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Agenda

Compiler back-end organization
Low-level intermediate representations

Trees
Linear

Instruction selection algorithms
Tree pattern matching
Peephole matching

Credits: Much of this material is adapted from slides by Keith Cooper 
(Rice) and material in Appel’s Modern Compiler Implementation in Java

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-3

Compiler Organization
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back end

infrastructure – symbol tables, trees, graphs, etc
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Big Picture

Compiler consists of lots of fast stuff 
followed by hard problems

Scanner: O(n)
Parser: O(n)
Analysis & Optimization:  ~ O(n log n)
Instruction selection: fast or NP-Complete
Instruction scheduling: NP-Complete
Register allocation: NP-Complete
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Intermediate Representations
Tree or linear?
Closer to source language or machine?

Source language: more context for high-level 
optimizations
Machine: exposes opportunities for low-level 
optimizations and easier to map to actual code

Common strategy
Initial IR is AST, close to source
After some optimizations, transform to lower-level 
IR, either tree or linear; use this to optimize 
further and generate code
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IR for Code Generation

Assume a low-level RISC-like IR
3 address, register-register instructions + 
load/store

r1 <- r2 op r3

Could be tree structure or linear
Expose as much detail as possible

Assume “enough” registers
Invent new temporaries for intermediate results
Map to actual registers later
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Overview
Instruction Selection

Map IR into assembly code
Assume known storage layout and code 
shape

i.e., the optimization phases have already 
done their thing

Combine low-level IR operations into 
machine instructions (addressing 
modes, etc.)
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Overview
Instruction Scheduling 

Reorder operations to hide latencies –
processor function units; memory/cache

Originally invented for supercomputers 
(1960s)
Now important for consumer machines

Even non-RISC machines, i.e., x86

Assume fixed program
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Overview
Register Allocation

Map values to actual registers
Previous phases change need for registers

Add code to spill values to temporaries 
as needed, etc.
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How Hard?
Instruction selection

Can make locally optimal choices
Global is undoubtedly NP-Complete

Instruction scheduling
Single basic block – quick heuristics
General problem – NP Complete

Register allocation
Single basic block, no spilling, interchangeable 
registers – linear
General – NP Complete
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Conventional Wisdom
We probably lose little by solving these independently
Instruction selection

Use some form of pattern matching
Assume “enough” registers

Instruction scheduling
Within a block, list scheduling is close to optimal
Across blocks: build framework to apply list scheduling

Register allocation
Start with virtual registers and map “enough” to K
Targeting, use good priority heuristic
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An Simple Low-Level IR (1)
Source: Appel, Modern Compiler Implementation

Details not important for our purposes; point is to get 
a feeling for the level of detail involved
Expressions

CONST(i) – integer constant i
TEMP(t) – temporary t (i.e., register)
BINOP(op,e1,e2) – application of op to e1,e2
MEM(e) – contents of memory at address e

Means value when used in an expression
Means address when used on left side of assignment

CALL(f,args) – application of function f to argument list args
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Simple Low-Level IR (2)
Statements

MOVE(TEMP t, e) – evaluate e and store in temporary t
MOVE(MEM(e1), e2) – evaluate e1 to yield address a; 
evaluate e2 and store at a
EXP(e) – evaluate expressions e and discard result
SEQ(s1,s2) – execute s1 followed by s2
NAME(n) – assembly language label n
JUMP(e) – jump to e, which can be a NAME label, or more 
compex (e.g., switch)
CJUMP(op,e1,e2,t,f) – evaluate e1 op e2; if true jump to 
label t, otherwise jump to f
LABEL(n) – defines location of label n in the code
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Low-Level IR Example (1)

For a local variable at a known offset k 
from the frame pointer fp

Linear
MEM(BINOP(PLUS, TEMP fp, CONST k))

Tree
MEM

+

TEMP fp CONST k
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Low-Level IR Example (2)

For an array element e(k), where each 
element takes up w storage locations

MEM

+

MEM *

e k CONST

w
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Generating Low-Level IR
Assuming initial IR is an AST, a simple treewalk can 
be used to generate the low-level IR

Can be done before, during, or after optimizations in the 
middle part of the compiler

Create registers (temporaries) for values and 
intermediate results

Value can be safely allocated in a register when only 1 name 
can reference it

Trouble: pointers, arrays, reference parameters
Assign a virtual register to anything that can go into one
Generate loads/stores for other values
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Instruction Selection Issues

Given the low-level IR, there are many 
possible code sequences that 
implement it correctly

e.g. to set eax to 0 on x86
mov eax,0 xor eax,eax
sub   eax,eax imul eax,0

Many machine instructions do several 
things at once – e.g., register arithmetic 
and effective address calculation
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Instruction Selection Criteria

Several possibilities
Fastest
Smallest
Minimize power consumption

Sometimes not obvious
e.g., if one of the function units in the processor is 
idle and we can select an instruction that uses 
that unit, it effectively executes for free, even if 
that instruction wouldn’t be chosen normally

