
CSE P 501 Au05 P-1

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-1

CSE P 501 – Compilers

Register Allocation
Hal Perkins

Autumn 2005

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-2

Agenda

Register allocation constraints
Top-down and bottom-up local
allocation
Global allocation – register coloring

Credits: Adapted from slides by Keith Cooper, Rice University

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-3

k

Intermediate code typically assumes infinite
number of registers
Real machine has k registers available
Goals

Produce correct code that uses k or fewer
registers
Minimize added loads and stores
Minimize space needed for spilled values
Do this efficiently – O(n), O(n log n), maybe O(n2)

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-4

Register Allocation

Task
At each point in the code, pick the values
to keep in registers
Insert code to move values between
registers and memory

No additional transformations – scheduling
should have done its job

Minimize inserted code, both dynamically
and statically

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-5

Allocation vs Assignment

Allocation: deciding which values to
keep in registers
Assignment: choosing specific registers
for values
Compiler must do both

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-6

Basic Blocks

A basic block is a maximal length segment of
straight-line code (i.e., no branches)
Significance

If any statement executes, they all execute
Barring exceptions or other unusual circumstances

Execution totally ordered
Many techniques for improving basic blocks –
simplest and strongest methods

CSE P 501 Au05 P-2

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-7

Local Register Allocation

Transformation on basic blocks
Produces decent register usage inside a
block

Need to be careful of inefficiencies at
boundaries between blocks

Global register allocation can do better,
but is more complex

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-8

Allocation Constraints

Allocator typically won’t allocate all
registers to values
Generally reserve some minimal set of
registers F used only for spilling (i.e.,
don’t dedicate to a particular value

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-9

Liveness

A value is live between its definition
and use.

Find definitions (x = …) and uses
(… = … x …)
Live range is the interval from definition to
last use

Can represent live range as an interval [i,j] in
the block

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-10

Top-Down Allocator

Idea
Keep busiest values in a dedicated registers
Use reserved set, F, for the rest

Algorithm
Rank values by number of occurrences
Allocate first k-F values to registers
Add code to move other values between reserved
registers and memory

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-11

Bottom-Up Allocator
Idea

Focus on replacement rather than allocation
Keep values used “soon” in registers

Algorithm
Start with empty register set
Load on demand
When no register available, free one

Replacement
Spill value whose next use is farthest in the future
Prefer clean value to dirty value
Sound familiar?

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-12

Bottom-Up Allocator

Invented about once per decade
Sheldon Best, 1955, for Fortran I
Laslo Belady, 1965, for analyzing paging
algorithms
William Harrison, 1975, ECS compiler work
Chris Fraser, 1989, LCC compiler
Vincenzo Liberatore, 1997, Rutgers

Will be reinvented again, no doubt
Many arguments for optimality of this

CSE P 501 Au05 P-3

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-13

Global Register Allocation

A standard technique is graph coloring
Use control and dataflow graphs to derive
interference graph

Nodes are virtual registers (the infinite set)
Edge between (t1,t2) when t1 and t2 cannot be assigned to
the same register

Most commonly, t1 and t2 are both live at the same time
Can also use to express constraints about registers, etc.

Then color the nodes in the graph
Two nodes connected by an edge may not have same color
If more than k colors are needed, insert spill code

Disclaimer: this works well if there are “enough”
registers – not necessarily good on x86 machines

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-14

Coming Attractions

Dataflow and Control flow analysis
Overview of optimizations

