
CSE P 501 Su04 T-1

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-1

CSE P 501 – Compilers

Java Implementation – JVMs, JITs &c
Hal Perkins

Summer 2004

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-2

Agenda

Java virtual machine architecture
.class files
Class loading
Execution engines

Interpreters & JITs – various strategies

Garbage Collection
Exception Handling
Managed code execution in C#/CLR is similar

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-3

Java Implementation 
Overview

Java compiler (javac, jikes) produces 
machine-independent .class file

Target architecture is Java Virtual Machine 
(JVM) – simple stack machine

Java execution engine (java)
Loads .class files
Executes code

Either interprets stack machine code or 
compiles to native code (JIT)

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-4

JVM Architecture

Abstract stack machine
Implementation not required to mirror 
JVM specification

Only requirement is that execution of .class 
files has defined effect
Multiple implementation strategies 
depending on goals

Compilers vs interpreters
Optimizing for servers vs workstations

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-5

JVM Data Types

Basic data types found in Java – byte, 
short, int, long, char, float, double, 
boolean
Reference Types

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-6

JVM Runtime Data Areas (1)

Semantics defined by the JVM 
Specification

Implementer may do anything that 
preserves these semantics

Per-thread data
pc register
Stack

Holds frames (details below)
May be a real stack or may be heap allocated



CSE P 501 Su04 T-2

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-7

JVM Runtime Data Areas (2)

Per-VM data – shared by all threads
Heap – objects allocated here
Method area – per-class data

Runtime constant pool
Field and method data
Code for methods and constructors

Native method stacks
Regular C-stacks or equivalent

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-8

Frames 

Created when method invoked; destroyed 
when method completes
Allocated on stack of creating thread
Contents

Local variables
Operand stack for JVM instructions
Reference to runtime constant pool

Symbolic data that supports dynamic linking

Anything else the implementer wants

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-9

Representation of Objects

Implementer's choice
JVM spec 3.7: “The Java virtual machine 
does not mandate any particular internal 
structure for objects”
Likely possibilities

Data + pointer to Class object
Pair of pointers: one to heap-allocated data, 
one to Class object

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-10

JVM Instruction Set

Stack machine
Byte stream
Instruction format

1 byte opcode
0 or more bytes of operands

Instructions encode type information
Verified when class loaded

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-11

Instruction Sampler (1)

Load/store
Transfer values between local variables 
and operand stack
Different opcodes for int, float, double, 
address
Load, store, load immediate

Special encodings for load0, load1, load2, load3 
to get compact code for first few local vars

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-12

Instruction Sampler (2)

Arithmetic
Again, different opcodes for different types

Byte, short, char, boolean use int instructions
Pop operands from operand stack, push 
result onto operand stack
Add, subtract, multiply, divide, remainder, 
negate, shift, and, or, increment, compare

Stack management
Pop, dup, swap



CSE P 501 Su04 T-3

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-13

Instruction Sampler (3)

Type conversion
Widening – int to long, float, double; long 
to float, double, float to double
Narrowing – int to byte, short, char; 
double to int, long, float, etc.

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-14

Instruction Sampler (4)

Object creation & manipulation
New class instance
New array
Static field access
Array element access
Array length
Instanceof, checkcast

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-15

Instruction Sampler (5)

Control transfer
Unconditional branch – goto, jsr (used to 
implement finally blocks)
Conditional branch – ifeq, iflt, ifnull, etc.
Compound conditional branches - switch

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-16

Instruction Sampler (6)

Method invocation
invokevirtual
invokeinterface
invokespecial (constructors, superclass, private)
invokestatic

Method return
Typed value-returning instructions
Return for void methods

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-17

Instruction Sampler (7)

Exceptions: athrow
Synchronication

Model is monitors (cf any standard 
operating system textbook)
monitorenter, monitorexit

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-18

Class File Format

Basic requirements are tightly specified
Implementations can extend

Examples: data to support debugging or profiling
JVMs must ignore extensions they don’t recognize

Very high-level, lots of metadata – much of 
the symbol table/type/other attributes data 
found in a compiler

Supports dynamic class loading
Allows runtime compilation (JITs), etc.



CSE P 501 Su04 T-4

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-19

Contents of Class Files (1)

Starts with magic number (0xCAFEBABE)
Constant pool - symbolic information

String constants
Class and interface names
Field names

All other operands and references in the class 
file are referenced via a constant pool offset 
Constant pool is essentially a “symbol table” 
for the class

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-20

Contents of Class Files (2)
Class and superclass info

Index into constant pool
Interface information

Index into constant pool for every interface this 
class implements

Fields declared in this class proper, but not 
inherited ones (includes type info)
Methods (includes type info)

Includes byte code instructions for methods that 
are not native or abstract

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-21

Constraints on Class Files (1)
Long list; verified at class load time

∴ execution engine can assume valid, safe code
Some examples of static constraints

Target of each jump must be an opcode
No jumps to the middle of an instruction or out of bounds
Operands of load/store instructions must be valid index into 
constant pool
new is only used to create objects; anewarray is only used 
to create arrays
Only invokespecial can call a constructor
Index value in load/store must be in bounds 
Etc. etc. etc.

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-22

Constraints on Class Files (2)
Some examples of structural constraints

Instructions must have appropriate type and number of 
arguments
If instruction can be executed along several paths, operand 
stack must have same depth at that point along all paths
No local variable access before being assigned a value
Operand stack never exceeds limit on size
No pop from empty operand stack
Execution cannot fall off the end of a method
Method invocation arguments must be compatible with 
method descriptor
Etc. etc. etc. etc.

