
CSE P 501 Au05 N-1

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-1

CSE P 501 – Compilers

Instruction Selection
Hal Perkins

Autumn 2005

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-2

Agenda

Compiler back-end organization
Low-level intermediate representations

Trees
Linear

Instruction selection algorithms
Tree pattern matching
Peephole matching

Credits: Much of this material is adapted from slides by Keith Cooper
(Rice) and material in Appel’s Modern Compiler Implementation in Java

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-3

Compiler Organization

pa
rs

e

sc
an

se
m

an
tic

s

front end

op
t2

op
t1

op
tn

middle

is
nt

r.
 s

ch
ed

in
st

r.
 s

el
ec

t

re
g.

 a
llo

c

back end

infrastructure – symbol tables, trees, graphs, etc

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-4

Big Picture

Compiler consists of lots of fast stuff
followed by hard problems

Scanner: O(n)
Parser: O(n)
Analysis & Optimization: ~ O(n log n)
Instruction selection: fast or NP-Complete
Instruction scheduling: NP-Complete
Register allocation: NP-Complete

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-5

Intermediate Representations
Tree or linear?
Closer to source language or machine?

Source language: more context for high-level
optimizations
Machine: exposes opportunities for low-level
optimizations and easier to map to actual code

Common strategy
Initial IR is AST, close to source
After some optimizations, transform to lower-level
IR, either tree or linear; use this to optimize
further and generate code

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-6

IR for Code Generation

Assume a low-level RISC-like IR
3 address, register-register instructions +
load/store

r1 <- r2 op r3

Could be tree structure or linear
Expose as much detail as possible

Assume “enough” registers
Invent new temporaries for intermediate results
Map to actual registers later

CSE P 501 Au05 N-2

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-7

Overview
Instruction Selection

Map IR into assembly code
Assume known storage layout and code
shape

i.e., the optimization phases have already
done their thing

Combine low-level IR operations into
machine instructions (addressing
modes, etc.)

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-8

Overview
Instruction Scheduling

Reorder operations to hide latencies –
processor function units; memory/cache

Originally invented for supercomputers
(1960s)
Now important for consumer machines

Even non-RISC machines, i.e., x86

Assume fixed program

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-9

Overview
Register Allocation

Map values to actual registers
Previous phases change need for registers

Add code to spill values to temporaries
as needed, etc.

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-10

How Hard?
Instruction selection

Can make locally optimal choices
Global is undoubtedly NP-Complete

Instruction scheduling
Single basic block – quick heuristics
General problem – NP Complete

Register allocation
Single basic block, no spilling, interchangeable
registers – linear
General – NP Complete

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-11

Conventional Wisdom
We probably lose little by solving these independently
Instruction selection

Use some form of pattern matching
Assume “enough” registers

Instruction scheduling
Within a block, list scheduling is close to optimal
Across blocks: build framework to apply list scheduling

Register allocation
Start with virtual registers and map “enough” to K
Targeting, use good priority heuristic

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-12

An Simple Low-Level IR (1)
Source: Appel, Modern Compiler Implementation

Details not important for our purposes; point is to get
a feeling for the level of detail involved
Expressions

CONST(i) – integer constant i
TEMP(t) – temporary t (i.e., register)
BINOP(op,e1,e2) – application of op to e1,e2
MEM(e) – contents of memory at address e

Means value when used in an expression
Means address when used on left side of assignment

CALL(f,args) – application of function f to argument list args

CSE P 501 Au05 N-3

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-13

Simple Low-Level IR (2)
Statements

MOVE(TEMP t, e) – evaluate e and store in temporary t
MOVE(MEM(e1), e2) – evaluate e1 to yield address a;
evaluate e2 and store at a
EXP(e) – evaluate expressions e and discard result
SEQ(s1,s2) – execute s1 followed by s2
NAME(n) – assembly language label n
JUMP(e) – jump to e, which can be a NAME label, or more
compex (e.g., switch)
CJUMP(op,e1,e2,t,f) – evaluate e1 op e2; if true jump to
label t, otherwise jump to f
LABEL(n) – defines location of label n in the code

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-14

Low-Level IR Example (1)

For a local variable at a known offset k
from the frame pointer fp

Linear
MEM(BINOP(PLUS, TEMP fp, CONST k))

Tree
MEM

+

TEMP fp CONST k

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-15

Low-Level IR Example (2)

For an array element e(k), where each
element takes up w storage locations

MEM

+

MEM *

e k CONST

w

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-16

Generating Low-Level IR
Assuming initial IR is an AST, a simple treewalk can
be used to generate the low-level IR

Can be done before, during, or after optimizations in the
middle part of the compiler

Create registers (temporaries) for values and
intermediate results

Value can be safely allocated in a register when only 1 name
can reference it

Trouble: pointers, arrays, reference parameters
Assign a virtual register to anything that can go into one
Generate loads/stores for other values

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-17

Instruction Selection Issues

Given the low-level IR, there are many
possible code sequences that
implement it correctly

e.g. to set eax to 0 on x86
mov eax,0 xor eax,eax
sub eax,eax imul eax,0

Many machine instructions do several
things at once – e.g., register arithmetic
and effective address calculation

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-18

Instruction Selection Criteria

Several possibilities
Fastest
Smallest
Minimize power consumption

Sometimes not obvious
e.g., if one of the function units in the processor is
idle and we can select an instruction that uses
that unit, it effectively executes for free, even if
that instruction wouldn’t be chosen normally

