybridization reactions cannot be cascaded, we
use the more flexible strand displacement reaction as a molec-
ular primitive. [We use “strand displacement” as a shorthand for
toehold-mediated branch migration and strand displacement
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reactions (33, 38), combined with the principles of toehold
sequestering (34) and toehold exchange (35).]

Intuitively, in a strand displacement reaction (Fig. 1) a strand
(X) displaces another strand (Y ) from a complex (G). In our dia-
grams, each subsequence that acts as a single functional unit
(a domain) is labeled with a unique number (e.g., the two func-
tionally distinct domains of strand X are 1 and 2). We assume
strong sequence design such that domain x� is complementary
to domain x and interacts with no other, allowing us to analyze
DNA systems entirely at the domain level. Short (dashed) do-
mains are called toeholds. A strand displacement reaction starts
when two single-stranded toehold domains (e.g., 1 and 1�) bind
each other. Then, a random walk process (branch migration) fol-
lows, where two domains with identical sequences compete for
the same complementary domain. Domain 2 of strand 2–3 com-
petes with and is partially displaced by domain 2 of strand 1–2.
Finally, the initially bound strand 2–3 is released when toeholds 3
and 3� separate. To obtain a fast and reliable reaction, the toehold
domains must be short (e.g., 6 nt) whereas the branch migration
domains must be long (e.g., 20 nt). Despite the complex mecha-
nism, a strand displacement reaction is well modeled by a single
reversible reaction (38, 39) under a large range of experimental
conditions where toehold binding is rate limiting (Fig. 1, Inset).
Removing toehold 3 slows the reverse reaction enough that we
can consider the forward reaction effectively irreversible (38, 40).

Strand displacement reactions are programmable by the design
of sequences. A single base mismatch significantly impedes
branch migration (32, 41). By varying the binding strength of
the initiating toeholds, the reaction rate constant can be con-
trolled over 6 orders of magnitude (38, 39). In turn, the length
and sequence composition of the toeholds controls their binding
strength. The forward and reverse rate constants q and r increase
with the hybridization energy of their respective toehold domains
(1 to 1� and 3 to 3�). The same strand (X) can react at different
rates to different complexes, e.g., G and G0. To attain smaller
q0 < q for G0, we can use a toehold domain 1�q0 that is not a full
complement of 1. For example, 1�q0 can be a truncation of 1� (39)
(Fig. S1).

In the following, we construct systems of molecules whose in-
teractions are mediated by strand displacement reactions. To en-
sure desired reactions and exclude undesired reactions, we use
modular components that incorporate three key design princi-
ples. First, we design the system so that all long domains are
always double-stranded, thus ensuring that toeholds and their
complements are the only single-stranded domains capable of hy-
bridizing together. Second, we require that toeholds are short en-
ough that this interaction is fleeting unless it triggers strand
displacement. Thus we need to consider only strand displace-
ment, and not hybridization, of long domains. Third, only the de-
sired target must have the correct combination of toehold and
displacement regions, preventing any undesired strand displace-
ment reactions. Satisfying these three design principles, which
can be verified by inspection of the modules, guarantees that ar-
bitrarily complex systems will function as intended for ideal
strand displacement reactions.

Implementing Networks
We implement CRNs in DNA by using three types of modules,
which specify the DNA molecules to create for each target reac-
tion (either unimolecular or bimolecular) and for each target spe-
cies. Initially, we suppose that our target CRN uses rate constants
and concentrations that are realistic for aqueous-phase nucleic-
acid strand displacement reactions. Additionally, the signal spe-
cies must always be at much lower concentrations than the
auxiliary species. Thus, the feasibility of a CRN depends upon
its behavior; for example, we can implement explosive reactions
like X1 → X1 þ X1 for only a limited time. If the target CRN op-
erates outside of a physically realistic regime, we will need to re-
lax the goal of implementing the exact target system and instead
allow a uniform scaling down of concentrations and/or slowing
down of the kinetics. We will show that such scaling can also ar-
bitrarily increase the accuracy of our construction.

