
CSEP 501 Au05 A-1

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-1

CSEP 501 – Compilers

Overview and Administrivia
Hal Perkins

Autumn 2005

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-2

Credits

Some ancestors of this summer’s course
Cornell CS 412-3 (Teitelbaum, Perkins)
Rice CS 412 (Cooper, Kennedy, Torczon)
UW CSE 401 (Chambers, Ruzzo, et al)
UW CSE 582 (Perkins)
Many books (particularly Cooper/Torczon; 
Aho, Sethi, Ullman [Dragon Book], Appel)

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-3

Agenda

Introductions
What’s a compiler?
Administrivia

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-4

CSEP 501 Personel

Instructor: Hal Perkins
CSE 548; perkins@cs
Office hours: after class + drop whenever 
you’re around and you can find me + 
appointments

TA: Yael Schwartzman
yaels@cs
Office hours: Tue. 4:30-6:30 pm, CSE 218 
+ appointments

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-5

And the point is… 

Execute this!
int nPos = 0;
int k = 0;
while (k < length) {

if (a[k] > 0) {
nPos++;

}
}

How?

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-6

Interpreters & Compilers

Interpreter
A program that reads an source program 
and produces the results of executing that 
program

Compiler
A program that translates a program from 
one language (the source) to another (the 
target)



CSEP 501 Au05 A-2

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-7

Common Issues

Compilers and interpreters both must 
read the input – a stream of characters 
– and “understand” it; analysis

w h i l e ( k < l e n g t h ) { <nl> <tab> i f ( a [ k ] > 0 
) <nl> <tab> <tab>{ n P o s + + ; } <nl> <tab> }

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-8

Interpreter

Interpreter
Execution engine
Program execution interleaved with 
analysis

running = true;
while (running) {

analyze next statement;
execute that statement;

}

May involve repeated analysis of some 
statements (loops, functions)

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-9

Compiler

Read and analyze entire program
Translate to semantically equivalent program 
in another language

Presumably easier to execute or more efficient
Should “improve” the program in some fashion

Offline process
Tradeoff: compile time overhead (preprocessing 
step) vs execution performance

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-10

Typical Implementations

Compilers
FORTRAN, C, C++, Java, COBOL, etc. etc.
Strong need for optimization in many cases

Interpreters
PERL, Python, Ruby, awk, sed, sh, csh, 
postscript printer, Java VM
Effective if interpreter overhead is low 
relative to execution cost of individual 
statements

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-11

Hybrid approaches

Well-known example: Java
Compile Java source to byte codes – Java Virtual 
Machine language (.class files)
Execution

Interpret byte codes directly, or
Compile some or all byte codes to native code

Just-In-Time compiler (JIT) – detect hot spots & compile 
on the fly to native code

Variation: .NET
Compilers generate MSIL
All IL compiled to native code before execution

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-12

Why Study Compilers?  (1)

Become a better programmer(!)
Insight into interaction between languages, 
compilers, and hardware
Understanding of implementation 
techniques
What is all that stuff in the debugger 
anyway?
Better intuition about what your code does



CSEP 501 Au05 A-3

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-13

Why Study Compilers?  (2)

Compiler techniques are everywhere
Parsing (little languages, interpreters)
Database engines
AI: domain-specific languages
Text processing 

Tex/LaTex -> dvi -> Postscript -> pdf

Hardware: VHDL; model-checking tools
Mathematics (Mathematica, Matlab)

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-14

Why Study Compilers?  (3)

Fascinating blend of theory and 
engineering

Direct applications of theory to practice
Parsing, scanning, static analysis

Some very difficult problems (NP-hard or 
worse)

Resource allocation, “optimization”, etc.
Need to come up with good-enough solutions

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-15

Why Study Compilers?  (4)

Ideas from many parts of CSE
AI: Greedy algorithms, heuristic search
Algorithms: graph algorithms, dynamic 
programming, approximation algorithms
Theory: Grammars, DFAs and PDAs, pattern 
matching, fixed-point algorithms
Systems: Allocation & naming, synchronization, 
locality
Architecture: pipelines, instruction set use, 
memory hierarchy management

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-16

Why Study Compilers?  (5)

You might even write a compiler some 
day!

