
CSEP 501 Au05 A-1

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-1

CSEP 501 – Compilers

Overview and Administrivia
Hal Perkins

Autumn 2005

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-2

Credits

� Some ancestors of this summer’s course
� Cornell CS 412-3 (Teitelbaum, Perkins)
� Rice CS 412 (Cooper, Kennedy, Torczon)
� UW CSE 401 (Chambers, Ruzzo, et al)
� UW CSE 582 (Perkins)
� Many books (particularly Cooper/Torczon;

Aho, Sethi, Ullman [Dragon Book], Appel)

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-3

Agenda

� Introductions
� What’s a compiler?
� Administrivia

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-4

CSEP 501 Personel

� Instructor: Hal Perkins
� CSE 548; perkins@cs
� Office hours: after class + drop whenever

you’re around and you can find me +
appointments

� TA: Yael Schwartzman
� yaels@cs
� Office hours: Tue. 4:30-6:30 pm, CSE 218

+ appointments

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-5

And the point is…

� Execute this!
int nPos = 0;
int k = 0;
while (k < length) {

if (a[k] > 0) {
nPos++;

}
}

� How?

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-6

Interpreters & Compilers

� Interpreter
� A program that reads an source program

and produces the results of executing that
program

� Compiler
� A program that translates a program from

one language (the source) to another (the
target)

CSEP 501 Au05 A-2

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-7

Common Issues

� Compilers and interpreters both must
read the input – a stream of characters
– and “understand” it; analysis

w h i l e (k < l e n g t h) { <nl> <tab> i f (a [k] > 0
) <nl> <tab> <tab>{ n P o s + + ; } <nl> <tab> }

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-8

Interpreter

� Interpreter
� Execution engine
� Program execution interleaved with

analysis
running = true;
while (running) {

analyze next statement;
execute that statement;

}

� May involve repeated analysis of some
statements (loops, functions)

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-9

Compiler

� Read and analyze entire program
� Translate to semantically equivalent program

in another language
� Presumably easier to execute or more efficient
� Should “improve” the program in some fashion

� Offline process
� Tradeoff: compile time overhead (preprocessing

step) vs execution performance

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-10

Typical Implementations

� Compilers
� FORTRAN, C, C++, Java, COBOL, etc. etc.
� Strong need for optimization in many cases

� Interpreters
� PERL, Python, Ruby, awk, sed, sh, csh,

postscript printer, Java VM
� Effective if interpreter overhead is low

relative to execution cost of individual
statements

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-11

Hybrid approaches

� Well-known example: Java
� Compile Java source to byte codes – Java Virtual

Machine language (.class files)
� Execution

� Interpret byte codes directly, or
� Compile some or all byte codes to native code

� Just-In-Time compiler (JIT) – detect hot spots & compile
on the fly to native code

� Variation: .NET
� Compilers generate MSIL
� All IL compiled to native code before execution

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-12

Why Study Compilers? (1)

� Become a better programmer(!)
� Insight into interaction between languages,

compilers, and hardware
� Understanding of implementation

techniques
� What is all that stuff in the debugger

anyway?
� Better intuition about what your code does

CSEP 501 Au05 A-3

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-13

Why Study Compilers? (2)

� Compiler techniques are everywhere
� Parsing (little languages, interpreters)
� Database engines
� AI: domain-specific languages
� Text processing

� Tex/LaTex -> dvi -> Postscript -> pdf

� Hardware: VHDL; model-checking tools
� Mathematics (Mathematica, Matlab)

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-14

Why Study Compilers? (3)

� Fascinating blend of theory and
engineering
� Direct applications of theory to practice

� Parsing, scanning, static analysis

� Some very difficult problems (NP-hard or
worse)
� Resource allocation, “optimization”, etc.
� Need to come up with good-enough solutions

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-15

Why Study Compilers? (4)

� Ideas from many parts of CSE
� AI: Greedy algorithms, heuristic search
� Algorithms: graph algorithms, dynamic

programming, approximation algorithms
� Theory: Grammars, DFAs and PDAs, pattern

matching, fixed-point algorithms
� Systems: Allocation & naming, synchronization,

locality
� Architecture: pipelines, instruction set use,

memory hierarchy management

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-16

Why Study Compilers? (5)

