
Intel® Pentium® 4 

and Intel® Xeon™
Processor Optimization

Reference Manual

Issued in U.S.A.
Order Number: 248966-007

World Wide Web: http://developer.intel.com

http://developer.intel.com


INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, 
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS 
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE 
FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY 
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING 
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, 
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel prod-
ucts are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications 
and product descriptions at any time, without notice.

This Intel Pentium 4 and Intel Xeon Processor Optimization Reference Manual as well as the software described in it is fur-
nished under license and may only be used or copied in accordance with the terms of the license. The information in this 
manual is furnished for informational use only, is subject to change without notice, and should not be construed as a com-
mitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may 
appear in this document or any software that may be provided in association with this document. 

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted 
in any form or by any means without the express written consent of Intel Corporation.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” 
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising 
from future changes to them.

Intel, Pentium, Intel Xeon, Intel NetBurst, Itanium, MMX, and VTune are trademarks or registered trademarks of Intel 
Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 1999-2002 Intel Corporation.
ii



Contents
Introduction
About This Manual .................................................................................  xxii
Related Documentation.........................................................................  xxiv
Notational Conventions ..........................................................................  xxv

 Chapter 1 Intel® Pentium® 4 and Intel® Xeon™ Processor Overview
SIMD Technology and Streaming SIMD Extensions 2 ...........................  1-2

Summary of SIMD Technologies .......................................................  1-5
MMX™ Technology.......................................................................  1-5
Streaming SIMD Extensions .........................................................  1-5
Streaming SIMD Extensions 2 ......................................................  1-6

Intel® NetBurst™ Micro-architecture ......................................................  1-6
The Design Considerations of the Intel NetBurst 
Micro-architecture ..............................................................................  1-7
Overview of the Intel NetBurst Micro-architecture Pipeline ...............  1-8

The Front End .............................................................................  1-10
The Out-of-order Core ................................................................. 1-11
Retirement ................................................................................... 1-11

 Front End Pipeline Detail ................................................................  1-12
Prefetching..................................................................................  1-12
Decoder ......................................................................................  1-13
Execution Trace Cache...............................................................  1-13
Branch Prediction........................................................................  1-13
Branch Hints ...............................................................................  1-15
iii



Intel Pentium 4 and Intel Xeon Processor Optimization Contents
Execution Core Detail ......................................................................  1-15
Instruction Latency and Throughput............................................  1-16
Execution Units and Issue Ports .................................................  1-17
Caches ........................................................................................  1-19
Data Prefetch ..............................................................................  1-20
Loads and Stores ........................................................................  1-22
Store Forwarding.........................................................................  1-23

Hyper-Threading Technology ...............................................................  1-23
Processor Resources and Hyper-Threading Technology ................  1-25

Replicated Resources .................................................................  1-25
Partitioned Resources.................................................................  1-26
Shared Resources ......................................................................  1-26

Microarchitecture Pipeline and Hyper-Threading Technology .........  1-26
 Front End Pipeline ..........................................................................  1-27
Execution Core ................................................................................  1-27
Retirement .......................................................................................  1-27

Chapter 2 General Optimization Guidelines
Tuning to Achieve Optimum Performance..............................................  2-1
Tuning to Prevent Known Coding Pitfalls ...............................................  2-2
General Practices and Coding Guidelines..............................................  2-3

Use Available Performance Tools ......................................................  2-3
Optimize Performance Across Processor Generations .....................  2-4
Optimize Branch Predictability ...........................................................  2-4
Optimize Memory Access ..................................................................  2-4
Optimize Floating-point Performance ................................................  2-5
Optimize Instruction Selection ...........................................................  2-5
Optimize Instruction Scheduling ........................................................  2-6
Enable Vectorization ..........................................................................  2-6

Coding Rules, Suggestions and Tuning Hints ........................................  2-6
Performance Tools..................................................................................  2-7

Intel® C++ Compiler...........................................................................  2-7
General Compiler Recommendations................................................  2-8
iv



Intel Pentium 4 and Intel Xeon Processor Optimization Contents
VTune™ Performance Analyzer ........................................................  2-9
Processor Generations Perspective .......................................................  2-9

The CPUID Dispatch Strategy and Compatible Code Strategy .......  2-11
Branch Prediction .................................................................................  2-12

Eliminating Branches .......................................................................  2-12
Spin-Wait and Idle Loops.................................................................  2-15
Static Prediction ...............................................................................  2-15
Branch Hints ....................................................................................  2-17
Inlining, Calls and Returns...............................................................  2-18
Branch Type Selection.....................................................................  2-19
 Loop Unrolling.................................................................................  2-22
Compiler Support for Branch Prediction ..........................................  2-24

Memory Accesses ................................................................................  2-24
Alignment .........................................................................................  2-25
Store Forwarding .............................................................................  2-27

Store-forwarding Restriction on Size and Alignment...................  2-28
Store-forwarding Restriction on Data Availability ........................  2-32

Data Layout Optimizations...............................................................  2-34
Stack Alignment ...............................................................................  2-37
Aliasing Cases .................................................................................  2-38
Mixing Code and Data .....................................................................  2-39

Self-modifying Code....................................................................  2-40
Write Combining ..............................................................................  2-41
Locality Enhancement .....................................................................  2-42
Hiding Bus Latency..........................................................................  2-42
Prefetching.......................................................................................  2-43

Hardware Instruction Fetching ....................................................  2-43
Software and Hardware Cache Line Fetching ............................  2-43

Cacheability instructions ..................................................................  2-44
Code ................................................................................................  2-44

Improving the Performance of Floating-point Applications ...................  2-45
Guidelines for Optimizing Floating-point Code ................................  2-45
v



Intel Pentium 4 and Intel Xeon Processor Optimization Contents
Floating-point Modes and Exceptions..............................................  2-47
Floating-point Exceptions............................................................  2-47
Floating-point Modes...................................................................  2-49

Improving Parallelism and the Use of FXCH ...................................  2-53
x87 vs. SIMD Floating-point Trade-offs ...........................................  2-54
Memory Operands ...........................................................................  2-55
Floating-Point Stalls .........................................................................  2-55

x87 Floating-point Operations with Integer Operands.................  2-56
x87 Floating-point Comparison Instructions................................  2-56
Transcendental Functions ...........................................................  2-56

Instruction Selection .............................................................................  2-56
Complex Instructions .......................................................................  2-57
Use of the lea Instruction .................................................................  2-57
Use of the inc and dec Instructions..................................................  2-58
Use of the shift and rotate Instructions ............................................  2-58
Integer and Floating-point Multiply...................................................  2-59
Integer Divide...................................................................................  2-59
Operand Sizes .................................................................................  2-59
Address Calculations .......................................................................  2-61
Clearing Registers ...........................................................................  2-62
Compares ........................................................................................  2-62
Floating Point/SIMD Operands ........................................................  2-63
Prolog Sequences ...........................................................................  2-64
Code Sequences that Operate on Memory Operands ....................  2-64

Instruction Scheduling ..........................................................................  2-65
Latencies and Resource Constraints ...............................................  2-66
Spill Scheduling ...............................................................................  2-66
Scheduling Rules for the Pentium 4 Processor Decoder.................  2-66

Vectorization .........................................................................................  2-67
Miscellaneous.......................................................................................  2-68

NOPs ...............................................................................................  2-68
vi



Intel Pentium 4 and Intel Xeon Processor Optimization Contents
Summary of Rules and Suggestions ....................................................  2-69
User/Source Coding Rules ..............................................................  2-69
Assembly/Compiler Coding Rules ...................................................  2-72
Tuning Suggestions .........................................................................  2-78

Chapter 3 Coding for SIMD Architectures
Checking for Processor Support of SIMD Technologies.........................  3-2

Checking for MMX Technology Support ............................................  3-2
Checking for Streaming SIMD Extensions Support ...........................  3-3
Checking for Streaming SIMD Extensions 2 Support ........................  3-4

Considerations for Code Conversion to SIMD Programming .................  3-6
Identifying Hot Spots..........................................................................  3-8
Determine If Code Benefits by Conversion to SIMD Execution .........  3-9

Coding Techniques ...............................................................................  3-10
Coding Methodologies .....................................................................  3-10

Assembly.....................................................................................  3-12
Intrinsics ......................................................................................  3-13
Classes .......................................................................................  3-14
Automatic Vectorization...............................................................  3-15

Stack and Data Alignment ....................................................................  3-16
Alignment and Contiguity of Data Access Patterns .........................  3-17

Using Padding to Align Data .......................................................  3-17
Using Arrays to Make Data Contiguous ......................................  3-17

