
CSE P 501 Su04 M-1

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-1

CSE P 501 – Compilers

Running MiniJava
Basic Code Generation and Bootstrapping

Hal Perkins
Summer 2004

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-2

Agenda

What we need to finish the project
Assembler source file format
A basic code generation strategy
Interfacing with the bootstrap program
Implementing the system interface

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-3

What We Need

To run a MiniJava program
Space needs to be allocated for a stack
and a heap
ESP and other registers need to have
sensible initial values
We need some way to allocate storage and
communicate with the outside world

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-4

Bootstraping from C

Idea: take advantage of the existing C
runtime library
Write a small C main program that calls the
main method in the asm code produced by
the MiniJava compiler as if it were a function
C’s standard library provides the execution
environment and we can call C functions from
compiled code for I/O, malloc, etc.

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-5

Here is a skeleton for the .asm file to be produced by
MiniJava compilers

.386 ; use 386 extensions

.model flat,c ; use 32-bit flat address space with
; C linkage conventions for
; external labels

public asm_main ; start of compiled static main
extern put:near,get:near,mjmalloc:near ; external C routines
.code
;; generated code repeat .code/.data as needed
.data
;; generated method tables
…
end

Assembler File Format

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-6

Generating .asm Code

Suggestion: isolate the actual output
operations in a handful of routines

Modularity & saves some typing
Possibilities

// write code string s to .asm output
void gen(String s) { … }
// write “op src,dst” to .asm output
void genbin(String op, String src, String dst) { … }
// write label L to .asm output as “L:”
void genLabel(String L) { … }

A handful of these methods should do it

CSE P 501 Su04 M-2

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-7

A Simple Code Generation
Strategy

Priority: quick ‘n dirty correct code first, optimize
later if time
Traverse AST primarily in execution order and emit
code during the traversal

May need to control the traversal from inside the visitor
methods, or have both bottom-up and top-down visitors

Treat the x86 as a 1-register stack machine
Alternative strategy: produce lower-level linear IR
and generate from that (after possible optimizations)

We’ll cover this in lecture, but may be too ambitious for the
project at this point

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-8

x86 as a Stack Machine

Idea: Use x86 stack for expression evaluation
with eax as the “top” of the stack
Whenever an expression (or part of one) is
evaluated at runtime, the result is in eax
If a value needs to be preserved while
another expression is evaluated, push eax,
evaluate, then pop when needed

Remember: always pop what you push
Will produce lots of redundant, but correct, code

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-9

Example: Generate Code for
Constants and Identifiers

Integer constants, say 17
gen(mov eax,17)

leaves value in eax

Variables (whether int, boolean, or
reference type)

gen(mov eax,[appropriate base register+
appropriate offset])

also leaves value in eax

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-10

Example: Generate Code for
exp1 + exp1

Visit exp1
generate code to evaluate exp1 and put result in eax

gen(push eax)
generate a push instruction

Visit exp2
generate code for exp2; result in eax

gen(pop edx)
pop left argument into edx; cleans up stack

gen(add eax,edx)
perform the addition; result in eax

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-11

Example: var = exp; (1)

Assuming that var is a local variable
visit node for exp

Generates code that leaves the result of
evaluating exp in eax

gen(mov [ebp+offset of variable],eax)

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-12

Example: var = exp; (2)

If var is a more complex expression
visit var
gen(push eax)

push reference to variable or object containing
variable onto stack

visit exp
gen(pop edx)
gen(mov [edx+appropriateoffset],eax)

CSE P 501 Su04 M-3

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-13

Example: Generate Code for
obj.f(e1,e2,…en)

Visit en
leaves argument in eax

gen(push eax)
… Repeat until all arguments pushed
Visit obj

leaves reference to object in eax
Note: this isn’t quite right if evaluating obj has side effects

gen(mov ecx,eax)
copy “this” pointer to ecx

generate code to load method table pointer
generate call instruction with indirect jump
gen(add esp,numberOfBytesOfArguments)

Pop arguments

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-14

Method Definitions

Generate label for method
Generate method prologue
Visit statements in order

Method epilogue will be generated as part
of each return statement (next)

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-15

Example: return exp;

Visit exp; leaves result in eax where it
should be
Generate method epilogue to unwind
the stack frame; end with ret
instruction

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-16

Control Flow: Unique Labels

Needed: a String-valued method that
returns a different label each time it is
called (e.g., L1, L2, L3, …)

Variation: a set of methods that generate
different kinds of labels for different
constructs (can really help readability of
the generated code)

(while1, while2, while3, …; else1, else2, ….)

