

LR State Machine

- Idea: Build a DFA that recognizes handles
 - Language generated by a CFG is generally not regular, but
 - Language of handles for a CFG is regular So a DFA can be used to recognize handles
 - Parser reduces when DFA accepts

6/29/2004 © 2002-04 Hal Perkins & UW CSE

Prefixes, Handles, &c (review)

- If S is the start symbol of a grammar G,
 - If $S = >^* \alpha$ then α is a *sentential form* of G
 - γ is a *viable prefix* of *G* if there is some derivation $S = *_{rm} \alpha Aw = *_{rm} \alpha \beta w$ and γ is a prefix of $\alpha\beta$.
 - The occurrence of β in $\alpha\beta w$ is a *handle* of $\alpha\beta w$
- An *item* is a marked production (a . at some position in the right hand side)
 - [A ::= .XY] [A ::= X.Y] [A ::= XY.]

6/29/2004 © 2002-04 Hal Perkins & UW CSE

Building the LR(0) States

Example grammar

S'::= S\$ S := (L)S ::= xL ::= S

- We add a production S' with the original start symbol followed by end of file (\$)
- Question: What language does this grammar generate?

© 2002-04 Hal Perkins & UW CSE

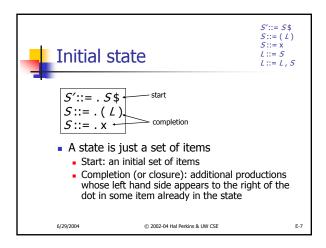
Start of LR Parse

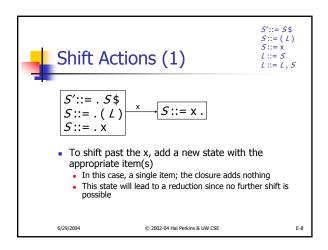
S::= (L)

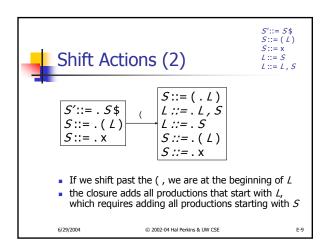
- Initially
 - Stack is empty
 - Input is the right hand side of S', i.e., S\$
 - Initial configuration is [S'::= . S \$]
 - But, since position is just before S, we are also just before anything that can be derived from S

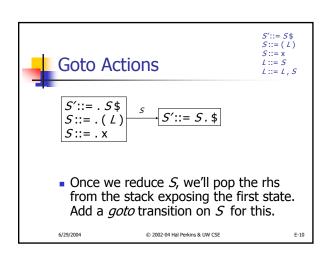
6/29/2004

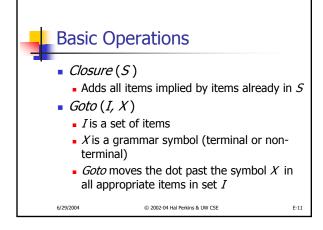
© 2002-04 Hal Perkins & UW CSE

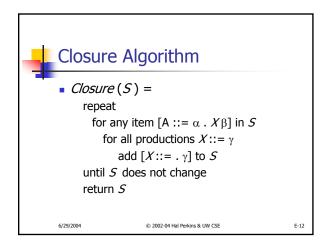












Goto Algorithm

Goto (I, X) =

set new to the empty set for each item [A ::= α . X β] in I add [A ::= α X . β] to new return Closure (new)

This may create a new state, or may return an existing one

6/29/2004

@ 2002-04 Hal Perkins & LIW CSF

LR(0) Construction

- First, augment the grammar with an extra start production S'::= S\$
- Let T be the set of states
- Let E be the set of edges
- Initialize T to Closure ([S'::=.S\$])
- Initialize E to empty

29/2004 © 2002-04 Hal Perkins & UW CSE

LR(0) Construction Algorithm

repeat

for each state I in T for each item $[A ::= \alpha . X \beta]$ in I Let new be Goto(I, X) Add new to T if not present Add $I \xrightarrow{X} new$ to E if not present until E and T do not change in this iteration

 Footnote: For symbol \$, we don't compute goto (I, \$); instead, we make this an accept action.