You’ll almost certainly write parsers and 
interpreters in some context if you haven’t 
already

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-17

Structure of a Compiler

First approximation
Front end: analysis

Read source program and understand its 
structure and meaning

Back end: synthesis
Generate equivalent target language program

Source TargetFront End Back End

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-18

Implications

Must recognize legal programs (& complain 
about illegal ones)
Must generate correct code
Must manage storage of all variables
Must agree with OS & linker on target format

Source TargetFront End Back End



CSEP 501 Au05 A-4

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-19

More Implications

Need some sort of Intermediate 
Representation(s) (IR)
Front end maps source into IR
Back end maps IR to target machine code
May be multiple IRs – higher level at first, 
lower level in later phases

Source TargetFront End Back End

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-20

Front End

Split into two parts
Scanner: Responsible for converting character 
stream to token stream

Also strips out white space, comments

Parser: Reads token stream; generates IR

Both of these can be generated automatically
Source language specified by a formal grammar
Tools read the grammar and generate scanner & 
parser (either table-driven or hard-coded)

Scanner Parsersource tokens IR

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-21

Tokens

Token stream: Each significant lexical 
chunk of the program is represented by 
a token

Operators & Punctuation: {}[]!+-=*;: …
Keywords: if while return goto
Identifiers: id & actual name
Constants: kind & value; int, floating-point 
character, string, …

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-22

Scanner Example

Input text
// this statement does very little
if (x >= y) y = 42;

Token Stream

Notes: tokens are atomic items, not character 
strings; comments are not tokens

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-23

Parser Output (IR)

Many different forms
Engineering tradeoffs that have changed 
over time

Common output from a parser is an 
abstract syntax tree

Essential meaning of the program without 
the syntactic noise

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-24

Parser Example

Token Stream Input Abstract Syntax Tree
IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)



CSEP 501 Au05 A-5

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-25

Static Semantic Analysis

During or (more common) after parsing
Type checking
Check for language requirements like 
proper declarations, type compatibility
Preliminary resource allocation
Collect other information needed by back 
end analysis and code generation

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-26

Back End

Responsibilities
Translate IR into target machine code
Should produce fast, compact code
Should use machine resources effectively

Registers
Instructions
Memory hierarchy

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-27

Back End Structure

Typically split into two major parts with 
sub phases

“Optimization” – code improvements
May well translate parser IR into other IRs
We probably won’t have time to do much with 
this part of the compiler, alas

Code generation
Instruction selection & scheduling
Register allocation

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-28

The Result

Input
if (x >= y) 

y = 42;

Output

mov eax,[ebp+16]
cmp eax,[ebp-8]
jl L17
mov [ebp-8],42

L17:

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-29

Some History (1)

1950’s.  Existence proof
FORTRAN I (1954) – competitive with 
hand-optimized code

1960’s
New languages: ALGOL, LISP, COBOL, 
SIMULA
Formal notations for syntax, esp. BNF
Fundamental implementation techniques

Stack frames, recursive procedures, etc.

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-30

Some History (2)

1970’s
Syntax: formal methods for producing 
compiler front-ends; many theorems

Late 1970’s, 1980’s
New languages (functional; Smalltalk & 
object-oriented)
New architectures (RISC machines, parallel 
machines, memory hierarchy issues)
More attention to back-end issues



CSEP 501 Au05 A-6

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-31

Some History (3)
Since 1990

Compilation techniques appearing in many new 
places

Just-in-time compilers (JITs)
Whole program analysis

Phased compilation – blurring the lines between 
“compile time” and “runtime”

Using machine learning techniques to control 
optimizations(!)