Unimolecular Reactions
DNA Implementation. Standardizing the molecular equivalents of
the formal species facilitates their assignment to roles as reactants
or products in multiple reactions. We implement a formal species
as a single-stranded DNA molecule (signal strand) consisting of
an inert history domain and a unique species identifier (a long
domain flanked by two toehold domains; Fig. 2, orange boxes)
that regulates its interactions with other molecules. The history
domain depends on the formal reaction producing the species: If
Xj is a product of multiple reactions, signal strands with differing
history domains but the same species identifier would represent
the same formal species Xj. In our scheme, the signal strand is
active when fully single-stranded and inactive when bound to an-
other DNA molecule. Signal strands react exclusively by strand
displacement reactions initiated at the left toehold of their spe-
cies identifier; thus, sequestering the left toehold into a double
helix is sufficient to inactivate them. The sum of the concentra-
tions of the active signal strands for Xj gives ½Xj�, and the changes
in ½Xj� are effected either by the inactivation of a signal strand
when it binds to a complementary DNA molecule or by the re-
lease of a previously bound strand.

Being composed of entirely distinct domains, DNA signal
strands do not interact with each other directly, but rather a
set of auxiliary DNA complexes present at large concentrations
mediates exactly the desired reactions. Suppose the ith formal
reaction is unimolecular, as in Fig. 2. We implement reaction
equation 1 as inactivation of a signal strand with species identifier
X1 coupled with activation of strands with identifiers X2 and X3.
These chemical steps are done through two strand displacement
reactions involving two auxiliary complexes Gi and Ti (for “gate”
and “translater,” respectively) as shown in Fig. 2. A two-step cas-
cade ensures that arbitrary species identifiers can be connected in
this reaction because there is no sequence dependence between
X1, X2, and X3. To implement other effective net reactions—even
catalytic or autocatalytic reactions such as X1 → X1 þ X2 or
X1 → X1 þ X1—only the auxiliary complexes need to be modi-
fied. A system of multiple coupled unimolecular reactions is
implemented simply by starting with the auxiliary complexes
for all the desired reactions, along with appropriate initial con-
centrations of the signal strands. Implementing unimolecular re-
actions with differing numbers of products requires extending or
shrinking the intermediate output Oi. Removing auxiliary com-
plex Ti altogether results in unimolecular decay reactions like
X1 → ∅, where ∅ indicates the absence of products.

Kinetic Analysis. To approximate ideal unimolecular mass-action
kinetics, we require the dynamics of the target reaction network
to be slow relative to the fastest strand displacement steps and the
concentration of auxiliary DNA species to be much larger than
the signal concentrations. Here and in the next section, we
present an informal argument that the desired kinetics will be

1* 2* 3*

2 3

1* 2* 3*

2 3
2 32

3
1 2

1
2

1 2

1* 2* 3*

1 2

1* 2* 3*

(3)(2)(1)

single-reaction model

Fig. 1. Strand displacement molecular primitive. Domains are labeled by
numbers, with * denoting Watson–Crick complementarity. Multiple elemen-
tary steps are indicated: (1) binding of toeholds 1 and 1�; (2) branch migra-
tion, a random walk process where domain 2 of strand 2–3 is partially
displaced by domain 2 of strand 1–2; (3) the separation of toeholds 3 and
3�. (Inset) The single-reaction model of strand displacement.
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attained under these conditions. In SI Text we prove the conver-
gence to the desired kinetics in the limit of high concentration of
appropriate auxiliary species relative to the concentrations of the
signal species.

For simplicity, we assume all full toehold domains have equal
binding strength yielding a maximum strand displacement rate
constant qmax. Let Cmax be the starting concentration of auxiliary
complexes Gi and Ti. The strand displacement cascade of Fig. 2
follows reaction equations 2 and 3, where qi ≤ qmax is a partial-
toehold strand displacement rate constant controlled by the bind-
ing energy of domains 1�qi and 1, and 1�qi is chosen to obtain the
desired rate constant for formal reaction i. Letting τ be the ex-
periment’s duration, we assume a regime where τki maxð½X1�Þ ≪
Cmax, and ki ≪ qmaxCmax, and set the partial-toehold strand dis-
placement rate constant qi ¼ ki∕Cmax. Then over a sufficiently
short duration τ, ½Gi� and ½Ti� remain effectively constant at their
initial concentration Cmax, and the cascade becomes equivalent to
a pair of unimolecular reactions (Fig. 2, Eqs. 4 and 5, where
qiCmax ¼ ki). Further, reaction 4 is the rate-limiting step, and
we obtain the desired unimolecular kinetics for formal reaction 1:
The instantaneous rate of the consumption of X1 and the produc-
tion of X2 and X3 in this module is ki½X1�.
Adding Bimolecular Reactions
DNA Implementation. We now extend the construction to realize
bimolecular in addition to unimolecular reactions. Suppose the
ith formal reaction is bimolecular, as in Fig. 3. Implementing re-
action equation 6, X1 must not be consumed in the absence of X2

and vice versa, which seems difficult because X1 and X2 cannot
react directly, and therefore one of them (say, X1) must react with
an auxiliary complex first without knowing whether the other is
present. The challenge here is to minimize the X2-independent
“drain” on X1; later we will show how we can exactly compensate
for it by rescaling rate constants.

