
CSE P 501 Su04 K-1

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-1

CSE P 501 – Compilers

Code Shape I – Basic Constructs
Hal Perkins

Summer 2004

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-2

Agenda

Mapping source code to x86
Mapping for other common architectures
follows same basic pattern

Now: basic statements and expressions
Next: Object representation, method
calls, and dynamic dispatch

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-3

Review: Variables

For us, all data will be in either:
A stack frame for method local variables
An object for instance variables

Local variables accessed via ebp
mov eax,[ebp+12]

Instance variables accessed via an
object address in a register

Details later

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-4

Conventions for Examples
Examples show code snippets in isolation
Real code generator needs to worry about things like

Which registers are busy at which point in the program
Which registers to spill into memory when a new register is
needed and no free ones are available

(x86: temporaries are often pushed on the stack, but can also
be stored in a stack frame)

Register eax used below as a generic example
Rename as needed for more complex code involving multiple
registers

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-5

Peephole Optimizations

A class of optimizations involving small
numbers of instructions
We’ll point out a few of these along the
way

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-6

Constants

Source
17

x86
mov eax,17

Idea: realize constant value in a register

Optimization: if constant is 0
xor eax,eax

CSE P 501 Su04 K-2

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-7

Assignment Statement

Source
var = exp;

x86
<code to evaluate exp into, say, eax>
mov [ebp+offsetvar],eax

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-8

Unary Minus

Source
-exp

x86
<code evaluating exp into eax>
neg eax

Optimization
Collapse -(-exp) to exp

Unary plus is a no-op

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-9

Binary +

Source
exp1 + exp2

x86
<code evaluating exp1 into eax>
<code evaluating exp2 into edx>
add eax,edx

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-10

Binary +

Optimizations
If exp2 is a simple variable or constant

add eax,exp2

Change exp1 + -exp2 into exp1-exp2
If exp2 is 1

inc eax

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-11

Binary -, *

Same as +
Use sub for –
Use imul for *

Optimizations
Use left shift to multiply by powers of 2
Use x+x instead of 2*x, etc. (faster)
Use dec for x-1

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-12

Integer Division

Ghastly on x86
Only works on 64 bit int divided by 32-bit int
Requires use of specific registers

Source
exp1 / exp2

x86
<code evaluating exp1 into eax ONLY>
<code evaluating exp2 into ebx>
cdq ; extend to edx:eax, clobbers edx
idiv ebx ; quotient in eax; remainder in edx

CSE P 501 Su04 K-3

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-13

Control Flow

Basic idea: decompose higher level operation
into conditional and unconditional gotos
In the following, jfalse is used to mean jump
when a condition is false

No such instruction on x86
Will have to realize with appropriate sequence of
instructions to set condition codes followed by
conditional jumps
Normally won’t actually generate the value “true”
or “false” in a register

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-14

While

Source
while (cond) stmt

x86
test: <code evaluating cond>

jfalse done
<code for stmt>
jmp test

done:

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-15

Labels

In x86 assembly language we’ll need to
produce unique labels for each if, while,
etc.
Some assemblers allow for “local” labels
that can be reused
Ignore for now – concentrate on code
shape

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-16

Optimization for While
Put the test at the end

jmp test
loop: <code for stmt>
test: <code evaluating cond>

jtrue loop

Why bother?
Pulls one instruction (jmp) out of the loop
Avoids a pipeline stall on jmp on each iteration

Although modern processors can often predict control flow and
avoid the stall

Easy to do from IR; not so easy if generating code on
the fly (e.g., recursive descent 1-pass compiler)

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-17

Do-While

Source
do stmt while(cond);

x86
loop: <code for stmt>

<code evaluating cond>
jtrue loop

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-18

If

Source
if (cond) stmt

x86
<code evaluating cond>
jfalse skip
<code for stmt>

skip:

CSE P 501 Su04 K-4

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-19

If-Else

Source
if (cond) stmt1 else stmt2

x86
<code evaluating cond>
jfalse else
<code for stmt1>
jmp done

else: <code for stmt2>
done:

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-20

Jump Chaining

Observation: naïve implementation can
produce jumps to jumps
Optimization: if a jump has as its target
an unconditional jump, change the
target of the first jump to the target of
the second

Repeat until no further changes

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-21

Boolean Expressions

What do we do with this?
x > y

It is an expression that evaluates to
true or false

Could generate the value (0/1 or whatever
the local convention is)
But normally we don’t want/need the
value; we’re only trying to decide whether
to jump

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-22

Code for exp1 > exp2

Basic idea: designate jump target, and
whether to jump if the condition is true
or if it is false
Example: exp1 > exp2, target L123,
jump on false

<evaluate exp1 to eax>
<evaluate exp2 to edx>
cmp eax,edx
jng L123

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-23

Boolean Operators: !

