q CSE P 501 — Compilers

Register Allocation
Hal Perkins
Autumn 2005

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-1

3 Agenda

= Register allocation constraints

= Top-down and bottom-up local
allocation

= Global allocation — register coloring

Credits: Adapted from slides by Keith Cooper, Rice University

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-2

:_Lki
= Intermediate code typically assumes infinite
number of registers
= Real machine has k registers available

= Goals
= Produce correct code that uses k or fewer
registers
= Minimize added loads and stores
= Minimize space needed for spilled values
= Do this efficiently — O(n), O(n log n), maybe O(n?)

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-3

3 Register Allocation

= Task
= At each point in the code, pick the values
to keep in registers
= Insert code to move values between
registers and memory

= No additional transformations — scheduling
should have done its job

= Minimize inserted code, both dynamically
and statically

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-4

3 Allocation vs Assignment

= Allocation: deciding which values to
keep in registers

= Assignment: choosing specific registers
for values

= Compiler must do both

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-5

CSE P 501 Au05

3 Basic Blocks

= A basic block is a maximal length segment of
straight-line code (i.e., no branches)
= Significance
= If any statement executes, they all execute
= Barring exceptions or other unusual circumstances
= Execution totally ordered

= Many techniques for improving basic blocks —
simplest and strongest methods

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-6

P-1



3 Local Register Allocation

= Transformation on basic blocks

= Produces decent register usage inside a
block

= Need to be careful of inefficiencies at
boundaries between blocks

= Global register allocation can do better,
but is more complex

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-7

3 Allocation Constraints

= Allocator typically won't allocate all
registers to values

= Generally reserve some minimal set of
registers F used only for spilling (i.e.,
don't dedicate to a particular value

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-8

3 Liveness

= A value is /ive between its definition

and use.

= Find definitions (x = ...) and uses
(= x)

= Live range is the interval from definition to
last use

= Can represent live range as an interval [i,j] in
the block
11/22/2005 © 2002-05 Hal Perkins & UW CSE P-9

3 Top-Down Allocator

= ldea
= Keep busiest values in a dedicated registers
= Use reserved set, F, for the rest
= Algorithm
= Rank values by number of occurrences
= Allocate first k-F values to registers

= Add code to move other values between reserved
registers and memory

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-10

3 Bottom-Up Allocator

= ldea
= Focus on replacement rather than allocation
= Keep values used “soon” in registers
= Algorithm
= Start with empty register set
= Load on demand
= When no register available, free one
= Replacement
= Spill value whose next use is farthest in the future
= Prefer clean value to dirty value
= Sound familiar?

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-11

CSE P 501 Au05

3 Bottom-Up Allocator

= Invented about once per decade
= Sheldon Best, 1955, for Fortran |

= Laslo Belady, 1965, for analyzing paging
algorithms

= William Harrison, 1975, ECS compiler work
= Chris Fraser, 1989, LCC compiler
= Vincenzo Liberatore, 1997, Rutgers

= Will be reinvented again, no doubt

= Many arguments for optimality of this

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-12

P-2



Global Register Allocation

A standard technique is graph coloring
Use control and dataflow graphs to derive
interference graph

= Nodes are virtual registers (the infinite set)

= Edge between (t1,t2) when t1 and t2 cannot be assigned to
the same register

= Most commonly, t1 and t2 are both live at the same time
= Can also use to express constraints about registers, etc.
= Then color the nodes in the graph
= Two nodes connected by an edge may not have same color
= If more than k colors are needed, insert spill code
= Disclaimer: this works well if there are “enough”
registers — not necessarily good on x86 machines

11/22/2005 © 2002-05 Hal Perkins & UW CSE P-13

CSE P 501 Au05

Coming Attractions

= Dataflow and Control flow analysis
= Overview of optimizations

11/22/2005 © 2002-05 Hal Perkins & UW CSE

P-3



