
CSE P 501 Su04 R-1

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-1

CSE P 501 – Compilers

Data-flow Analysis
Hal Perkins

Summer 2004

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-2

Agenda

Initial example: data-flow analysis for 
common subexpression elimination
Other analysis problems that work in 
the same framework

Credits: Largely based on Keith Cooper’s slides from 
Rice University

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-3

The Story So Far…

Redundant expression elimination
Local Value Numbering
Superlocal Value Numbering

Extends VN to EBBs
SSA-like namespace

Dominator VN Technique (DVNT)

All of these propagate along forward edges
None are global

In particular, can’t handle back edges (loops)

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-4

Dominator Value Numbering
m0 = a0 + b0
n0 = a0 + b0

A

p0 = c0 + d0
r0 = c0 + d0

B
q0 = a0 + b0
r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0
u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0
u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0
w0 = c0 + d0
x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0
z0 = c0 + d0

G

Most sophisticated 
algorithm so far
Still misses some 
opportunities
Can’t handle loops

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-5

Available Expressions

Goal: use data-flow analysis to find 
common subexpressions whose range 
spans basic blocks
Idea: calculate available expressions at 
beginning of each basic block
Avoid re-evaluation of an available 
expression – use a copy operation

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-6

“Available” and Other Terms
An expression e is defined at point p in the 
CFG if its value is computed at p

Sometimes called definition site
An expression e is killed at point p if one of 
its operands is defined at p

Sometimes called kill site
An expression e is available at point p if 
every path leading to p contains a prior 
definition of e and e is not killed between 
that definition and p



CSE P 501 Su04 R-2

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-7

Available Expression Sets

For each block b, define
AVAIL(b) – the set of expressions available 
on entry to b
NKILL(b) – the set of expressions not killed
in b
DEF(b) – the set of expressions defined in 
b and not subsequently killed in b

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-8

Computing Available 
Expressions

AVAIL(b) is the set
AVAIL(b) = ∩x∈preds(b) (DEF(x) ∪

(AVAIL(x) ∩ NKILL(x)) )
preds(b) is the set of b’s predecessors in 
the control flow graph

This gives a system of simultaneous 
equations – a data-flow problem

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-9

Name Space Issues

In previous value-numbering 
algorithms, we used a SSA-like 
renaming to keep track of versions
In global data-flow problems, we use 
the original namespace

The KILL information captures when a 
value is no longer available

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-10

GCSE with Available 
Expressions

For each block b, compute DEF(b) and 
NKILL(b)
For each block b, compute AVAIL(b)
For each block b, value number the 
block starting with AVAIL(b)
Replace expressions in AVAIL(b) with 
references

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-11

Replacement Issues

Need a unique name for each 
expression in AVAIL(b)
Several possibilities; all workable

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-12

Global CSE Replacement

After analysis and before 
transformation, assign a global name to 
each expression e by hashing on e
During transformation step

At each evaluation of e, insert copy
name(e ) = e

At each reference to e, replace e with 
name(e ) 



CSE P 501 Su04 R-3

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-13

Analysis

Main problem – inserts extraneous copies at 
all definitions and uses of every e that 
appears in any AVAIL(b)

But the extra copies are dead and easy to remove
Useful copies often coalesce away when registers 
and temporaries are assigned

Common strategy
Insert copies that might be useful
Let dead code elimination sort it out later

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-14

Computing Available 
Expressions

Big Picture
Build control-flow graph
Calculate initial local data – DEF(b) and 
NKILL(b)

This only needs to be done once

Iteratively calculate AVAIL(b) by repeatedly 
evaluating equations until nothing changes

Another fixed-point algorithm

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-15

Computing DEF and NKILL (1)

For each block b with operations o1, o2, …, ok
KILLED = ∅
DEF(b) = ∅
for i = k to 1

assume oi is “x = y + z”
if (y ∉ KILLED and z ∉ KILLED)

add “y + z” to DEF(b)
add x to KILLED

…

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-16

Computing DEF and NKILL (2)

After computing DEF and KILLED for a 
block b,
NKILL(b) = { all expressions }
for each expression e

for each variable v ∈ e
if v ∈ KILLED then

NKILL(b) = NKILL(b) - e

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-17

Computing Available 
Expressions

Once DEF(b) and NKILL(b) are 
computed for all blocks b
Worklist = { all blocks bi }
while (Worklist ≠ ∅)

remove a block b from Worklist
recompute AVAIL(b)
if AVAIL(b) changed

Worklist = Worklist ∪ successors(b)

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-18

Comparing Algorithms
m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D
e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G

LVN – Local Value 
Numbering
SVN – Superlocal Value 
Numbering
DVN – Dominator-based 
Value Numbering
GRE – Global Redundancy 
Elimination



CSE P 501 Su04 R-4

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-19

Comparing Algorithms (2)

LVN => SVN => DVN form a strict hierarchy 
– later algorithms find a superset of previous 
information
Global RE finds a somewhat different set

Discovers e+f in F (computed in both D and E)
Misses identical values if they have different 
names (e.g., a+b and c+d when a=c and b=d)

Value Numbering catches this

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-20

Data-flow Analysis (1)