Source
! exp

Context: evaluate exp and jump to L123
if false (or true)
To compile !, reverse the sense of the
test: evaluate exp and jump to L123 if
true (or false)

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-24

Boolean Operators: && and ||

In C/C++/Java/C#, these are short-
circuit operators

Right operand is evaluated only if needed

Basically, generate the if statements
that jump appropriately and only
evaluate operands when needed

CSE P 501 Su04 K-5

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-25

Example: Code for &&

Source
if (exp1 && exp2) stmt

x86
<code for exp1>
jfalse skip
<code for exp2>
jfalse skip
<code for stmt>

skip:

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-26

Example: Code for ||

Source
if (exp1 || exp2) stmt

x86
<code for exp1>
jtrue doit
<code for exp2>
jfalse skip

doit: <code for stmt>
skip:

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-27

Realizing Boolean Values

If a boolean value needs to be stored in a
variable or method call parameter, generate
code needed to actually produce it
Typical representations: 0 for false, +1 or -1
for true

C uses 0 and 1; we’ll use that
Best choice can depend on machine architecture;
normally some convention is established during
the primeval history of the architecture

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-28

Boolean Values: Example

Source
var = bexp ;

x86
<code for bexp>
jfalse genFalse
mov eax,1
jmp storeIt

genFalse:
mov eax,0

storeIt: mov [ebp+offsetvar],eax ; generated by asg stmt

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-29

Faster, If Enough Registers

Source
var = bexp ;

x86
xor eax,eax
<code for bexp>
jfalse storeIt
inc eax

storeIt: mov [ebp+offsetvar],eax ; generated by asg stmt

Or use conditional move (movecc) instruction if available

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-30

Other Control Flow: switch

Naïve: generate a chain of nested if-else if
statements
Better: switch is designed to allow an O(1)
selection, provided the set of switch values is
reasonably compact
Idea: create a 1-D array of jumps or labels
and use the switch expression to select the
right one

Need to generate the equivalent of an if statement
to ensure that expression value is within bounds

CSE P 501 Su04 K-6

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-31

Switch

Source
switch (exp) {

case 0: stmts0;
case 1: stmts1;
case 2: stmts2;

}

X86
<put exp in eax>
“if (eax < 0 || eax > 2)

jmp defaultLabel”
mov eax,swtab[eax*4]
jmp eax

.data
swtab dd L0

dd L1
dd L2
.code

L0: <stmts0>
L1: <stmts1>
L2: <stmts2>

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-32

x86 Addressing Modes

A memory address in x86 can be
register

+register optionally scaled by *2, *4, or *8
+constant offset

Assemblers have many syntax
variations involving labels, register
values in brackets, etc.

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-33

Arrays

Several variations
C/C++/Java

0-origin; an array with n elements contains
variables a[0]…a[n-1]
1 or more dimensions; row major order

Key step is to evaluate a subscript
expression and calculate the location of
the corresponding element

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-34

0-Origin 1-D Integer Arrays

Source
exp1[exp2]

x86
<evaluate exp1 (array address) in eax>
<evaluate exp2 in edx>
address is [eax+4*edx] ; 4 bytes per element

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-35

Fortran Arrays

Subscripts start with 1 (default)
Column-major order

E.g., an array with 3 rows and 2 columns is
stored in this sequence: a(1,1), a(2,1),
a(3,1), a(1,2), a(2,2), a(3,2)

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-36

a(i,j) in Fortran

To find a(i,j), we need to know
Values of i and j
How many rows the array has

Location of a(i,j) is
Location of a + (j-1)*(#of rows) + (i-1)

Factor to pull out load-time constant part and
evaluate that at load time – no recalculating
at runtime

[Loc. of a – (#rows) – 1] + [j*(#rows) + i]

CSE P 501 Su04 K-7

7/27/2004 © 2002-04 Hal Perkins & UW CSE K-37

Coming Attractions

Code Generation for Objects
Representation
Method calls
Inheritance and overriding

Strategies for implementing code
generators
Code improvement - optimization

