
CSE P 501 Au05 S-1

12/6/2005 © 2002-05 Hal Perkins & UW CSE S-1

CSE P 501 – Compilers

Optimizing Transformations
Hal Perkins

Autumn 2005

12/6/2005 © 2002-05 Hal Perkins & UW CSE S-2

Agenda

A short catalog of typical optimizing
transformations

12/6/2005 © 2002-05 Hal Perkins & UW CSE S-3

Role of Transformations

Data-flow analysis discovers
opportunities for code improvement
Compiler must rewrite the code (IR) to
realize these improvements

A transformation may reveal additional
opportunities for further analysis &
transformation
May also block opportunities by obscuring
information

12/6/2005 © 2002-05 Hal Perkins & UW CSE S-4

Organizing Transformations in
a Compiler

Typically middle end consists of many
individual transformations that filter the
IR and produce rewritten IR
No systematic theory for the order to
apply them

Sometimes want to apply a single
transformation repeatedly, particularly if
other transformations might expose
additional opportunities

12/6/2005 © 2002-05 Hal Perkins & UW CSE S-5

A Taxonomy

Machine Independent Transformations
Realized profitability may actually depend on
machine architecture, but are typically
implemented without considering this

Machine Dependent Transformations
Most of the machine dependent code is in
instruction selection & scheduling and register
allocation
Some machine dependent code belongs in the
optimizer

12/6/2005 © 2002-05 Hal Perkins & UW CSE S-6

Machine Independent
Transformations

Dead code elimination
Code motion
Specialization
Strength reduction
Enable other transformations
Eliminate redundant computations

Value numbering, GCSE

CSE P 501 Au05 S-2

12/6/2005 © 2002-05 Hal Perkins & UW CSE S-7

Machine Dependent
Transformations

Take advantage of special hardware
Expose instruction-level parallelism, for
example

Manage or hide latencies
Improve cache behavior

Deal with finite resources

12/6/2005 © 2002-05 Hal Perkins & UW CSE S-8

Dead Code Elimination

If a compiler can prove that a
computation has no external effect, it
can be removed

Useless operations
Unreachable operations

Dead code often results from other
transformations

Often want to do DCE several times

12/6/2005 © 2002-05 Hal Perkins & UW CSE S-9

Dead Code Elimination

Classic algorithm is similar to garbage
collection

Pass I – Mark all useful operations
Start with critical operations – output,
entry/exit blocks, calls to other procedures, etc.
Mark all operations that are needed for critical
operations; repeat until convergence

Pass II – delete all unmarked operations
Note: need to treat jumps carefully

12/6/2005 © 2002-05 Hal Perkins & UW CSE S-10

Code Motion

Idea: move an operation to a location
where it is executed less frequently

Classic situation: move loop-invariant code
out of a loop and execute it once, not once
per iteration

Lazy code motion: code motion plus
elimination of redundant and partially
redundant computations

12/6/2005 © 2002-05 Hal Perkins & UW CSE S-11

Specialization

Idea: Analysis phase may reveal
information that allows a general
operation in the IR to be replaced by a
more specific one

Constant folding
Replacing multiplications and division by
constants with shifts
Peephole optimizations
Tail recursion elimination

12/6/2005 © 2002-05 Hal Perkins & UW CSE S-12

Strength Reduction

Classic example: Array references in a
loop

for (k = 0; k < n; k++) a[k] = 0;

Simple code generation would usually
produce address arithmetic including a
multiplication (k*elementsize) and
addition

CSE P 501 Au05 S-3

12/6/2005 © 2002-05 Hal Perkins & UW CSE S-13

Implementing Strength
Reduction

Idea: look for operations in a loop involving:
A value that does not change in the loop, the
region constant, and
A value that varies systematically from iteration to
iteration, the induction variable

Create a new induction variable that directly
computes the sequence of values produced
by the original one; use an addition in each
iteration to update the value

12/6/2005 © 2002-05 Hal Perkins & UW CSE S-14

Enabling Transformations

Already discussed
Inline substitution (procedure bodies)
Block cloning

Some others
Loop Unrolling
Loop Unswitching

12/6/2005 © 2002-05 Hal Perkins & UW CSE S-15

Loop Unrolling

Idea: Replicate the loop body to expose
inter-iteration optimization possibilities

Increases chances for good schedules and
instruction level parallelism
Reduces loop overhead

Catch – need to handle dependencies
between iterations carefully

12/6/2005 © 2002-05 Hal Perkins & UW CSE S-16

Loop Unrolling Example
Original
for (i=1, i<=n, i++)

a[i] = b[i];

Unrolled by 4
i=1;
while (i+3 <= n) {

a[i] = a[i]+b[i];
a[i+1] = a[i+1]+b[i+1]
a[i+2] = a[i+2]+b[i+2]
a[i+3] = a[i+3]+b[i+3]
a+=4

}
while (i <= n) {

a[i] = a[i]+b[i];
i++;

}

12/6/2005 © 2002-05 Hal Perkins & UW CSE S-17

Loop Unswitching

Idea: if the condition in an if-then-else
is loop invariant, rewrite the loop by
pulling the if-then-else out of the loop
and generating a tailored copy of the
loop for each half of the new if

After this transformation, both loops have
simpler control flow – more chances for
rest of compiler to do better

12/6/2005 © 2002-05 Hal Perkins & UW CSE S-18

Summary

This is just a sampler
Hundreds of transformations in the literature

Big part of engineering a compiler is to decide
which transformations to use, in what order,
and when to repeat them

Mostly based on tradition and best guess
Current research: using adaptive methods based
on performance of specific programs to automate
selection and sequencing of transformationos