Our construction (Fig. 3) solves this problem by introducing a
reversible first step. Strand X1 reversibly displaces Bi (the “back-
ward” strand) from auxiliary complex Li, producing activated in-
termediateHi. If no X2 is present, Bi can reverse the reaction and
release X1 back into solution. But if X2 is present, it can react
with intermediate Hi to release intermediate output Oi. As in
the unimolecular module, this in turn releases the final output
X3 and makes the overall reaction irreversible. The species iden-
tifiers of the reactants and all products can be arbitrarily specified
as in the unimolecular modules. Not all Bi are necessarily unique
DNA species: If reactions i and i0 have the same reactants, then Bi
would have the same sequence as Bi0 .

Kinetic Analysis. The kinetics of the module of Fig. 3 is modeled
using reaction equations 7–9. Set the initial concentration of Li,

Bi, and Ti to Cmax and partial-toehold rate constant qi ¼ ki.
By assuming τki maxð½X1�Þmaxð½X2�Þ ≪ Cmax and maxð½X1�Þ ≪
Cmax, the concentrations ½Li�, ½Bi�, and ½Ti� remain effectively con-
stant throughout the duration of the experiment, and reaction 8 is
the rate-limiting step of the pair 8–9. This system of reactions can
then be approximated by reaction equations 10 and 11. Further,
(informally) if in the target reaction network ½X1� varies on a
slower time scale than that of the equilibration of reaction 10,
we can assume that X1 and Hi attain instant equilibrium through
reaction 10 with ½X1�∕½Hi� ¼ qmax∕ki. Then the instantaneous rate
of reaction 11 is qmax½X2�½Hi� ¼ ki½X1�½X2�. At first glance this ap-
pears to give the correct kinetics for the production of X3; how-
ever, X3 is buffered: Some fraction of it will quickly equilibrate
withHi0 of other reactions in which X3 is the first reactant, result-
ing in a lower effective rate of production of X3. X1 and X2 are
likewise buffered. Let frðX1Þ be the set of bimolecular reactions
in which X1 is the first reactant. Reactions 10 in the different re-
action modules create instant equilibrium between all species in
the equilibrium set of X1, esðX1Þ, consisting of X1 and every Hi,
i ∈ frðX1Þ. Producing or consuming a unit of any species in the
equilibrium set of X1 results in the fraction γ1 ≡ ½X1�∕½esðX1Þ�
of a unit change in ½X1�. Thus the effective instantaneous rates
of the consumption of X1, consumption of X2, and produc-
tion of X3 because of reaction 11 in the above module are
γ1ki½X1�½X2�, γ2ki½X1�½X2�, and γ3ki½X1�½X2�, respectively.

Making the additional assumption ki ≪ qmax shifts equilibria of
reactions 10 to the left such that γj approaches 1. Then the in-
stantaneous rates of variation in X1, X2, and X3 because of this
reaction module approach the desired bimolecular kinetics value
of ki½X1�½X2�.

Canceling out the Buffering Effect. We can exactly cancel out the
buffering effect, thereby easing the requirement ki ≪ qmax for bi-
molecular reactions and allowing the implementation of much
larger rate constants. Intuitively, because the buffering effect sys-
tematically counteracts desired concentration changes of Xj when
γj < 1, we should be able to compensate by increasing the rate
constants of all reactions involving Xj. Because a reaction be-
tween species with different γj will behave as if it has incorrect
stoichiometry, we want all γj to be equal. However, even with
equal γj, we cannot simply multiply all ki by γ−1j because that
would in turn change γj.

Let σj ¼ Σi∈frðXjÞki be the sum of formal rate constants of
bimolecular reactions with Xj as the first reactant, and let
σ ¼ maxjfσjg. We ensure that the fraction γj is equal for all Xj
by using a new buffering module (Fig. 4) for each Xj for which
σj < σ. Each buffering module is modeled as reaction equation
12. Initially ½LSj� ¼ ½BSj� ¼ Cmax, and as for the bimolecular mod-
ule we can reduce 12 to 13. The equilibrium set of Xj now
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Fig. 2. Unimolecular module: DNA implementation of the formal unimolecular reaction X1 → X2 þ X3 with reaction index i. Orange boxes highlight the DNA
species that correspond to the formal species X1 (species identifier 1-2-3), X2 (4-5-6), and X3 (7-8-9). Domains identical or complementary to species identifiers
for X1, X2, and X3 are colored red, green, and blue, respectively. Black domains (10 and 11) are unique to this formal reaction. To reduce rate constant qi ,
toehold domain 1�qi