Stack Alignment For 128-bit SIMD Technologies.............................  3-19
Data Alignment for MMX Technology...............................................  3-19
Data Alignment for 128-bit data .......................................................  3-20

Compiler-Supported Alignment ...................................................  3-21
Improving Memory Utilization ...............................................................  3-23

Data Structure Layout ......................................................................  3-23
Strip Mining ......................................................................................  3-28
Loop Blocking ..................................................................................  3-30

Instruction Selection .............................................................................  3-33
Tuning the Final Application .................................................................  3-34
vii



Intel Pentium 4 and Intel Xeon Processor Optimization Contents
Chapter 4 Optimizing for SIMD Integer Applications
General Rules on SIMD Integer Code....................................................  4-2
Using SIMD Integer with x87 Floating-point ...........................................  4-2

Using the EMMS Instruction ..............................................................  4-3
Guidelines for Using EMMS Instruction .............................................  4-4

Data Alignment .......................................................................................  4-5
Data Movement Coding Techniques.......................................................  4-5

Unsigned Unpack...............................................................................  4-5
Signed Unpack...................................................................................  4-6
Interleaved Pack with Saturation .......................................................  4-7
Interleaved Pack without Saturation ..................................................  4-9
Non-Interleaved Unpack ..................................................................  4-10
Extract Word ....................................................................................  4-12
Insert Word ......................................................................................  4-13
Move Byte Mask to Integer ..............................................................  4-15
Packed Shuffle Word for 64-bit Registers........................................  4-17
Packed Shuffle Word for 128-bit Registers......................................  4-18
Unpacking/interleaving 64-bit Data in 128-bit Registers ..................  4-19
Data Movement................................................................................  4-20
Conversion Instructions ...................................................................  4-20

Generating Constants...........................................................................  4-20
Building Blocks .....................................................................................  4-21

Absolute Difference of Unsigned Numbers......................................  4-22
Absolute Difference of Signed Numbers..........................................  4-22
Absolute Value .................................................................................  4-24
Clipping to an Arbitrary Range [high, low] .......................................  4-24

Highly Efficient Clipping ..............................................................  4-25
Clipping to an Arbitrary Unsigned Range [high, low]...................  4-27

Packed Max/Min of Signed Word and Unsigned Byte .....................  4-28
Signed Word ...............................................................................  4-28
Unsigned Byte.............................................................................  4-28

Packed Multiply High Unsigned .......................................................  4-28
viii



Intel Pentium 4 and Intel Xeon Processor Optimization Contents
Packed Sum of Absolute Differences ..............................................  4-28
Packed Average (Byte/Word) ..........................................................  4-29
Complex Multiply by a Constant ......................................................  4-30
Packed 32*32 Multiply .....................................................................  4-31
Packed 64-bit Add/Subtract .............................................................  4-31
128-bit Shifts ....................................................................................  4-31

Memory Optimizations..........................................................................  4-31
Partial Memory Accesses ................................................................  4-32
Increasing Bandwidth of Memory Fills and Video Fills.....................  4-34

Increasing Memory Bandwidth Using the MOVDQ Instruction ...  4-35
Increasing Memory Bandwidth by Loading and Storing to 

and from the Same DRAM Page ..............................................  4-35
Increasing UC and WC Store Bandwidth by Using 

Aligned Stores ..........................................................................  4-35
Converting from 64-bit to 128-bit SIMD Integer....................................  4-36

Chapter 5 Optimizing for SIMD Floating-point Applications
General Rules for SIMD Floating-point Code .........................................  5-1
Planning Considerations.........................................................................  5-2
Detecting SIMD Floating-point Support ..................................................  5-2
Using SIMD Floating-point with x87 Floating-point.................................  5-3
Scalar Floating-point Code .....................................................................  5-3
Data Alignment .......................................................................................  5-3

Data Arrangement..............................................................................  5-4
Vertical versus Horizontal Computation ........................................  5-4
Data Swizzling...............................................................................  5-7
Data Deswizzling.........................................................................  5-11
Using MMX Technology Code for Copy or Shuffling 

Functions ..................................................................................  5-15
Horizontal ADD ...........................................................................  5-15

Use of cvttps2pi/cvttss2si Instructions ..................................................  5-19
Flush-to-Zero Mode ..............................................................................  5-19
ix



Intel Pentium 4 and Intel Xeon Processor Optimization Contents
Chapter 6 Optimizing Cache Usage for Intel Pentium 4 Processors
General Prefetch Coding Guidelines ......................................................  6-2
Prefetch and Cacheability Instructions ...................................................  6-3
Prefetch ..................................................................................................  6-4

Software Data Prefetch......................................................................  6-4
Hardware Data Prefetch ....................................................................  6-5
The Prefetch Instructions – Pentium 4 Processor Implementation ....  6-6
Prefetch and Load Instructions ..........................................................  6-7

Cacheability Control ...............................................................................  6-8
The Non-temporal Store Instructions .................................................  6-8

Fencing .........................................................................................  6-9
Streaming Non-temporal Stores....................................................  6-9
Memory Type and Non-temporal Stores .......................................  6-9
Write-Combining .........................................................................  6-10

Streaming Store Usage Models .......................................................  6-11
Coherent Requests .....................................................................  6-11
Non-coherent requests................................................................  6-11

Streaming Store Instruction Descriptions.........................................  6-12
The fence Instructions .....................................................................  6-13

The sfence Instruction.................................................................  6-13
The lfence Instruction..................................................................  6-14
The mfence Instruction................................................................  6-14

The clflush Instruction......................................................................  6-14
Memory Optimization Using Prefetch ...................................................  6-16

Software-controlled Prefetch ...........................................................  6-16
Hardware Prefetch...........................................................................  6-16
Example of Latency Hiding with S/W Prefetch Instruction...............  6-17
Prefetching Usage Checklist............................................................  6-19
Prefetch Scheduling Distance..........................................................  6-19
Prefetch Concatenation ...................................................................  6-21
Minimize Number of Prefetches.......................................................  6-23
Mix Prefetch with Computation Instructions.....................................  6-26
x



Intel Pentium 4 and Intel Xeon Processor Optimization Contents
Prefetch and Cache Blocking Techniques .......................................  6-28
Single-pass versus Multi-pass Execution ........................................  6-33

Memory Optimization using Non-Temporal Stores ...............................  6-36
Non-temporal Stores and Software Write-Combining ......................  6-36
Cache Management ........................................................................  6-37

Video Encoder.............................................................................  6-37
Video Decoder ............................................................................  6-38
Conclusions from Video Encoder and Decoder 

Implementation .........................................................................  6-38
Using Prefetch and Streaming-store for a Simple 

Memory Copy ...........................................................................  6-38
TLB Priming ................................................................................  6-39
Optimizing the 8-byte Memory Copy...........................................  6-40

Chapter 7 Multiprocessor and Hyper-Threading Technology
Performance and Usage Models ............................................................  7-2

Multithreading ....................................................................................  7-2
Multitasking Environment...................................................................  7-4

Programming Models and Multithreading...............................................  7-5
Parallel Programming Models............................................................  7-5

Domain Decomposition .................................................................  7-6
Functional Decomposition .................................................................  7-6
Tools for Creating Multithreaded Applications....................................  7-7

Optimization Guidelines..........................................................................  7-8
Key Practices of Thread Synchronization..........................................  7-9
Key Practices of System Bus Optimization........................................  7-9
Key Practices of Memory Optimization............................................  7-10
Key Practices of Front-end Optimization .........................................  7-11
Key Practices of Execution Resource Optimization.........................  7-11
Generality and Performance Impact ................................................  7-11

Thread Synchronization........................................................................  7-12
Synchronization for Short Periods ...................................................  7-12
Optimization with Spin-Locks...........................................................  7-15
xi



Intel Pentium 4 and Intel Xeon Processor Optimization Contents
Synchronization for Longer Periods.................................................  7-16
Avoid Coding Pitfalls in Thread Synchronization ........................  7-17

Prevent False-Sharing of Data.........................................................  7-19
Placement of Shared Synchronization Variable...............................  7-19

System Bus Optimization .....................................................................  7-20
Conserve Bus Command Bandwidth ...............................................  7-21
Avoid Excessive Software Prefetches .............................................  7-21
Improve Effective Latency of Cache Misses ....................................  7-22
Use Full Write Transactions to Achieve Higher Data Rate ..............  7-22

Memory Optimization............................................................................  7-23
Cache Blocking Technique ..............................................................  7-23
Shared-Memory Optimization ..........................................................  7-24

Minimize Sharing of Data between Physical Processors ............  7-24
Eliminate 64-K-Aliased Data Accesses............................................  7-24
Preventing Excessive Evictions in First-Level Data Cache..............  7-25