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-17

Control Flow: Tests

Recall that the context for compiling a
boolean expression is

Jump target
Whether to jump if true or false

So visitor for a boolean expression
needs this information from parent
node

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-18

Example: while(exp) body

Assuming we want the test at the
bottom of the generated loop…

gen(jmp testLabel)
gen(bodyLabel:)
visit body
gen(testLabel:)
visit exp with target=bodyLabel and
sense=“jump if true”

CSE P 501 Su04 M-4

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-19

Example exp1 < exp2
Similar to other binary operators
Difference: context is a target label and whether to
jump if true or false
Code

visit exp1
gen(push eax)
visit exp2
gen(pop edx)
gen(cmp eax,edx)
gen(condjump targetLabel)

appropriate conditional jump depending on sense of test

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-20

Boolean Operators

&& and ||
Create label needed to skip around second
operand when appropriate
Generate subexpressions with appropriate
target labels and conditions

!exp
Generate exp with same target label, but
reverse the sense of the condition

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-21

Join Points
Loops and conditional statements have join points
where execution paths merge
Generated code must ensure that machine state will
be consistent regardless of which path is taken to
reach a join point

i.e., the paths through an if-else statement must not leave a
different number of bytes pushed onto the stack
If we want a particular value in a particular register at a join
point, both paths must put it there
With the simple 1-accumulator model of code generation,
this should generally be true without needing extra work

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-22

Bootstrap Program

The bootstrap will be a tiny C program that
calls your compiled code as if it were an
ordinary C function
It also contains some functions that compiled
code can call as needed

Mini “runtime library”
You can add to this if you like

Sometimes simpler to generate a call to a newly written
library routine instead of generating in-line code

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-23

Sample Bootstrap Program
#include <stdio.h>
extern void asm_main(); /* compiled code */
/* execute compiled program */
void main() { asm_main(); }
/* return next integer from standard input */
int get() { … }
/* write x to standard output */
void put(int x) { … }
/* return a pointer to a block of memory at least nBytes

large (or null if insufficient memory available) */
void * mjmalloc(int nBytes) { return malloc(nBytes); }

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-24

Interfacing to External Code
Recall that the .asm file includes these declarations
at the top

public asm_main ; start of compiled static main
extern put:near,get:near,mjmalloc:near

; external C routines

“public” means that the label is defined in the .asm
file and can be linked from external files

Jargon: also known as an entry point
“extern” declares labels used in the .asm file that
must be found in another file at link time

“near” means in same segment (as opposed to multi-
segment MS-DOS programs)

CSE P 501 Su04 M-5

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-25

Main Program Label

Compiler needs special handling for the
static main method

Label must be the same as the one
declared extern in the C bootstrap program
and declared public in the .asm file
asm_main used above

Can be changed if you wish

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-26

Interfacing to “Library” code

To call “behind the scenes” library
routines:

Must be declared extern in generated code
Call using normal C language conventions

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-27

System.out.println(exp)
Can handle in an ad-hoc way

<compile exp; result in eax>
push eax ; push parameter
call put ; call external put routine
add esp,4 ; pop parameter

A more general solution
Hand-code (in asm) classes to act as a bridge
between compiled code and the C runtime
Put information about these classes in the symbol
table at compiler initialization
Calls to these routines compile normally – no
other special case code needed in the compiler(!)

7/27/2004 © 2002-04 Hal Perkins & UW CSE M-28

And That’s It…

We’ve now got enough on the table to
complete the compiler project (with a
month to go)
Coming Attractions

Lower-level IR
Back end (instruction selection and
scheduling, register allocation)
Middle (optimizations)