6/29/2004

© 2002-04 Hal Perkins & UW CSE

E-13

E-15

LR(0) Reduce Actions

Algorithm:

Initialize R to empty for each state I in Tfor each item $[A := \alpha]$ in Iadd $(I, A := \alpha)$ to R

6/29/2004

© 2002-04 Hal Perkins & UW CSE

E-16

Building the Parse Tables (1)

- For each edge $I \xrightarrow{\times} J$
 - if X is a terminal, put sj in column X, row I
 of the action table (shift to state j)
 - If X is a non-terminal, put gj in column X, row J of the goto table

6/29/2004

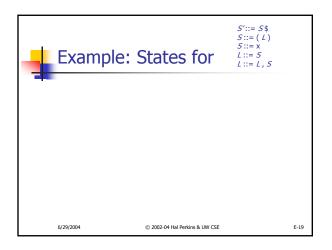
© 2002-04 Hal Perkins & UW CSE

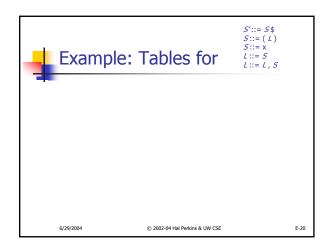
Building the Parse Tables (2)

- For each state I containing an item
 [S' ::= S. \$], put accept in column \$ of row I
- Finally, for any state containing
 [A ::= γ .] put action rn in every column
 of row n in the table, where n is the
 production number

6/29/2004

© 2002-04 Hal Perkins & UW CSE





Where Do We Stand?

- We have built the LR(0) state machine and parser tables
 - No lookahead yet
 - Different variations of LR parsers add lookahead information, but basic idea of states, closures, and edges remains the same

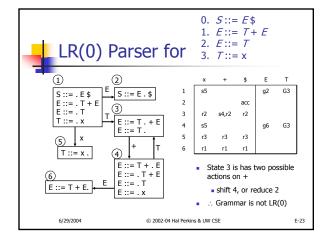
6/29/2004 © 2002-04 Hal Perkins & UW CSE

A Grammar that is not LR(0)

 Build the state machine and parse tables for a simple expression grammar

E-22

6/29/2004 © 2002-04 Hal Perkins & UW CSE



E-21

SLR Parsers

- Idea: Use information about what can follow a non-terminal to decide if we should perform a reduction
- Easiest form is SLR Simple LR
- So we need to be able to compute FOLLOW(A) – the set of symbols that can follow A in any possible derivation
 - But to do this, we need to compute FIRST(γ) for strings γ that can follow A

6/29/2004 © 2002-04 Hal Perkins & UW CSE E-24

Calculating FIRST(γ)

- Sounds easy... If $\gamma = XYZ$, then FIRST(γ) is FIRST(X), right?
 - But what if we have the rule $X := \varepsilon$?
 - In that case, FIRST(γ) includes anything that can follow an X – i.e. FOLLOW(X)

6/29/2004

@ 2002-04 Hal Perkins & LIW CSF

FIRST, FOLLOW, and nullable

- nullable(X) is true if X can derive the empty string
- Given a string γ of terminals and nonterminals, FIRST(γ) is the set of terminals that can begin strings derived from γ.
- FOLLOW(X) is the set of terminals that can immediately follow X in some derivation
- All three of these are computed together

2004 © 2002-04 Hal Perkins & UW CSE

Computing FIRST, FOLLOW, and nullable (1)

Initialization

set FIRST and FOLLOW to be empty sets set nullable to false for all non-terminals set FIRST[a] to a for all terminal symbols a

6/29/2004

© 2002-04 Hal Perkins & UW CSE

Computing FIRST, FOLLOW, and nullable (2)

repeat

for each production $X := Y_1 \ Y_2 \dots Y_k$ if $Y_1 \dots Y_k$ are all nullable (or if k = 0)

set nullable[X] = true

for each i from 1 to k and each j from i+1 to kif $Y_1 \dots Y_{i-1}$ are all nullable (or if i = 1)

add FIRST[Y_i] to FIRST[X_i]

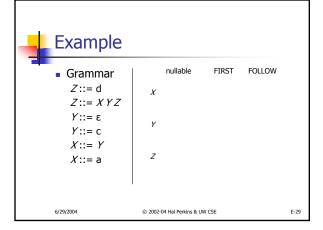
if $Y_{i+1} \dots Y_k$ are all nullable (or if i = k)

add FOLLOW[X_i] to FOLLOW[Y_i]

if $Y_{i+1} \dots Y_{j-1}$ are all nullable (or if i = k)

add FIRST[Y_i] to FOLLOW[Y_i]

Until FIRST, FOLLOW, and nullable do not change



E-27

SLR Construction

- This is identical to LR(0) states, etc., except for the calculation of reduce actions
- Algorithm:

Initialize R to empty for each state I in Tfor each item $[A ::= \alpha .]$ in Ifor each terminal a in FOLLOW(A) add $(I, a, A ::= \alpha)$ to R• i.e., reduce α to A in state I only on lookahead a

© 2002-04 Hal Perkins & UW CSE