Per-thread Stack Offset...............................................................  7-26
Per-instance Stack Offset ...........................................................  7-28

Front-end Optimization .........................................................................  7-29
Avoid Excessive Loop Unrolling.......................................................  7-29
Optimization for Code Size ..............................................................  7-30

Execution Resource Optimization ........................................................  7-30
Optimization Priorities ......................................................................  7-31
Managing Heavily-Used Execution Resources................................  7-33

Appendix A Application Performance Tools
Intel Compilers........................................................................................ A-2

Code Optimization Options................................................................ A-3
Targeting a Processor (-Gn).......................................................... A-3
Automatic Processor Dispatch Support (-Qx[extensions] and 

-Qax[extensions])........................................................................ A-3
Vectorizer Switch Options.................................................................. A-4

Prefetching .................................................................................... A-5
Loop Unrolling ............................................................................... A-5
xii



Intel Pentium 4 and Intel Xeon Processor Optimization Contents
Multithreading with OpenMP......................................................... A-5
Inline Expansion of Library Functions (-Oi, -Oi-)................................ A-5
Floating-point Arithmetic Precision (-Op, -Op-, -Qprec, 

-Qprec_div, -Qpc, -Qlong_double)................................................... A-5
Rounding Control Option (-Qrcd) ....................................................... A-6
Interprocedural and Profile-Guided Optimizations............................. A-6

Interprocedural Optimization (IPO) ............................................... A-6
Profile-Guided Optimization (PGO)............................................... A-6

Intel VTune Performance Analyzer......................................................... A-7
Sampling............................................................................................ A-7

Time-based Sampling ................................................................... A-8
Event-based Sampling .................................................................. A-9

Call Graph.......................................................................................... A-9
Counter Monitor ............................................................................... A-10
Intel® Tuning Assistant..................................................................... A-10

Intel Performance Libraries ..................................................................  A-11
Benefits Summary............................................................................ A-12
 Libraries Architecture ...................................................................... A-12
Optimizations with the Intel Performance Libraries.......................... A-13

Enhanced Debugger (EDB).................................................................. A-13
Intel® Threading Tools .......................................................................... A-14

Intel Thread Checker ....................................................................... A-14
Thread Profiler ................................................................................. A-14

Intel® Software College ........................................................................ A-15

Appendix B Intel Pentium 4 Processor Performance Metrics
Pentium 4 Processor-Specific Terminology ............................................ B-1

Bogus, Non-bogus, Retire ................................................................. B-1
Bus Ratio ........................................................................................... B-2
Replay................................................................................................ B-2
Assist ................................................................................................. B-2
Tagging .............................................................................................. B-3
xiii



Intel Pentium 4 and Intel Xeon Processor Optimization Contents
Counting Clocks ..................................................................................... B-3
Non-Halted Clockticks ....................................................................... B-4
Non-Sleep Clockticks......................................................................... B-5
Time Stamp Counter .......................................................................... B-6

Micro-architecture Notes ........................................................................ B-6
Trace Cache Events .......................................................................... B-6
Bus and Memory Metrics ................................................................... B-7

Reads due to program loads......................................................... B-9
Reads due to program writes (RFOs) ........................................... B-9
Writebacks (dirty evictions) ........................................................... B-9

Usage Notes for Specific Metrics..................................................... B-10
Usage Notes on Bus Activities......................................................... B-12

Metrics Descriptions and Categories.................................................... B-13
Performance Metrics and Tagging Mechanisms................................... B-36

Tags for replay_event ...................................................................... B-37
Tags for front_end_event ................................................................. B-38
Tags for execution_event ................................................................. B-38

Using Performance Metrics with Hyper-Threading Technology............ B-39

Appendix C IA-32 Instruction Latency and Throughput
Overview................................................................................................  C-1
Definitions..............................................................................................  C-3
Latency and Throughput........................................................................  C-4

 Latency and Throughput with Register Operands ...........................  C-5
Table Footnotes..........................................................................  C-14

Latency and Throughput with Memory Operands...........................  C-15

Appendix D Stack Alignment
Stack Frames.........................................................................................  D-1

Aligned esp-Based Stack Frames.....................................................  D-4
Aligned ebp-Based Stack Frames.....................................................  D-6
Stack Frame Optimizations...............................................................  D-9

Inlined Assembly and ebx......................................................................  D-9
xiv



Intel Pentium 4 and Intel Xeon Processor Optimization Contents
Appendix E Mathematics of Prefetch Scheduling  Distance
Simplified Equation................................................................................. E-1
Mathematical Model for PSD.................................................................. E-2

No Preloading or Prefetch ................................................................. E-5
Compute Bound (Case:Tc >= Tl + Tb)................................................ E-7
Compute Bound (Case: Tl + Tb > Tc > Tb)........................................ E-8
Memory Throughput Bound (Case: Tb >= Tc) ................................... E-9
Example........................................................................................... E-10

Examples
2-1 Assembly Code with an Unpredictable Branch ......................... 2-13
2-2 Code Optimization to Eliminate Branches ................................. 2-13
2-3 Eliminating Branch with CMOV Instruction................................ 2-14
2-4 Use of pause Instruction ............................................................ 2-15
2-5 Pentium 4 Processor Static Branch Prediction Algorithm.......... 2-16
2-6 Static Taken Prediction Example ............................................... 2-16
2-7 Static Not-Taken Prediction Example ........................................ 2-17
2-8 Indirect Branch With Two Favored Targets................................ 2-21
2-9 A Peeling Technique to Reduce Indirect Branch 

Misprediction ............................................................................. 2-22
2-10 Loop Unrolling ........................................................................... 2-23
2-11 Code That Causes Cache Line Split ......................................... 2-26
2-12 Several Situations of Small Loads After Large Store ................ 2-30
2-13 A Non-forwarding Example of Large Load After Small Store .... 2-30
2-14 A Non-forwarding Situation in Compiler Generated Code......... 2-31
2-15 Two Examples to Avoid the Non-forwarding Situation 

in Example 2-14......................................................................... 2-31
2-16 Large and Small Load Stalls...................................................... 2-32
2-17 An Example of Loop-carried Dependence Chain ...................... 2-34
2-18 Rearranging a Data Structure.................................................... 2-34
2-19 Decomposing an Array .............................................................. 2-35
2-20 Dynamic Stack Alignment.......................................................... 2-37
2-21 Algorithm to Avoid Changing the Rounding Mode..................... 2-51
xv



Intel Pentium 4 and Intel Xeon Processor Optimization Contents
2-22 Dependencies Caused by Referencing Partial Registers.......... 2-60
2-23 Recombining LOAD/OP Code into REG,MEM Form................. 2-65
2-24 Spill Scheduling Example Code ................................................ 2-66
3-1 Identification of MMX Technology with cpuid............................... 3-2
3-2 Identification of SSE with cpuid ................................................... 3-3
3-3 Identification of SSE by the OS ................................................... 3-4
3-4 Identification of SSE2 with cpuid ................................................. 3-5
3-5 Identification of SSE2 by the OS ................................................. 3-5
3-6 Simple Four-Iteration Loop ........................................................ 3-11
3-7 Streaming SIMD Extensions Using Inlined Assembly 

Encoding.................................................................................... 3-12
3-8 Simple Four-Iteration Loop Coded with Intrinsics...................... 3-13
3-9 C++ Code Using the Vector Classes ......................................... 3-15
3-10 Automatic Vectorization for a Simple Loop................................ 3-16
3-11 C Algorithm for 64-bit Data Alignment ....................................... 3-20
3-12 AoS data structure..................................................................... 3-24
3-13 SoA data structure..................................................................... 3-24
3-14 AoS and SoA Code Samples .................................................... 3-25
3-15 Hybrid SoA data structure ......................................................... 3-27
3-16 Pseudo-code Before Strip Mining.............................................. 3-29
3-17 Strip Mined Code....................................................................... 3-30
3-18 Loop Blocking ............................................................................ 3-31
3-19 Emulation of Conditional Moves ................................................ 3-33
4-1 Resetting the Register between __m64 and FP Data Types....... 4-4
4-2 Unsigned Unpack Instructions..................................................... 4-6
4-3 Signed Unpack Code................................................................... 4-7
4-4 Interleaved Pack with Saturation ................................................. 4-9
4-5 Interleaved Pack without Saturation .......................................... 4-10
4-6 Unpacking Two Packed-word Sources in a 

Non-interleaved Way ................................................................. 4-12
4-7 pextrw Instruction Code............................................................. 4-13
4-8 pinsrw Instruction Code ............................................................. 4-14
xvi