may not be a full complement of domain 1. (A) Complex Gi undergoes a strand displacement reaction with strand X1, with X1 displacing
strand Oi . (B)Oi displaces X2 and X3 from complex Ti . Without buffer cancellation, qi ¼ kiC−1

max; with buffer cancellation, qi ¼ γ−1kiC−1
max. Reaction equations of

type 2–3 are used in simulations (Figs. 5 and 6); simplified reaction equations 4–5 are useful for analysis.
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includesHSj. It is not hard to show that with the buffering-scaling
factor γ−1 ¼ qmaxðqmax − σÞ−1, setting qsj ¼ γ−1ðσ − σjÞ, and repla-
cing ki by k0i ¼ γ−1ki for the formal rate constants when setting qi
in reactions 2 and 7, we obtain a common buffer fraction γj ¼ γ,
which is exactly compensated for by the γ−1 scaling of formal rate
constants. For initial concentrations cj of formal species Xj, we
start with initial concentrations γ−1cj of DNA strands Xj. Then
all species in esðXjÞ quickly equilibrate yielding ½Xj� ¼ cj.

See SI Text for a summary of our algorithm for compiling an
arbitrary CRN into DNA-based chemistry.

Rescaling for Feasibility and Accuracy
The above procedure will not yield a functional DNA system if
the original formal CRN has infeasibly high reaction rates or con-
centrations. In that case, we scale the system to use lower rate
constants and concentrations while maintaining the same, albeit
scaled, behavior. If ½Xj�ðtÞ are solutions to differential equations
arising from a set of unimolecular and bimolecular reactions,
then β · ½Xj�ðt∕αÞ are solutions to the same set of reactions but
in which we multiply all unimolecular rate constants by 1∕α
and all bimolecular rate constants by 1∕ðα · βÞ. We introduce a
mixed concentration-time-scaling parameter δ with α ¼ δ and
β ¼ 1∕δ, which scales down the concentration and slows down
the dynamics by a factor of δ without increasing the largest rate
constant.

We justified the accuracy of our construction by assuming the
target system operates in a regime with concentrations suffi-
ciently smaller than Cmax, a physically determined parameter.
This may not hold without rescaling, but thankfully, arbitrarily
high accuracy for arbitrarily large duration of interest τ can still
be attained in a regime of smaller concentrations of formal spe-
cies and slowed down dynamics. We prove the convergence of the
DNA-based kinetics with buffer cancellation to the target CRN in
the limit Cmax → ∞ by using singular perturbation theory (27, 42)
(see SI Text). Whereas taking the limit Cmax → ∞ is more math-
ematically convenient, increasing Cmax by a factor of δ is equiva-
lent, up to scaling in concentration of the experimental
implementation, to decreasing all ½Xj� by a factor of δ, decreasing

all formal unimolecular rate constants by a factor of δ, and in-
creasing τ by a factor of δ to simulate the same behavior.

Examples
We illustrate our method on the Lotka–Volterra chemical oscil-
lator shown in Fig. 5A. The concentration oscillations are in the
range of about 0–2. Under typical nucleic-acid experimental con-
ditions, maximal second-order rate constants for strand displace-
ment reactions are about 106∕M∕s, and maximum concentrations
are on the order of 10−5 M. To fit into this regime with reasonable
simulation accuracy and time span, we scale the original system by
a time-scaling factor of α ¼ 300, and a concentration-scaling fac-
tor β ¼ 10−8 employing units of seconds and molar, and use
Cmax ¼ 10−5 M and qmax ¼ 106∕M∕s. The DNA species for
our implementation, including buffering modules, are shown in
Fig. S2 and the possible strand displacement reactions in
Fig. S3. The equations governing our DNA implementation as
derived by using the transforms described in Figs. 2–4 are shown
in Fig. 5B. Simulations shown in Fig. 5C confirm that the DNA
implementation nicely approximates the ideal formal chemical
system. Because Cmax < ∞, deviations between the DNA imple-
mentation and the target system gradually develop, as the deple-
tion of complexes L1, G1, and G2 and the buildup of strands B1

alter the effective rate constants.
We next apply our construction to more complex systems