A collection of techniques for compile-
time reasoning about run-time values
Almost always involves building a graph

Trivial for basic blocks
Control-flow graph or derivative for global 
problems
Call graph or derivative for whole-program 
problems

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-21

Data-flow Analysis (2)

Usually formulated as a set of 
simultaneous equations (data-flow 
problem)

Sets attached to nodes and edges
Need a lattice (or semilattice) to describe 
values

In particular, has an appropriate operator to 
combine values and an appropriate “bottom” or 
minimal value

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-22

Data-flow Analysis (3)

Desired solution is usually a meet over 
all paths (MOP) solution

“What is true on every path from entry”
“What can happen on any path from entry”
Usually relates to safety of optimization

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-23

Data-flow Analysis (4)

Limitations
Precision – “up to symbolic execution”

Assumes all paths taken
Sometimes cannot afford to compute full solution
Arrays – classic analysis treats each array as a 
single fact
Pointers – difficult, expensive to analyze

Imprecision rapidly adds up

Summary: for scalar values we can quickly 
solve simple problems

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-24

Scope of Analysis

Larger context (EBBs, regions, global, 
interprocedural) sometimes helps

More opportunities for optimizations

But not always
Introduces uncertainties about flow of control
Usually only allows weaker analysis
Sometimes has unwanted side effects

Can create additional pressure on registers, for example



CSE P 501 Su04 R-5

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-25

Some Problems (1)

Merge points often cause loss of 
information

Sometimes worthwhile to clone the code at 
the merge points to yield two straight-line 
sequences

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-26

Some Problems (2)
Procedure/function/method calls are problematic

Have to assume anything could happen, which kills local 
assumptions
Calling sequence and register conventions are often more 
general than needed

One technique – inline substitution
Allows caller and called code to be analyzed together; more 
precise information
Can eliminate overhead of function call, parameter passing, 
register save/restore
But… Creates dependency in compiled code on specific 
version of procedure definition – need to avoid trouble 
(inconsistencies) if (when?) the definition changes.

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-27

Other Data-Flow Problems

The basic data-flow analysis framework 
can be applied to many other problems 
beyond redundant expressions
Different kinds of analysis enable 
different optimizations

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-28

Characterizing Data-flow 
Analysis

All of these involve sets of facts about each 
basic block b

IN(b) – facts true on entry to b
OUT(b) – facts true on exit from b
GEN(b) – facts created and not killed in b
KILL(b) – facts killed in b

These are related by the equation
OUT(b) = GEN(b) ∪ (IN(b) – KILL(b)

Solve this iteratively for all blocks
Sometimes information propagates forward; 
sometimes backward

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-29

Efficiency of Data-flow 
Analysis

The algorithms eventually terminate, 
but the expected time needed can be 
reduced by picking a good order to visit 
nodes in the CFG

Forward problems – reverse postorder
Backward problems - postorder

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-30

Example:Live Variable Analysis

A variable v is live at point p iff there is any
path from p to a use of v along which v is not 
redefined
Uses

Register allocation – only live variables need a 
register (or temporary)
Eliminating useless stores
Detecting uses of uninitialized variables
Improve SSA construction – only need Φ-function 
for variables that are live in a block



CSE P 501 Su04 R-6

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-31

Equations for Live Variables

Sets
USED(b) – variables used in b before being 
defined in b
NOTDEF(b) – variables not defined in b
LIVE(b) – variables live on exit from b

Equation
LIVE(b) = ∪s∈succ(b) USED(s) ∪

(LIVE(s) ∩ NOTDEF(s))

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-32

Example: Available 
Expressions

This is the analysis we did earlier to 
eliminate redundant expression 
evaluation (i.e., compute AVAIL(b))

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-33

Example: Reaching Definitions

A definition d of some variable v
reaches operation i iff i reads the 
value of v and there is a path from d
to i that does not define v
Uses

Find all of the possible definition points for 
a variable in an expression

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-34

Equations for Reaching 
Definitions

Sets
DEFOUT(b) – set of definitions in b that reach the 
end of b (i.e., not subsequently redefined in b)
SURVIVED(b) – set of all definitions not obscured 
by a definition in b
REACHES(b) – set of definitions that reach b

Equation
REACHES(b) = ∪p∈preds(b) DEFOUT(p) ∪

(REACHES(p) ∩ SURVIVED(p))

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-35

Example: Very Busy 
Expressions

An expression e is considered very busy
at some point p if e is evaluated and 
used along every path that leaves p, 
and evaluating e at p would produce 
the same result as evaluating it at the 
original locations
Uses

Code hoisting – move e to p (reduces code 
size; no effect on execution time)

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-36

Equations for Very Busy 
Expressions

Sets
USED(b) – expressions used in b before they are 
killed
KILLED(b) – expressions redefined in b before 
they are used
VERYBUSY(b) – expressions very busy on exit 
from b

Equation
VERYBUSY(b) = ∩s∈succ(b) USED(s) ∪

(VERYBUSY(s) - KILLED(s))



CSE P 501 Su04 R-7

8/10/2004 © 2002-04 Hal Perkins & UW CSE R-37

Summary

Dataflow analysis gives a framework for 
finding global information
Key to enabling most optimizing 
transformations