Intel Pentium 4 and Intel Xeon Processor Optimization Contents
4-9 Repeated pinsrw Instruction Code ............................................ 4-15
4-10 pmovmskb Instruction Code ...................................................... 4-16
4-11 pshuf Instruction Code............................................................... 4-18
4-12 Broadcast using 2 instructions................................................... 4-18
4-13 Swap using 3 instructions.......................................................... 4-19
4-14 Reverse using 3 instructions ..................................................... 4-19
4-15 Generating Constants................................................................ 4-20
4-16 Absolute Difference of Two Unsigned Numbers........................ 4-22
4-17 Absolute Difference of Signed Numbers ................................... 4-23
4-18 Computing Absolute Value ........................................................ 4-24
4-19 Clipping to a Signed Range of Words [high, low] ...................... 4-25
4-20 Clipping to an Arbitrary Signed Range [high, low] ..................... 4-26
4-21 Simplified Clipping to an Arbitrary Signed Range...................... 4-26
4-22 Clipping to an Arbitrary Unsigned Range [high, low] ................. 4-27
4-23 Complex Multiply by a Constant ................................................ 4-30
4-24 A Large Load after a Series of Small Stores (Penalty).............. 4-32
4-25 Accessing Data without Delay ................................................... 4-33
4-26 A Series of Small Loads after a Large Store ............................. 4-33
4-27 Eliminating Delay for a Series of Small Loads after 

a Large Store............................................................................. 4-34
5-1 Pseudocode for Horizontal (xyz, AoS) Computation ................... 5-6
5-2 Pseudocode for Vertical (xxxx, yyyy, zzzz, SoA) Computation.... 5-7
5-3 Swizzling Data ............................................................................. 5-8
5-4 Swizzling Data Using Intrinsics.................................................... 5-9
5-5 Deswizzling Single-Precision SIMD Data .................................. 5-11
5-6 Deswizzling Data Using the movlhps and shuffle 

Instructions ................................................................................ 5-13
5-7 Deswizzling Data 64-bit Integer SIMD Data .............................. 5-14
5-8 Using MMX Technology Code for Copying or Shuffling............. 5-15
5-9 Horizontal Add Using movhlps/movlhps .................................... 5-17
5-10 Horizontal Add Using Intrinsics with movhlps/movlhps ............. 5-18
6-1 Pseudo-code for Using cflush.................................................... 6-15
xvii



Intel Pentium 4 and Intel Xeon Processor Optimization Contents
6-2 Prefetch Scheduling Distance ................................................... 6-20
6-3 Using Prefetch Concatenation................................................... 6-22
6-4 Concatenation and Unrolling the Last Iteration of Inner Loop ... 6-22
6-5 Spread Prefetch Instructions ..................................................... 6-27
6-6 Data Access of a 3D Geometry Engine without Strip-mining .... 6-31
6-7 Data Access of a 3D Geometry Engine with Strip-mining ......... 6-32
6-8 Basic Algorithm of a Simple Memory Copy ............................... 6-39
6-9 An Optimized 8-byte Memory Copy........................................... 6-40
7-1 Spin-wait Loop and PAUSE Instructions ................................... 7-13
7-2 Coding Pitfall using Spin Wait Loop........................................... 7-18
7-3 Placement of Synchronization and RegularVariables................ 7-20
7-4 Adding an Offset to the Stack Pointer of Three Threads........... 7-27
7-5 Adding a Pseudo-random Offset to the Stack Pointer in 

the Entry Function ..................................................................... 7-29
D-1 Aligned esp-Based Stack Frames ...............................................D-5
D-2 Aligned ebp-based Stack Frames ...............................................D-7
E-1 Calculating Insertion for Scheduling Distance of 3 ......................E-3

Figures
1-1 Typical SIMD Operations............................................................. 1-3
1-2 SIMD Instruction Register Usage ................................................ 1-4
1-3 The Intel NetBurst Micro-architecture.......................................... 1-9
1-4 Execution Units and Ports in the Out-Of-Order Core ................ 1-18
1-5 Hyper-Threading Technology on an SMP.................................. 1-24
2-1 Cache Line Split in Accessing Elements in a Array................... 2-26
2-2 Size and Alignment Restrictions in Store Forwarding ............... 2-29
3-1 Converting to Streaming SIMD Extensions Chart ....................... 3-7
3-2 Hand-Coded Assembly and High-Level Compiler 

Performance Trade-offs............................................................. 3-11
3-3 Loop Blocking Access Pattern................................................... 3-32
4-1 PACKSSDW mm, mm/mm64 Instruction Example...................... 4-8
4-2 Interleaved Pack with Saturation ................................................. 4-8
4-3 Result of Non-Interleaved Unpack Low in MM0 ........................ 4-11
xviii



Intel Pentium 4 and Intel Xeon Processor Optimization Contents
4-4 Result of Non-Interleaved Unpack High in MM1 ....................... 4-11
4-5 pextrw Instruction ...................................................................... 4-13
4-6 pinsrw Instruction....................................................................... 4-14
4-7 pmovmskb Instruction Example................................................. 4-16
4-8 pshuf Instruction Example ......................................................... 4-17
4-9 PSADBW Instruction Example .................................................. 4-29
5-1 Dot Product Operation................................................................. 5-6
5-2 Horizontal Add Using movhlps/movlhps .................................... 5-16
6-1 Memory Access Latency and Execution Without Prefetch ........ 6-18
6-2 Memory Access Latency and Execution With Prefetch ............. 6-18
6-3 Prefetch and Loop Unrolling ...................................................... 6-23
6-4 Memory Access Latency and Execution With Prefetch ............. 6-25
6-5 Cache Blocking – Temporally Adjacent and Non-adjacent 

Passes....................................................................................... 6-29
6-6 Examples of Prefetch and Strip-mining for Temporally 

Adjacent and Non-Adjacent Passes Loops ............................... 6-30
6-7 Incorporating Prefetch into Strip-mining Code........................... 6-33
6-8 Single-Pass Vs. Multi-Pass 3D Geometry Engines ................... 6-35
7-1 Amdahl’s Law and MP Speed-up ................................................ 7-3
A-1 Sampling Analysis of Hotspots by Location.................................A-8
B-1 Relationships Between the Cache Hierarchy, IOQ, BSQ 

and Front Side Bus......................................................................B-8
D-1 Stack Frames Based on Alignment Type ....................................D-3
E-1 Pentium II, Pentium III and Pentium 4 Processors 

Memory Pipeline Sketch..............................................................E-4
E-2 Execution Pipeline, No Preloading or Prefetch............................E-6
E-3 Compute Bound Execution Pipeline ............................................E-7
E-4 Another Compute Bound Execution Pipeline...............................E-8
E-5 Memory Throughput Bound Pipeline ...........................................E-9
E-6 Accesses per Iteration, Example 1 ............................................ E-11
E-7 Accesses per Iteration, Example 2 ............................................E-12
xix



Intel Pentium 4 and Intel Xeon Processor Optimization Contents
Tables
1-1 Pentium 4 Processor Cache Parameters .................................. 1-19
2-1 Factors Affecting Performance in the Pentium 4 Processor ........ 2-2
5-1 SoA Form of Representing Vertices Data.................................... 5-5
6-1 Prefetch Implementation: Pentium III and Pentium 4 

Processors................................................................................... 6-7
B-1 Pentium 4 Processor Performance Metrics ...............................B-14
B-2 Metrics That Utilize Replay Tagging Mechanism.......................B-37
B-3 Table 3 Metrics That Utilize the Front-end Tagging 

Mechanism ................................................................................B-38
B-4 Metrics That Utilize the Execution Tagging Mechanism ............B-39
B-5 Metrics That Support Qualification by Logical Processor 

and Parallel Counting ................................................................B-41
B-6 Metrics That Are Independent of Logical Processors................B-44
C-1 Streaming SIMD Extension 2 128-bit Integer Instructions...........C-5
C-2 Streaming SIMD Extension 2 Double-precision Floating-point

Instructions ..................................................................................C-7
C-3 Streaming SIMD Extension Single-precision Floating-point 

Instructions ..................................................................................C-8
C-4 Streaming SIMD Extension 64-bit Integer Instructions..............C-10
C-5 MMX Technology 64-bit Instructions..........................................C-11
C-6 IA-32 x87 Floating-point Instructions .........................................C-12
C-7 IA-32 General Purpose Instructions ..........................................C-13

Index
xx



Introduction
The Intel® Pentium® 4 and Intel® Xeon™ Processor Optimization Reference Manual 
describes how to optimize software to take advantage of the performance 
characteristics of the Intel Pentium 4 and Intel Xeon processors. The optimizations 
described in this manual will also apply to the future IA-32 processors based on the 
Intel® NetBurst™ micro-architecture and Hyper-Threading Technology. 