Compiler technology critical to effective use of 
new hardware (RISC, Itanium, complex memory 
heirarchies)

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-32

CSEP 501 Course Project

Best way to learn about compilers is to build 
one
CSEP 501 course project:  Implement an x86 
compiler in Java for an object-oriented 
programming language

MiniJava subset of Java from Appel book with subclasses
Includes core object-oriented parts (classes, instances, 
and methods, including inheritance)
Basic control structures (if, while)
Integer variables and expressions

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-33

Project Details
Goal: large enough language to be interesting; small 
enough to be tractable

With luck, get to some interesting back-end issues
Project due in phases

Final result is the main thing, but timeliness and quality of 
intermediate work counts for something
Final report & conference at end of the course

Core requirements, then open-ended
Core requirements: what’s needed to get a decent grade in 
the course

Reasonably open to alternative projects; let’s discuss
Most likely would be a different implementation language 
(C#, ML?) or target (MIPS/SPIM, x86-64, …)

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-34

Prerequisites

Assume undergrad courses in:
Data structures & algorithms

Linked lists, dictionaries, trees, hash tables, &c
Formal languages & automata

Regular expressions, finite automata, context-free 
grammars, maybe a little parsing

Machine organization
Assembly-level programming for some machine (not 
necessarily x86)

Gaps can usually be filled in
We’ll review what we need when we get to it

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-35

Project Groups

Students encouraged to work in groups 
of 2 or 3

Pair programming strongly encouraged

Space for CVS repositories will be 
available from UW CSE

Use if desired; not required

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-36

Programming Environments
Whatever you want!

But assuming you’re using Java, your code should 
compile & run with the standard Sun javac/java 
tools
If you use C# or something else, you assume 
some risk of the unknown

Work with other members of the class and pull together

We’ll put links to various Java tools on the 
course web

Many (most?) are free downloads
If you’re looking for a Java IDE, try Eclipse



CSEP 501 Au05 A-7

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-37

Requirements & Grading

Roughly
50% project
20% individual written homework
25% exam (Thur. evening, about 2/3 of the way 
through the course)
5% other

Intent is to have homework submission online 
with graded work returned via email

Will adjust as needed

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-38

CSE 582 Administrivia

1 lecture per week
Tuesday 6:30-9:20, CSE 305
Carpools? 

Office Hours
Perkins: after class
Schwartzman: Tuesday 4:30-6:30
Also appointments

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-39

CSEP 501 Web

Everything is (or will be) at
www.cs.washington.edu/csep501 

Lecture slides will be available on the 
course web by mid-afternoon before 
each class

Printed copies available in class, but you 
may want to read or print in advance

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-40

Communications
Course web site 
Mailing list

You will be automatically subscribed if you are enrolled
Want this to be fairly low-volume; limited to things that 
everyone needs to read
Link will appear on course web page

Discussion board
Also linked from course web
Use for anything relevant to the course – let’s try to build a 
community

IM?  Online office hours?  Other ideas?

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-41

Books

Main textbook: Appel, Modern Compiler 
Implementation in Java, 2nd ed.
A couple of other good compiler books

Aho, Sethi, Ullman, “Dragon Book”
Cooper & Torczon, Engineering a Compiler

If we put these on reserve in the engineering 
library, would anyone notice?

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-42

Academic Integrity

Goal: create a cooperative community 
working together to learn and implement 
great projects!

Possibilities include bounties for first person to 
solve vexing problems

But: you must never misrepresent work done 
by someone else as your own, without proper 
credit

OK to share ideas & help each other out, but your 
project should ultimately be created by your group



CSEP 501 Au05 A-8

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-43

Any questions?

Your job is to ask questions to be sure 
you understand what’s happening and 
slow me down

Otherwise, I’ll barrel on ahead ☺

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-44

Coming Attractions

Review of formal grammars
Lexical analysis – scanning

First part of the project

Followed by parsing…

Suggestion: read the first couple of 
chapters of the book