(Fig. 6). For fastest behavior, all systems are scaled so that the
largest qi or qsj is qmax ¼ 106∕M∕s, and Cmax ¼ 10−5 M, leaving
only one free scaling parameter δ, which determines both imple-
mentation accuracy and the speed of the dynamics. The Orego-
nator limit-cycle oscillator (Fig. 6A) is a simplified model of the
Belousov–Zhabotinsky reaction (43). The DNA implementation
of this system is relatively slow because of the wide range of rate
constants. The chaotic system due to Willamowski and Rössler
(44) exhibits complex concentration fluctuations and is particu-
larly sensitive to perturbations at long time scales (Fig. 6B).
The DNA implementation follows the ideal system relatively well
for a few revolutions around the strange attractor. Fig. 6C
demonstrates the efficacy of our construction for implementing
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a chemical logic circuit responding to an external input signal
(black trace). The 2-bit counter is a classic example of a digital
circuit with feedback (45); the high or low values of the red and
green output species give the binary count of the number of input
pulses, 0–3. This feedback circuit contrasts with the use-once cir-
cuits of ref. 34. Fig. 6D shows a different style of algorithmic be-
havior: a state machine (5, 6). This state machine increments the
number of green spikes between consecutive red spikes by 1
every time.

Experimental Considerations
The correctness of our systematic construction was predicated on
several idealizations of DNA behavior, and it is worth considering
the deviations that we would expect in practice. A good approxi-
mation to strong sequence design (domain x binds exclusively
to x�) should be possible for several thousand long domains by
using existing techniques developed for strand displacement sys-
tems (46). There are a limited number of short toehold domain
sequences available, but it is straightforward to modify our con-
struction to reuse toehold sequences without introducing errors.

This limit also constrains choices for reaction rate constants but
can be countered by adjustment of auxiliary complex concentra-
tions. More serious issues are presented by leak reactions in
which an output is produced even if no input is present. Although
experimentally characterized strand displacement systems exhibit
leak rate constants up to a million times slower than the fastest
desired reactions (35, 39), a leak could pose a problem for some
target CRNs. One way to ameliorate a leak, while also allowing
for unbounded running times, would be to provide auxiliary com-
plexes at low concentrations in a continuous-flow stirred-tank re-
actor (1). These issues are discussed further in SI Text.

Conclusions
With a rich history and extensive theoretical and software tools,
formal CRNs are a powerful descriptive language for modeling
chemical reaction kinetics. By providing a systematic method
for compiling formal CRNs into DNA molecules, our work
suggests that CRNs can also be regarded as an effective program-
ming language and used prescriptively for the synthesis of unique
molecular systems. This view is bolstered by the fact that CRNs
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can implement arbitrary ordinary differential equations, analog
and digital circuits, Turing-universal behavior, and—in the limit
of small signal species concentrations and finite reaction volume
—stochastic CRNs (47, 48). It is perhaps surprising that a simple
primitive such as sequence-specific strand displacement proves
sufficient for the implementation of arbitrarily complex chemical
reaction kinetics, somewhat akin to how a few basic electronic
elements such as transistors and wires are sufficient for the con-
struction of arbitrarily complex logic circuits.

Our construction has several notable features for future mo-
lecular programming efforts. First, the signal species, entirely un-
reactive by themselves, react only when immersed in a complex
buffer of auxiliary complexes. Thus, when implementing a system,
one focusses on designing the buffer rather than the signal
species, which stay the same regardless of the system. Our con-
struction also highlights the rich dynamical behavior possible in
multistranded nucleic-acid systems even without enzymes and
covalent bond modification. Furthermore, established techniques
for interfacing DNA to other chemistries (e.g., ref. 49) can enable
programmable DNA reaction networks to respond to or control
non-nucleic-acid systems, such as complex chemical synthesis
pathways, biomedical diagnostics in vitro, or cellular functions
in vivo. Finally, our construction and variants thereof (48) rely
exclusively on a very simple molecular primitive, sequence-

specific strand displacement reactions, suggesting that it could
be adapted for other molecular substrates, such as RNA (11)
or even peptides (17).

Many important chemical behaviors, such as pattern formation
and self-assembly, involve geometric aspects that are beyond the
scope of well-stirred reactions considered here. However, with a
slight extension of our approach—controlling the relative diffu-
sion rates of signal species—it would be possible to implement
arbitrary reaction-diffusion systems (1). Though more challen-
ging, regulating molecular assembly and disassembly steps with
DNA signal species would allow for qualitatively more powerful
computational systems (50) and systems capable of movement
and construction of molecular-scale objects. We hope that the
methods presented here provide a framework for successfully
generalizing and unifying the existing experimental achievements
in this direction (36, 37, 51).
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