The target audience for this manual includes software programmers and compiler 
writers. This manual assumes that the reader is familiar with the basics of the IA-32 
architecture and has access to the three-volume set of manuals: Intel® Architecture 
Software Developer’s Manual: Volume 1, Basic Architecture; Volume 2, Instruction 
Set Reference; and Volume 3, System Programmer’s Guide.

When developing and optimizing software applications to achieve a high level of 
performance when running on IA-32 processors, a detailed understanding of IA-32 
family of processors is often required; and in many cases, some level of knowledge on 
the micro-architecture of the newest IA-32 processors is also required.

This manual provides an overview of the Intel NetBurst micro-architecture, which is 
implemented in the Intel Pentium 4 processor, Intel Xeon processor and future IA-32 
processors. This manual contains design guidelines for high-performance software 
applications, coding rules, and techniques for many aspects of code-tuning. These 
rules and techniques not only are useful to programmers, but are also applicable to 
compiler developers. This manual also includes instruction latency and throughput 
data for IA-32 instructions that pertains to the Pentium 4 and Intel Xeon processors.

The design guidelines that are discussed in this manual for developing 
high-performance software apply to current as well as to future IA-32 processors. Most 
of the coding rules and code optimization techniques based on the Intel NetBurst 
micro-architecture are also applicable to the P6 micro-architecture.
xxi
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Tuning Your Application
Tuning an application for high performance on any IA-32 processor requires 
understanding and basic skills in the following areas:

• the IA-32 architecture

• C and Assembly language

• the hot-spot regions in your application that have significant impact on software 
performance

• the optimization capabilities of your compiler

• techniques to evaluate the application’s performance.

The Intel VTune™ Performance Analyzer can help you analyze and locate any 
hot-spot regions in your applications. On the Pentium II, Pentium III, and Pentium 4 
processors, this tool can monitor your application through a selection of performance 
monitoring events and analyze the performance event data that is gathered during code 
execution. This manual also describes information that can be gathered using the 
performance counters through Pentium 4 processor’s performance monitoring events. 

For VTune Performance Analyzer order information, see the web page:

http://developer.intel.com

About This Manual
Throughout this document, the reference “Pentium 4 processor” includes all 
processors based on the Intel NetBurst micro-architecture. Currently it refers to the 
Intel Pentium 4 processor and Intel Xeon processor. Where appropriate, differences 
between Pentium 4 processor and Intel Xeon processor are noted specifically.

The manual consists of the following parts:

Introduction. Defines the purpose and outlines the contents of this manual.

Chapter 1: Pentium 4 and Intel Xeon Processors Overview. This chapter describes 
the new features of the Pentium 4 and Intel Xeon processors, including the 
architectural extensions to the IA-32 architecture and an overview of the Intel 
NetBurst micro-architecture.
xxii
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Chapter 2: General Optimization Guidelines. Describes general code development 
and optimization techniques that apply to all applications designed to take advantage 
of the Intel NetBurst micro-architecture and high memory bandwidth.

Chapter 3: Coding for SIMD Architectures. Describes techniques and concepts for 
using the SIMD integer and SIMD floating-point instructions provided by the MMX™ 
technology, Streaming SIMD Extensions, and Streaming SIMD Extensions 2.

Chapter 4: Optimizing for SIMD Integer Applications. Provides optimization 
suggestions and common building blocks for applications that use the 64-bit and 
128-bit SIMD integer instructions.

Chapter 5: Optimizing for SIMD Floating-point Applications. Provides 
optimization suggestions and common building blocks for applications that use the 
single-precision and double-precision SIMD floating-point instructions.

Chapter 6—Optimizing Cache Usage for Pentium 4 Processors. Describes how to 
use the prefetch instruction and cache control management instructions to optimize 
cache usage.

Chapter 7—Multiprocessor and Hyper-Threading Technology. Describes 
guidelines and techniques to optimize multithreaded applications to achieve optimal 
performance scalling when running on multiprocessor (MP) systems or MP systems 
using IA-32 processors with Hyper-Threading Technology.

Appendix A—Application Performance Tools. Introduces several tools for 
analyzing and enhancing application performance without having to write assembly 
code.

Appendix B—Intel Pentium 4 Processor Performance Metrics. Provides a set of 
useful information that can be gathered using Pentium 4 processor’s performance 
monitoring events. These performance metrics can help programmers determine how 
effectively an application is using the features of the Intel NetBurst micro-architecture.

Appendix C—IA-32 Instruction Latency and Throughput. Provides latency and 
throughput data for the IA-32 instructions. These data are specific to the 
implementation of the Pentium 4 and Intel Xeon processors.

Appendix D—Stack Alignment. Describes stack alignment conventions and 
techniques to optimize performance of accessing stack-based data.
xxiii
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Appendix E—The Mathematics of Prefetch Scheduling Distance. Discusses the 
optimum spacing to insert prefetch instructions and presents a mathematical model 
for determining the prefetch scheduling distance (PSD) for your application.

Related Documentation
For more information on the Intel architecture, specific techniques, and processor 
architecture terminology referenced in this manual, see the following documents:

• Intel® Architecture Optimization Reference Manual, doc. number 245127

• Pentium® Processor Family Developer’s Manual, Volumes 1, 2, and 3, doc. 
numbers 241428, 241429, and 241430

• Intel® C++ Compiler User’s Guide

• Intel® Fortran Compiler User’s Guide

• VTune™ Performance Analyzer online help

• Intel® Architecture Software Developer’s Manual:

— Volume 1: Basic Architecture, doc. number 243190

— Volume 2: Instruction Set Reference Manual, doc. number 243191

— Volume 3: System Programmer’s Guide, doc. number 243192

• Intel Processor Identification with the CPUID Instruction, doc. number 241618.

Also, refer to the following Application Notes:

• Adjusting Thread Stack Address To Improve Performance On Intel Xeon MP 
Hyper-Threading Technology Enabled Processors 

• Detecting Hyper-Threading Technology Enabled Processors 

• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon™ Processor 
MP

In addition, refer to publications in the following web sites:

• http://developer.intel.com/technology/hyperthread 

• http://cedar.intel.com/cgi-bin/ids.dll/topic.jsp?catCode=CDN
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Notational Conventions
This manual uses the following conventions:

This type style Indicates an element of syntax, a reserved word, a keyword, 
a filename, instruction, computer output, or part of a 
program example. The text appears in lowercase unless 
uppercase is significant.

THIS TYPE STYLE Indicates a value, for example, TRUE, CONST1, or a variable, 
for example, A, B, or register names MMO through MM7.

l indicates lowercase letter L in examples. 1 is the number 1 
in examples. O is the uppercase O in examples. 0 is the 
number 0 in examples.

This type style Indicates a placeholder for an identifier, an expression, a 
string, a symbol, or a value. Substitute one of these items for 
the placeholder.

... (ellipses) Indicate that a few lines of the code are omitted.

This type style Indicates a hypertext link.
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Intel® Pentium® 4 and 
Intel® Xeon™ Processor 
Overview
This chapter gives an overview of the key features of the Intel® Pentium® 4 and Intel® 
Xeon™ processors. This overview provides the background for understanding the 
coding recommendations described in detail in later chapters.

The key features of the Pentium 4 processor that enable high-performance applications are:

• Streaming SIMD Extensions 2 (SSE2) support

• Intel® NetBurst™ micro-architecture 

• the implementation parameters of the Intel NetBurst micro-architecture in the 
Pentium 4 processor.

The Intel Xeon processor includes the same features as the Intel Pentium 4 processor 
and adds the following features:

• Multiprocessor (MP) support1

• Hyper-Threading Technology2 

• Third-level on-chip cache in selected server products.

The SSE2 is an architectural enhancement to the IA-32 architecture. The Intel 
NetBurst micro-architecture is a new micro-architecture implemented in the Pentium 4 
processor. The implementation parameters of the Intel NetBurst micro-architecture in 
the Pentium 4 processor include:

• On-chip caches:

— 8 KByte high-speed first-level data cache

1. Intel Xeon processor DP supports up to two processors in an MP configuration; and Intel Xeon processor MP 
supports more than two processors in an MP configuration.

2. Some early versions of the Intel Xeon processor support dual-processor configuration but not 
Hyper-Threading Technology. See “Detecting Support for Hyper-Threading Technology Enabled 
Processors” application note on how to identify the presence of Hyper-Threading Technology.



Intel Pentium 4 and Intel Xeon Processor Optimization Intel Pentium 4 Processor Overview 1

— 12K µop Execution Trace Cache (TC)

— Up to 512 KByte unified 8-way second-level cache – Advanced Transfer 
Cache

• Intel NetBurst micro-architecture system bus operating at 400 MHz and 533MHz, 
capable of delivering up to 3.2 GBytes and 4.2 GBytes per second of bandwidth.