(Some interaction with scheduling here…)
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Implementation
Problem: We need some representation of 
the target machine instruction set that 
facilitates code generation
Idea: Describe machine instructions in same 
low-level IR used for program
Use pattern matching techniques to pick 
machine instructions that match fragments of 
the program IR tree

Want this to run quickly
Would like to automate as much as possible
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Matching: How?
Tree IR – pattern match on trees

Tree patterns as input
Each pattern maps to target machine instruction (or 
sequence)
Use dynamic programming or bottom-up rewrite system 
(BURS)

Linear IR – some sort of string matching
Strings as input
Each string maps to target machine instruction sequence
Use text matching or peephole matching

Both work well in practice; actual algorithms are 
quite different
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An Example Target Machine (1)
Also from Appel

Arithmetic Instructions
(unnamed) ri TEMP
ADD ri <- rj + rk

MUL ri <- rj * rk

SUB and DIV are similar

+

*
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Immediate Instructons
ADDI ri <- rj + c

SUBI ri <- rj - c

An Example Target Machine (2)

+

CONST

+

CONST

CONST

-

CONST
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Load
LOAD  ri <- M[rj + c]

An Example Target Machine (3)

+

CONST

+

CONST

CONST

MEM MEM MEM MEM
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Store
STORE  M[rj + c] <- ri

An Example Target Machine (4)

+

CONST

+

CONST

CONST

MEM MEM MEM MEM

MOVE MOVE MOVE MOVE
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Tree Pattern Matching (1)

Goal: Tile the low-level tree with 
operation trees
A tiling is a collection of <node,op> 
pairs

node is a node in the tree
op is an operation tree
<node,op> means that op could 
implement the subtree at node
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Tree Pattern Matching  (2)

A tiling “implements” a tree if it covers every 
node in the tree and the overlap between any 
two tiles (trees) is limited to a single node

If <node,op> is in the tiling, then node is also 
covered by a leaf in another operation tree in the 
tiling – unless it is the root
Where two operation trees meet, they must be 
compatible (i.e., expect the same value in the 
same location)
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Generating Code

Given a tiled tree, to generate code
Postorder treewalk; node-dependant order 
for children
Emit code sequences corresponding to tiles 
in order
Connect tiles by using same register name 
to tie boundaries together
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Tiling Algorithm

There may be many tiles that could 
match at a particular node
Idea: Walk the tree and accumulate the 
set of all possible tiles that could match 
at that point – Tiles(n)

Later: can keep lowest cost match at each 
point
Generates local optimality – lowest cost 
match at each point
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Tile(Node n)
Tiles(n) <- empty;
if n has two children then

Tile(left child of n)
Tile(right child of n)
for each rule r that implements n

if (left(r) is in Tiles(left(n)) and right(r) is in Tiles(right(n)))
Tiles(n) <- Tiles(n) + r

else if n has one child then
Tile(child of n)
for each rule r that implements n

if(left(r) is in Tiles(child(n)))
Tiles(n) <- Tiles(n) + r

else /* n is a leaf */
Tiles(n) <- { all rules that implement n }
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Peephole Matching

A code generaton/improvement 
strategy for linear representations
Basic idea

Look at small sequences of adjacent 
operations
Compiler moves a sliding window 
(“peephole”) over the code and looks for 
improvements
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Peephole Optimizations (1)

Classic example: store followed by a 
load, or push followed by a pop

original improved
mov [ebp-8],eax mov [ebp-8],eax
mov eax,[ebp-8]

push  eax ---
pop    eax
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Peephole Optimizations (2)

Simple algebraic identies
original improved
add  eax,0 ---

add  eax,1 inc eax

mul eax,2 add eax,eax

mul eax,4 shl eax,2
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Peephole Optimizations (3)

Jump to a Jump
original improved
jmp here jmp there

here:  jmp there
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Implementing Peephole 
Matching

Early versions
Limited set of hand-coded pattern
Modest window size to ensure speed

Modern
Break problem in to expander, simplifier, 
matcher
Apply symbolic interpretation and 
simplification systematically
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Expander

Turn IR code into very low-level IR 
(LLIR)
Template-driven rewriting
LLIR includes all direct effects of 
instructions, e.g., setting condition 
codes
Big, although constant size expansion
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Simplifier

Look at LLIR through window and 
rewrite using

Forward substitution
Algebraic simplification
Local constant propagation
Eliminate dead code

This is the heart of the processing
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Matcher

Compare simplified LLIR against library 
of patterns
Pick low-cost pattern that captures 
effects
Must preserve LLIR effects, can add 
new ones (condition codes, etc.)
Generates assembly code output
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Peephole Optimization 
Considered

LLIR is largely machine independent (RTL)
Target machine description is LLIR -> ASM 
patterns
Pattern matching

Use hand-coded matcher  (classical gcc)
Turn patterns into grammar and use LR parser

Used in several important compilers
Seems to produce good portable instruction 
selectors
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Coming Attractions

Instruction Scheduling
Register Allocation
Survey of Optimization
Survey of “new” technologies

Memory management & garbage collection
Virtual machines, portability, and security