� You might even write a compiler some
day!
� You’ll almost certainly write parsers and

interpreters in some context if you haven’t
already

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-17

Structure of a Compiler

� First approximation
� Front end: analysis

� Read source program and understand its
structure and meaning

� Back end: synthesis
� Generate equivalent target language program

Source TargetFront End Back End

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-18

Implications

� Must recognize legal programs (& complain
about illegal ones)

� Must generate correct code
� Must manage storage of all variables
� Must agree with OS & linker on target format

Source TargetFront End Back End

CSEP 501 Au05 A-4

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-19

More Implications

� Need some sort of Intermediate
Representation(s) (IR)

� Front end maps source into IR
� Back end maps IR to target machine code
� May be multiple IRs – higher level at first,

lower level in later phases

Source TargetFront End Back End

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-20

Front End

� Split into two parts
� Scanner: Responsible for converting character

stream to token stream
� Also strips out white space, comments

� Parser: Reads token stream; generates IR

� Both of these can be generated automatically
� Source language specified by a formal grammar
� Tools read the grammar and generate scanner &

parser (either table-driven or hard-coded)

Scanner Parsersource tokens IR

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-21

Tokens

� Token stream: Each significant lexical
chunk of the program is represented by
a token
� Operators & Punctuation: {}[]!+-=*;: …
� Keywords: if while return goto
� Identifiers: id & actual name
� Constants: kind & value; int, floating-point

character, string, …

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-22

Scanner Example

� Input text
// this statement does very little
if (x >= y) y = 42;

� Token Stream

� Notes: tokens are atomic items, not character
strings; comments are not tokens

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-23

Parser Output (IR)

� Many different forms
� Engineering tradeoffs that have changed

over time

� Common output from a parser is an
abstract syntax tree
� Essential meaning of the program without

the syntactic noise

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-24

Parser Example

� Token Stream Input � Abstract Syntax Tree
IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

CSEP 501 Au05 A-5

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-25

Static Semantic Analysis

� During or (more common) after parsing
� Type checking
� Check for language requirements like

proper declarations, type compatibility
� Preliminary resource allocation
� Collect other information needed by back

end analysis and code generation

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-26

Back End

� Responsibilities
� Translate IR into target machine code
� Should produce fast, compact code
� Should use machine resources effectively

� Registers
� Instructions
� Memory hierarchy

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-27

Back End Structure

� Typically split into two major parts with
sub phases
� “Optimization” – code improvements

� May well translate parser IR into other IRs
� We probably won’t have time to do much with

this part of the compiler, alas
� Code generation

� Instruction selection & scheduling
� Register allocation

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-28

The Result

� Input
if (x >= y)

y = 42;

� Output

mov eax,[ebp+16]
cmp eax,[ebp-8]
jl L17
mov [ebp-8],42

L17:

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-29

Some History (1)

� 1950’s. Existence proof
� FORTRAN I (1954) – competitive with

hand-optimized code
� 1960’s

� New languages: ALGOL, LISP, COBOL,
SIMULA

� Formal notations for syntax, esp. BNF
� Fundamental implementation techniques

� Stack frames, recursive procedures, etc.

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-30

Some History (2)

� 1970’s
� Syntax: formal methods for producing

compiler front-ends; many theorems
� Late 1970’s, 1980’s

� New languages (functional; Smalltalk &
object-oriented)

� New architectures (RISC machines, parallel
machines, memory hierarchy issues)

� More attention to back-end issues

CSEP 501 Au05 A-6

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-31

Some History (3)
� Since 1990

� Compilation techniques appearing in many new
places
� Just-in-time compilers (JITs)
� Whole program analysis

� Phased compilation – blurring the lines between
“compile time” and “runtime”
� Using machine learning techniques to control

optimizations(!)
� Compiler technology critical to effective use of

new hardware (RISC, Itanium, complex memory
heirarchies)