In the rest of this chapter, we discuss each of the following subjects:

• Single-instruction, multiple-data (SIMD) technology 

• Intel NetBurst micro-architecture as implemented in the Pentium 4 and Intel Xeon 
processors 

• Hyper-Threading Technology as implemented in the Intel Xeon processors.

SIMD Technology and Streaming SIMD Extensions 2
One way to increase processor performance is to execute several computations in 
parallel, so that multiple computations are done with a single instruction. The way to 
achieve this type of parallel execution is to use the single-instruction, multiple-data 
(SIMD) computation technique. 

SIMD computations like those shown in Figure 1-1 were introduced into the IA-32 
architecture with the MMX™ technology. The MMX technology allows SIMD 
computations to be performed on packed byte, word, and doubleword integers that are 
contained in a set of eight 64-bit registers called MMX registers (see Figure 1-2).

The Pentium III processor extended this initial SIMD computation model with the 
introduction of the Streaming SIMD Extensions (SSE). The Streaming SIMD 
Extensions allow SIMD computations to be performed on operands that contain four 
packed single-precision floating-point data elements. The operands can be either in 
memory or in a set of eight 128-bit registers called the XMM registers (see Figure 1-2). 
The SSE also extended SIMD computational capability with additional 64-bit MMX 
instructions.
1-2
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Figure 1-1 shows a typical SIMD computation. Here two sets of four packed data 
elements (X1, X2, X3, and X4, and Y1, Y2, Y3, and Y4) are operated on in parallel, 
with the same operation being performed on each corresponding pair of data elements 
(X1 and Y1, X2 and Y2, X3 and Y3, and X4 and Y4). The results of the four parallel 
computations are sorted as a set of four packed data elements.

The Pentium 4 processor further extends the SIMD computation model with the 
introduction of the Streaming SIMD Extensions 2 (SSE2). The SSE2 also work with 
operands in either memory or in the XMM registers. The SSE2 extends SIMD 
computations to process packed double-precision floating-point data elements and 
128-bit packed integers. There are 144 instructions in the SSE2 that can operate on two 
packed double-precision floating-point data elements, or on 16 packed byte, 8 packed 
word, 4 doubleword, and 2 quadword integers.

The full set of IA-32 SIMD technologies (MMX technology, SSE, and SSE2) gives the 
programmer the ability to develop algorithms that can combine operations on packed 
64- and 128-bit integer and single and double-precision floating-point operands.

Figure 1-1 Typical SIMD Operations

X4   X3   X2  X1

Y4 Y3 Y2 Y1

   X4 op Y4    X3 op Y3   X2 op Y2  X1 op Y1

OPOPOPOP
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This SIMD capability improves the performance of 3D graphics, speech recognition, 
image processing, scientific, and other multimedia applications that have the following 
characteristics:

• inherently parallel

• regular and recurring memory access patterns

• localized recurring operations performed on the data

• data-independent control flow.

The IA-32 SIMD floating-point instructions fully support the IEEE Standard 754 for 
Binary Floating-Point Arithmetic. All SIMD instructions are accessible from all IA-32 
execution modes: protected mode, real address mode, and Virtual 8086 mode.

The SSE2, SSE, and MMX technology are architectural extensions in the IA-32 Intel® 
architecture. All existing software continues to run correctly, without modification, on 
IA-32 microprocessors that incorporate these technologies. Existing software also runs 
correctly in the presence of new applications that incorporate these SIMD 
technologies.

The SSE and SSE2 instruction sets also introduced a set of cacheability and memory 
ordering instructions that can improve cache usage and application performance.

Figure 1-2 SIMD Instruction Register Usage
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For more information on SSE2 instructions, including the cacheability and memory 
operation instructions, refer to the IA-32 Intel Architecture Software Developer’s 
Manual, Volume 1, Chapter 11 and Volume 2, Chapter 3 which are available at 
http://developer.intel.com/design/pentium4/manuals/index.htm.

Summary of SIMD Technologies

The paragraphs below summarize the new features of the three SIMD technologies 
(MMX™ technology, SSE, and SSE2) that have been added to the IA-32 architecture 
in chronological order.

MMX™ Technology
• Introduces 64-bit MMX registers.

• Introduces support for SIMD operations on packed byte, word, and doubleword 
integers.

The MMX instructions are useful for multimedia and communications software.

For more information on the MMX technology, refer to the IA-32 Intel Architecture 
Software Developer’s Manual, Volume 1, available at 
http://developer.intel.com/design/pentium4/manuals/index.htm.

Streaming SIMD Extensions
• Introduces 128-bit XMM registers.

• Introduces 128-bit data type with four packed single-precision floating-point 
operands.

• Introduces data prefetch instructions.

• Introduces non-temporal store instructions and other cacheability and memory 
ordering instructions.

• Adds extra 64-bit SIMD integer support.

The SSE instructions are useful for 3D geometry, 3D rendering, speech recognition, 
and video encoding and decoding.
1-5
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For more information on the Streaming SIMD Extensions, refer to the IA-32 Intel 
Architecture Software Developer’s Manual, Volume 1, available at 
http://developer.intel.com/design/pentium4/manuals/index.htm.

Streaming SIMD Extensions 2
• Adds 128-bit data type with two packed double-precision floating-point operands.

• Adds 128-bit data types for SIMD integer operation on 16-byte, 8-word, 
4-doubleword, or 2-quadword integers.

• Adds support for SIMD arithmetic on 64-bit integer operands.

• Adds instructions for converting between new and existing data types.

• Extends support for data shuffling.

• Extends support for cacheability and memory ordering operations.

The SSE2 instructions are useful for 3D graphics, video decoding/encoding, and 
encryption.

For more information, refer to the IA-32 Intel Architecture Software Developer’s 
Manual, Volume 1, available at 
http://developer.intel.com/design/pentium4/manuals/index.htm.

Intel® NetBurst™ Micro-architecture
The Pentium 4 processor is the first hardware implementation of a new 
micro-architecture, the Intel NetBurst micro-architecture. The Intel Xeon processor 
also implements the Intel NetBurst micro-architecture, includes MP support and 
Hyper-Threading Technology. This section describes the key features of the Intel 
NetBurst micro-architecture and the details of its operation based on its 
implementation by the Pentium 4 and Intel Xeon processors. Additional 
implementation-specific details, including instruction latencies, are given in “IA-32 
Instruction Latency and Throughput” in Appendix C. The information in this section 
provides the technical background to understand the optimization recommendations 
and coding rules that are discussed in Chapter 2 and the rest of this manual.
1-6
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The Intel NetBurst micro-architecture is designed to achieve high performance for 
both integer and floating-point computations at very high clock rates. It supports the 
following features:

• hyper pipelined technology to enable high clock rates and frequency headroom up 
to 10 GHz

• high-performance, quad-pumped bus interface to the Intel NetBurst 
micro-architecture system bus

• rapid execution engine to reduce the latency of basic integer instructions

• out-of-order speculative execution to enable parallelism

• superscalar issue to enable parallelism

• hardware register renaming to avoid register name space limitations

• cache line sizes of 64 and 128 bytes

• hardware prefetch.

The Design Considerations of the Intel NetBurst Micro-architecture

The design goals of Intel NetBurst micro-architecture are: (a) to execute both the 
legacy IA-32 applications and applications based on single-instruction, multiple-data 
(SIMD) technology at high processing rates; (b) to operate at high clock rates, and to 
scale to higher performance and clock rates in the future. To accomplish these design 
goals, the Intel NetBurst micro-architecture has many advanced features and 
improvements over the P6 micro-architecture.

To enable high performance and highly scalable clock rates, the major design 
considerations of the Intel NetBurst micro-architecture are as follows:

• It uses a deeply pipelined design to enable high clock rates with different parts of 
the chip running at different clock rates, some faster and some slower than the 
nominally-quoted clock frequency of the processor. The Intel NetBurst 
micro-architecture allows the Pentium 4 processor to achieve significantly higher 
clock rates as compared with the Pentium III processor. These clock rates for future 
IA-32 processor based on the Intel NetBurst micro-architecture is expected to 
reach 10 GHz.
1-7
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• Its pipeline provides high performance by optimizing for the common case of 

frequently executed instructions. This means that the most frequently-executed 
instructions in common circumstances (such as a cache hit) are decoded efficiently 
and executed with short latencies, such that frequently encountered code sequences 
are processed with high throughput.