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-23

Class Loaders
One or more class loaders (instances of 
ClassLoader or its derived classes) is 
associated with each JVM
Responsible for loading the bits and preparing 
them
Different class loaders may have different 
policies

Eager vs lazy class loading, cache binary 
representations, etc.

May be user-defined, or initial built-in 
bootstrap class loader 

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-24

Readying .class Files for 
Execution

Several distinct steps
Loading
Linking

Verification
Preparation
Resolution of symbolic references

Initialization



CSE P 501 Su04 T-5

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-25

Loading

Class loader locates binary representation of 
the class (normally a .class file) and reads it
Once loaded, a class is identified in the JVM 
by its fully qualified name + class loader id

A good class loader should always return the same 
class object given the same name
Different class loaders generally create different 
class objects even given the same class name

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-26

Linking
Combines binary form of a class or interface 
type with the runtime state of the JVM
Always occurs after loading
Implementation has flexibility on timing

Example: can resolve references to other classes 
during verification (static) or only when actually 
used (lazy)
Requirement is that verification must precede 
initialization and semantics of language must be 
respected

No exceptions thrown at unexpected places, for example

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-27

Linking: Verification

Checks that binary representation is 
structurally correct

Verifies static and structural constraints 
(see above)
Goal is to prevent any subversion of the 
Java type system

May causes additional classes and 
interfaces to be loaded, but not 
necessarily prepared or verified

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-28

Linking: Preparation

Creation of static fields & initialization to 
default values
Implementations can optionally 
precompute additional information

Method tables, for example

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-29

Linking: Resolution

Check symbolic references and, usually, 
replace with direct references that can 
be executed more efficiently

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-30

Initialization

Execute static initializers and initializers
for static fields
Direct superclass must be initialized first
Constructor(s) not executed here

Done by a separate instruction as part of 
new, etc.



CSE P 501 Su04 T-6

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-31

Virtual Machine Startup

Initial class specified in implementation-
defined manner

Command line, IDE option panel, etc.
JVM uses bootstrap class loader to load, 
link, and initialize that class
Public static void main(String[]) method 
in initial class is executed to drive all 
further execution

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-32

Execution Engines

Basic Choices
Interpret JVM bytecodes directly
Compile bytecodes to native code, which 
then executes on the native processor

Just-In-Time compiler (JIT)

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-33

Hybrid Implementations
Interpret or use very dumb compiler most of 
the time
Identify “hot spots” by dynamic profiling

Per-method counter incremented on each call
Timer-based sampling, etc.

Run optimizing JIT on hot code
Data-flow analysis, standard compiler middle-end 
optimizations, back-end instruction selection/ 
scheduling & register allocation
Need to balance compilation cost against 
responsiveness, expected benefits 

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-34

Memory Management
JVM includes instructions for creating objects and 
arrays, but not deleting
Garbage collection used to reclaim no-longer needed 
storage (objects, arrays, classes, …)

GC must prove not needed before reclaiming
Strong type system means GC can have exact 
information

.class file includes type information 
GC can have exact knowledge of layouts since these are 
internal to the JVM

Can’t do this for C/C++ because of incomplete type 
info & weak type system; best you can hope for is a 
conservative GC

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-35

Garbage Collection

Basic idea
Identify root set of references

Registers
Active stack frames
Static fields in classes

Trace closure of root set references
Reclaim any allocated objects that are not 
reachable

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-36

Garbage Collection Variations

Compacting collectors
Move active objects so they are adjacent in 
new heap space
Advantage: better locality
Need bookkeeping during move/compact 
sweep to handle pointers between old 
space and new space



CSE P 501 Su04 T-7

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-37

Generation Garbage Collection
Observation: Programs written in most O-O 
languages create many short-lived objects
Implication: Scanning entire heap on each GC 
is mostly wasted effort
Strategy

Allocate new objects in a small part of the heap
Routine GC just collects in this nursery
Objects that survive some number of GCs are 
moved to more permanent part of heap
Still need to GC full heap occasionally

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-38

Escape Analysis

Another idea based on observation that 
many methods allocate local objects as 
temporaries
Idea: Compiler tries to prove that no 
reference to a locally allocated object 
can “escape”

Not stored in a global variable or object
Not passed as a parameter

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-39

Using Escape Analysis

If all references to an object are local, it 
doesn’t need to be allocated on the 
heap in the usual manner

Can allocate storage for it in local stack 
frame

Essentially zero cost

Still need to preserve the semantics of 
new, constructor, etc.

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-40

Exception Handling

Goal: should have zero cost if no 
exceptions are thrown

Otherwise programmers will subvert 
exception handling with the excuse of 
“performance”

Corollary: cannot execute any exception 
handling code on entry/exit from 
individual methods or try blocks

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-41

Implementing Exception 
Handling

Idea: Original compiler generates table of 
exception handler information in the .class file

Entries include start and end of section of code 
array protected by this handler, and the argument 
type
Order of entries is significant

When exception is thrown, JVM searches 
exception table for first matching argument 
type that has a pc range that includes the 
current execution location

8/17/2004 © 2002-04 Hal Perkins & UW CSE T-42

Summary

Object-oriented languages introduce new 
implementation issues, and different tradeoffs 
for classical compiler techniques
Wide interest in the compiler research 
community, particularly since Java burst onto 
the scene
Still an active area of research/development