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-32

CSEP 501 Course Project

� Best way to learn about compilers is to build
one

� CSEP 501 course project: Implement an x86
compiler in Java for an object-oriented
programming language

� MiniJava subset of Java from Appel book with subclasses
� Includes core object-oriented parts (classes, instances,

and methods, including inheritance)
� Basic control structures (if, while)
� Integer variables and expressions

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-33

Project Details
� Goal: large enough language to be interesting; small

enough to be tractable
� With luck, get to some interesting back-end issues

� Project due in phases
� Final result is the main thing, but timeliness and quality of

intermediate work counts for something
� Final report & conference at end of the course

� Core requirements, then open-ended
� Core requirements: what’s needed to get a decent grade in

the course
� Reasonably open to alternative projects; let’s discuss

� Most likely would be a different implementation language
(C#, ML?) or target (MIPS/SPIM, x86-64, …)

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-34

Prerequisites

� Assume undergrad courses in:
� Data structures & algorithms

� Linked lists, dictionaries, trees, hash tables, &c
� Formal languages & automata

� Regular expressions, finite automata, context-free
grammars, maybe a little parsing

� Machine organization
� Assembly-level programming for some machine (not

necessarily x86)

� Gaps can usually be filled in
� We’ll review what we need when we get to it

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-35

Project Groups

� Students encouraged to work in groups
of 2 or 3
� Pair programming strongly encouraged

� Space for CVS repositories will be
available from UW CSE
� Use if desired; not required

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-36

Programming Environments
� Whatever you want!

� But assuming you’re using Java, your code should
compile & run with the standard Sun javac/java
tools

� If you use C# or something else, you assume
some risk of the unknown
� Work with other members of the class and pull together

� We’ll put links to various Java tools on the
course web
� Many (most?) are free downloads
� If you’re looking for a Java IDE, try Eclipse

CSEP 501 Au05 A-7

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-37

Requirements & Grading

� Roughly
� 50% project
� 20% individual written homework
� 25% exam (Thur. evening, about 2/3 of the way

through the course)
� 5% other

� Intent is to have homework submission online
with graded work returned via email
� Will adjust as needed

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-38

CSE 582 Administrivia

� 1 lecture per week
� Tuesday 6:30-9:20, CSE 305
� Carpools?

� Office Hours
� Perkins: after class
� Schwartzman: Tuesday 4:30-6:30
� Also appointments

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-39

CSEP 501 Web

� Everything is (or will be) at
www.cs.washington.edu/csep501

� Lecture slides will be available on the
course web by mid-afternoon before
each class
� Printed copies available in class, but you

may want to read or print in advance

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-40

Communications
� Course web site
� Mailing list

� You will be automatically subscribed if you are enrolled
� Want this to be fairly low-volume; limited to things that

everyone needs to read
� Link will appear on course web page

� Discussion board
� Also linked from course web
� Use for anything relevant to the course – let’s try to build a

community
� IM? Online office hours? Other ideas?

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-41

Books

� Main textbook: Appel, Modern Compiler
Implementation in Java, 2nd ed.

� A couple of other good compiler books
� Aho, Sethi, Ullman, “Dragon Book”
� Cooper & Torczon, Engineering a Compiler

� If we put these on reserve in the engineering
library, would anyone notice?

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-42

Academic Integrity

� Goal: create a cooperative community
working together to learn and implement
great projects!
� Possibilities include bounties for first person to

solve vexing problems
� But: you must never misrepresent work done

by someone else as your own, without proper
credit
� OK to share ideas & help each other out, but your

project should ultimately be created by your group

CSEP 501 Au05 A-8

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-43

Any questions?

� Your job is to ask questions to be sure
you understand what’s happening and
slow me down
� Otherwise, I’ll barrel on ahead ☺

10/18/2005 © 2002-5 Hal Perkins & UW CSE A-44

Coming Attractions

� Review of formal grammars
� Lexical analysis – scanning

� First part of the project

� Followed by parsing…

� Suggestion: read the first couple of
chapters of the book