• It employs many techniques to hide stall penalties. Among these are parallel 
execution, buffering, and speculation. Furthermore, the Intel NetBurst 
micro-architecture executes instructions dynamically and out-of-order, so the time 
it takes to execute each individual instruction is not always deterministic. 
Performance of a particular code sequence may vary depending on the state the 
machine was in when that code sequence started.

Because of the complexity and subtlety of the Intel NetBurst micro-architecture, 
Chapter 2 of this document recommends what optimizations to use and what situations 
to avoid, and gives a sense of relative priority, but typically it does not absolutely 
quantify expected benefits and penalties. While this was more feasible with earlier 
in-order micro-architectures, this is no longer possible. 

The following sections provide detailed description of the Intel NetBurst 
micro-architecture.

Overview of the Intel NetBurst Micro-architecture Pipeline 

The pipeline of the Intel NetBurst micro-architecture contain three sections:

• the in-order issue front end

• the out-of-order superscalar execution core

• the in-order retirement unit.

The front end supplies instructions in program order to the out-of-order core. It fetches 
and decodes IA-32 instructions. The decoded IA-32 instructions are translated into 
µops. The front end’s primary job is to feed a continuous stream of µops to the 
execution core in original program order.
1-8
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The core can then issue multiple µops per cycle, and aggressively reorder µops so that 
those µops, whose inputs are ready and have execution resources available, can 
execute as soon as possible. The retirement section ensures that the results of execution 
of the µops are processed according to original program order and that the proper 
architectural states are updated.

Figure 1-3 illustrates a diagram of the major functional blocks associated with the Intel 
NetBurst micro-architecture pipeline. The following subsections provide an overview 
for each of the three sections in the pipeline.

Figure 1-3 The Intel NetBurst Micro-architecture
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The Front End

The front end of the Intel NetBurst micro-architecture consists of two parts:

• fetch/decode unit

• execution trace cache.

The front end performs several basic functions:

• prefetches IA-32 instructions that are likely to be executed

• fetches instructions that have not already been prefetched

• decodes instructions into micro-operations

• generates microcode for complex instructions and special-purpose code

• delivers decoded instructions from the execution trace cache

• predicts branches using highly advanced algorithms.

The front end of the Intel NetBurst micro-architecture is designed to address some of 
the common problems in high-speed, pipelined microprocessors. Two of these 
problems contribute to major sources of delays:

• the time to decode instructions fetched from the target

• wasted decode bandwidth due to branches or branch target in the middle of cache 
lines.

The execution trace cache addresses both of these problems by storing decoded IA-32 
instructions. Instructions are fetched and decoded by a translation engine. The 
translation engine builds the decoded instruction into sequences of µops called traces, 
which are stored in the trace cache. The execution trace cache stores these micro-ops in 
the path of program execution flow, where the results of branches in the code are 
integrated into the same cache line. This increases the instruction flow from the cache 
and makes better use of the overall cache storage space since the cache no longer 
stores instructions that are branched over and never executed. The trace cache can 
deliver up to 3 µops per clock to the core.

The execution trace cache and the translation engine have cooperating branch 
prediction hardware. Branch targets are predicted based on their linear address using 
branch prediction logic and fetched as soon as possible. Branch targets are fetched 
1-10
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from the execution trace cache if they are cached there, otherwise they are fetched 
from the memory hierarchy. The translation engine’s branch prediction information is 
used to form traces along the most likely paths.

The Out-of-order Core

The core’s ability to execute instructions out of order is a key factor in enabling 
parallelism. This feature enables the processor to reorder instructions so that if one µop 
is delayed while waiting for data or a contended resource, other µops that appear later 
in the program order may proceed around it. The processor employs several buffers to 
smooth the flow of µops. This implies that when one portion of the entire processor 
pipeline experiences a delay, that delay may be covered by other operations executing 
in parallel (for example, in the core) or by the execution of µops which were 
previously queued up in a buffer (for example, in the front end).

The delays described in this chapter must be understood in this context. The core is 
designed to facilitate parallel execution. It can dispatch up to six µops per cycle 
through the issue ports pictured in Figure 1-4, page 1-18. Note that six µops per cycle 
exceeds the trace cache and retirement µop bandwidth. The higher bandwidth in the 
core allows for peak bursts of greater than 3 µops and to achieve higher issue rates by 
allowing greater flexibility in issuing µops to different execution ports.

Most execution units can start executing a new µop every cycle, so that several 
instructions can be in flight at a time for each pipeline. A number of arithmetic logical 
unit (ALU) instructions can start two per cycle, and many floating-point instructions 
can start one every two cycles. Finally, µops can begin execution out of program order, 
as soon as their data inputs are ready and resources are available.

Retirement

The retirement section receives the results of the executed µops from the execution 
core and processes the results so that the proper architectural state is updated according 
to the original program order. For semantically-correct execution, the results of IA-32 
instructions must be committed in original program order before it is retired. 
Exceptions may be raised as instructions are retired. Thus, exceptions cannot occur 
speculatively, they occur in the correct order, and the machine can be correctly 
restarted after an exception. 
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When a µop completes and writes its result to the destination, it is retired. Up to three 
µops may be retired per cycle. The Reorder Buffer (ROB) is the unit in the processor 
which buffers completed µops, updates the architectural state in order, and manages 
the ordering of exceptions.

The retirement section also keeps track of branches and sends updated branch target 
information to the branch target buffer (BTB) to update branch history. Figure 1-3 
illustrates the paths that are most frequently executing inside the Intel NetBurst 
micro-architecture: an execution loop that interacts with multilevel cache hierarchy 
and the system bus.

The following sections describe in more detail the operation of the front end and the 
execution core. This detailed information of the Intel NetBurst micro-architecture 
provides the background for understanding the optimization techniques and using the 
instruction latency data that are documented in this manual.

 Front End Pipeline Detail

The following information about the front end operation may be useful for tuning 
software with respect to prefetching, branch prediction, and execution trace cache 
operations.

Prefetching

The Intel NetBurst micro-architecture supports three prefetching mechanisms:

• the first is for instructions only

• the second is for data only

• the third is for code or data.

The first mechanism is a hardware instruction fetcher that automatically prefetches 
instructions. The second is a software-controlled mechanism that fetches data into the 
caches using the prefetch instructions. The third is a hardware mechanism that 
automatically fetches data and instructions into the unified second-level cache. 

The hardware instruction fetcher reads instructions along the path predicted by the 
BTB into the instruction streaming buffers. Data is read in 32-byte chunks starting at 
the target address. The second and third mechanisms will be described later.
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Decoder

The front end of the Intel NetBurst micro-architecture has a single decoder that can 
decode instructions at the maximum rate of one instruction per clock. Some complex 
instructions must enlist the help of the microcode ROM. The decoder operation is 
connected to the execution trace cache discussed in the next section.

Execution Trace Cache

The execution trace cache (TC) is the primary instruction cache in the Intel NetBurst 
micro-architecture. The TC stores decoded IA-32 instructions, or µops. This removes 
decoding costs on frequently-executed code, such as template restrictions and the extra 
latency to decode instructions upon a branch misprediction.

In the Pentium 4 processor implementation, the TC can hold up to 12K µops and can 
deliver up to three µops per cycle. The TC does not hold all of the µops that need to be 
executed in the execution core. In some situations, the execution core may need to 
execute a microcode flow, instead of the µop traces that are stored in the trace cache.

The Pentium 4 processor is optimized so that most frequently-executed IA-32 
instructions come from the trace cache, efficiently and continuously, while only a few 
instructions involve the microcode ROM. 

Branch Prediction

Branch prediction is very important to the performance of a deeply pipelined 
processor. Branch prediction enables the processor to begin executing instructions long 
before the branch outcome is certain. Branch delay is the penalty that is incurred in the 
absence of a correct prediction. For Pentium 4 and Intel Xeon processors, the branch 
delay for a correctly predicted instruction can be as few as zero clock cycles. The 
branch delay for a mispredicted branch can be many cycles; typically this is equivalent 
to the depth of the pipeline. 

The branch prediction in the Intel NetBurst micro-architecture predicts all near 
branches, including conditional, unconditional calls and returns, and indirect branches. 
It does not predict far transfers, for example, far calls, irets, and software interrupts.
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In addition, several mechanisms are implemented to aid in predicting branches more 
accurately and in reducing the cost of taken branches:

• dynamically predict the direction and target of branches based on the instructions’ 
linear address using the branch target buffer (BTB)

• if no dynamic prediction is available or if it is invalid, statically predict the 
outcome based on the offset of the target: a backward branch is predicted to be 
taken, a forward branch is predicted to be not taken

• return addresses are predicted using the 16-entry return address stack

• traces of instructions are built across predicted taken branches to avoid branch 
penalties.