(Some interaction with scheduling here…)

CSE P 501 Au05 N-4

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-19

Implementation
Problem: We need some representation of
the target machine instruction set that
facilitates code generation
Idea: Describe machine instructions in same
low-level IR used for program
Use pattern matching techniques to pick
machine instructions that match fragments of
the program IR tree

Want this to run quickly
Would like to automate as much as possible

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-20

Matching: How?
Tree IR – pattern match on trees

Tree patterns as input
Each pattern maps to target machine instruction (or
sequence)
Use dynamic programming or bottom-up rewrite system
(BURS)

Linear IR – some sort of string matching
Strings as input
Each string maps to target machine instruction sequence
Use text matching or peephole matching

Both work well in practice; actual algorithms are
quite different

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-21

An Example Target Machine (1)
Also from Appel

Arithmetic Instructions
(unnamed) ri TEMP
ADD ri <- rj + rk

MUL ri <- rj * rk

SUB and DIV are similar

+

*

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-22

Immediate Instructons
ADDI ri <- rj + c

SUBI ri <- rj - c

An Example Target Machine (2)

+

CONST

+

CONST

CONST

-

CONST

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-23

Load
LOAD ri <- M[rj + c]

An Example Target Machine (3)

+

CONST

+

CONST

CONST

MEM MEM MEM MEM

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-24

Store
STORE M[rj + c] <- ri

An Example Target Machine (4)

+

CONST

+

CONST

CONST

MEM MEM MEM MEM

MOVE MOVE MOVE MOVE

CSE P 501 Au05 N-5

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-25

Tree Pattern Matching (1)

Goal: Tile the low-level tree with
operation trees
A tiling is a collection of <node,op>
pairs

node is a node in the tree
op is an operation tree
<node,op> means that op could
implement the subtree at node

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-26

Tree Pattern Matching (2)

A tiling “implements” a tree if it covers every
node in the tree and the overlap between any
two tiles (trees) is limited to a single node

If <node,op> is in the tiling, then node is also
covered by a leaf in another operation tree in the
tiling – unless it is the root
Where two operation trees meet, they must be
compatible (i.e., expect the same value in the
same location)

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-27

Generating Code

Given a tiled tree, to generate code
Postorder treewalk; node-dependant order
for children
Emit code sequences corresponding to tiles
in order
Connect tiles by using same register name
to tie boundaries together

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-28

Tiling Algorithm

There may be many tiles that could
match at a particular node
Idea: Walk the tree and accumulate the
set of all possible tiles that could match
at that point – Tiles(n)

Later: can keep lowest cost match at each
point
Generates local optimality – lowest cost
match at each point

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-29

Tile(Node n)
Tiles(n) <- empty;
if n has two children then

Tile(left child of n)
Tile(right child of n)
for each rule r that implements n

if (left(r) is in Tiles(left(n)) and right(r) is in Tiles(right(n)))
Tiles(n) <- Tiles(n) + r

else if n has one child then
Tile(child of n)
for each rule r that implements n

if(left(r) is in Tiles(child(n)))
Tiles(n) <- Tiles(n) + r

else /* n is a leaf */
Tiles(n) <- { all rules that implement n }

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-30

Peephole Matching

A code generaton/improvement
strategy for linear representations
Basic idea

Look at small sequences of adjacent
operations
Compiler moves a sliding window
(“peephole”) over the code and looks for
improvements

CSE P 501 Au05 N-6

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-31

Peephole Optimizations (1)

Classic example: store followed by a
load, or push followed by a pop

original improved
mov [ebp-8],eax mov [ebp-8],eax
mov eax,[ebp-8]

push eax ---
pop eax

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-32

Peephole Optimizations (2)

Simple algebraic identies
original improved
add eax,0 ---

add eax,1 inc eax

mul eax,2 add eax,eax

mul eax,4 shl eax,2

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-33

Peephole Optimizations (3)

Jump to a Jump
original improved
jmp here jmp there

here: jmp there

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-34

Implementing Peephole
Matching

Early versions
Limited set of hand-coded pattern
Modest window size to ensure speed

Modern
Break problem in to expander, simplifier,
matcher
Apply symbolic interpretation and
simplification systematically

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-35

Expander

Turn IR code into very low-level IR
(LLIR)
Template-driven rewriting
LLIR includes all direct effects of
instructions, e.g., setting condition
codes
Big, although constant size expansion

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-36

Simplifier

Look at LLIR through window and
rewrite using

Forward substitution
Algebraic simplification
Local constant propagation
Eliminate dead code

This is the heart of the processing

CSE P 501 Au05 N-7

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-37

Matcher

Compare simplified LLIR against library
of patterns
Pick low-cost pattern that captures
effects
Must preserve LLIR effects, can add
new ones (condition codes, etc.)
Generates assembly code output

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-38

Peephole Optimization
Considered

LLIR is largely machine independent (RTL)
Target machine description is LLIR -> ASM
patterns
Pattern matching

Use hand-coded matcher (classical gcc)
Turn patterns into grammar and use LR parser

Used in several important compilers
Seems to produce good portable instruction
selectors

11/22/2005 © 2002-05 Hal Perkins & UW CSE N-39

Coming Attractions

Instruction Scheduling
Register Allocation
Survey of Optimization
Survey of “new” technologies

Memory management & garbage collection
Virtual machines, portability, and security