The Static Predictor. Once the branch instruction is decoded, the direction of the 
branch (forward or backward) is known. If there was no valid entry in the BTB for the 
branch, the static predictor makes a prediction based on the direction of the branch. 
The static prediction mechanism predicts backward conditional branches (those with 
negative displacement), such as loop-closing branches, as taken. Forward branches are 
predicted not taken.

To take advantage of the forward-not-taken and backward-taken static predictions, the 
code should be arranged so that the likely target of the branch immediately follows 
forward branches. See examples on branch prediction in “Branch Prediction” in 
Chapter 2.

Branch Target Buffer. Once branch history is available, the Pentium 4 processor can 
predict the branch outcome even before the branch instruction is decoded, based on a 
history of previously-encountered branches. It uses a branch history table and a branch 
target buffer (collectively called the BTB) to predict the direction and target of 
branches based on an instruction’s linear address. Once the branch is retired, the BTB 
is updated with the target address.

Return Stack. Returns are always taken, but since a procedure may be invoked from 
several call sites, a single predicted target will not suffice. The Pentium 4 processor has 
a Return Stack that can predict return addresses for a series of procedure calls. This 
increases the benefit of unrolling loops containing function calls. It also mitigates the 
need to put certain procedures inline since the return penalty portion of the procedure 
call overhead is reduced. 
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Even if the direction and target address of the branch are correctly predicted well in 
advance, a taken branch may reduce available parallelism in a typical processor, since 
the decode bandwidth is wasted for instructions which immediately follow the branch 
and precede the target, if the branch does not end the line and target does not begin the 
line. The branch predictor allows a branch and its target to coexist in a single trace 
cache line, maximizing instruction delivery from the front end.

Branch Hints

The Pentium 4 processor provides a feature that permits software to provide hints to 
the branch prediction and trace formation hardware to enhance their performance. 
These hints take the form of prefixes to conditional branch instructions. These prefixes 
have no effect for pre-Pentium 4 processor implementations. Branch hints are not 
guaranteed to have any effect, and their function may vary across implementations. 
However, since branch hints are architecturally visible, and the same code could be run 
on multiple implementations, they should be inserted only in cases which are likely to 
be helpful across all implementations.

Branch hints are interpreted by the translation engine, and are used to assist branch 
prediction and trace construction hardware. They are only used at trace build time, and 
have no effect within already-built traces. Directional hints override the static 
(forward-not-taken, backward-taken) prediction in the event that a BTB prediction is 
not available. Because branch hints increase code size slightly, the preferred approach 
to providing directional hints is by the arrangement of code so that 

• forward branches that are more probable should be in the not-taken path, and

• backward branches that are more probable should be in the taken path. Since the 
branch prediction information that is available when the trace is built is used to 
predict which path or trace through the code will be taken, directional branch hints 
can help traces be built along the most likely path. See “Branch Hints” in 
Chapter 2 for branch hint coding recommendations.

Execution Core Detail

The execution core is designed to optimize overall performance by handling the most 
common cases most efficiently. The hardware is designed to execute the most frequent 
operations in the most common context as fast as possible, at the expense of 
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less-frequent operations in rare context. Some parts of the core may speculate that a 
common condition holds to allow faster execution. If it does not, the machine may 
stall. An example of this pertains to store forwarding, see “Store Forwarding” later in 
this chapter. If a load is predicted to be dependent on a store, it gets its data from that 
store and tentatively proceeds. If the load turned out not to depend on the store, the 
load is delayed until the real data has been loaded from memory, then it proceeds.

Instruction Latency and Throughput

The superscalar, out-of-order core contains multiple execution hardware resources that 
can execute multiple µops in parallel. The core’s ability to make use of available 
parallelism can be enhanced by:

• selecting IA-32 instructions that can be decoded into less than 4 µops and/or have 
short latencies

• ordering IA-32 instructions to preserve available parallelism by minimizing long 
dependence chains and covering long instruction latencies

• ordering instructions so that their operands are ready and their corresponding issue 
ports and execution units are free when they reach the scheduler.

This subsection describes port restrictions, result latencies, and issue latencies (also 
referred to as throughput) that form the basis for that ordering. Scheduling affects the 
way that instructions are presented to the core of the processor, but it is the execution 
core that reacts to an ever-changing machine state, reordering instructions for faster 
execution or delaying them because of dependence and resource constraints. Thus the 
ordering of instructions is more of a suggestion to the hardware. 

“IA-32 Instruction Latency and Throughput” in Appendix C, lists the IA-32 
instructions with their latency, their issue throughput, and in relevant cases, the 
associated execution units. Some execution units are not pipelined, such that µops 
cannot be dispatched in consecutive cycles and the throughput is less than one per 
cycle.

The number of µops associated with each instruction provides a basis for selecting 
which instructions to generate. In particular, µops which are executed out of the 
microcode ROM, involve extra overhead. For the Pentium II and Pentium III 
processors, optimizing the performance of the decoder, which includes paying 
attention to the 4-1-1 sequence (instruction with four µops followed by two 
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instructions each with one µop) and taking into account the number of µops for each 
IA-32 instruction, was very important. On the Pentium 4 processor, the decoder 
template is not an issue. Therefore it is no longer necessary to use a detailed list of 
exact µop count for IA-32 instructions. Commonly used IA-32 instructions which 
consist of four or less µops are shown in “IA-32 Instruction Latency and Throughput” 
in Appendix C, with information on what execution units are associated with these 
instructions.

Execution Units and Issue Ports

Each cycle, the core may dispatch µops to one or more of the four issue ports. At the 
micro-architectural level, store operations are further divided into two parts: store data 
and store address operations. The four ports through which µops are dispatched to 
various execution units and to perform load and store operations are shown in Figure 
1-4. Some ports can dispatch two µops per clock because the execution unit for that 
µop executes at twice the speed, and those execution units are marked “Double speed.”
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Port 0. In the first half of the cycle, port 0 can dispatch either one floating-point move 
µop (including floating-point stack move, floating-point exchange or floating-point 
store data), or one arithmetic logical unit (ALU) µop (including arithmetic, logic or 
store data). In the second half of the cycle, it can dispatch one similar ALU µop.

Port 1. In the first half of the cycle, port 1 can dispatch either one floating-point 
execution (all floating-point operations except moves, all SIMD operations) µop or 
normal-speed integer (multiply, shift and rotate) µop, or one ALU (arithmetic, logic or 
branch) µop. In the second half of the cycle, it can dispatch one similar ALU µop.

Port 2. Port 2 supports the dispatch of one load operation per cycle.

Port 3. Port 3 supports the dispatch of one store address operation per cycle.

Figure 1-4 Execution Units and Ports in the Out-Of-Order Core

Note:
FP_ADD refers to x87 FP, and SIMD FP add and subtract operations
FP_MUL refers to x87 FP, and SIMD FP multiply operations
FP_DIV refers to x87 FP, and SIMD FP divide and square-root operations
MMX_ALU refers to SIMD integer arithmetic and logic operations
MMX_SHFT handles Shift, Rotate, Shuffle, Pack and Unpack operations
MMX_MISC handles SIMD reciprocal and some integer operations
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Thus the total issue bandwidth can range from zero to six µops per cycle. Each 
pipeline contains several execution units. The µops are dispatched to the pipeline that 
corresponds to its type of operation. For example, an integer arithmetic logic unit and 
the floating-point execution units (adder, multiplier, and divider) share a pipeline.

Caches

The Intel NetBurst micro-architecture can support up to three levels of on-chip cache. 
Only two levels of on-chip caches are implemented in the Pentium 4 processor, which 
is a product for the desktop environment. The level nearest to the execution core of the 
processor, the first level, contains separate caches for instructions and data: a first-level 
data cache and the trace cache, which is an advanced first-level instruction cache. All 
other levels of caches are shared between instruction and data. The levels in the cache 
hierarchy are not inclusive, that is, the fact that a line is in level i does not imply that it 
is also in level i+1. All caches use a pseudo-LRU (least recently used) replacement 
algorithm. Table 1-1 provides the parameters for all cache levels. 

1 Each read operation fetches two sectors, 64 bytes per sector; write operation is 64 bytes only. 

2. Pentium 4 and Intel Xeon processors with CPUID model encoding value of 2 have a second level cache of 512 KB.

On processors without a third level cache, a second-level cache miss initiates a 
transaction across the system bus interface to the memory sub-system. On processors 
with a third level cache, a third-level cache miss initiates a transaction across the 
system bus. A bus write transaction writes 64 bytes to cacheable memory, or separate 
8-byte chunks if the destination is not cacheable. A bus read transaction from 
cacheable memory will fetch two 64 byte sectors. 

Table 1-1 Pentium 4 Processor Cache Parameters

Level Capacity
Associativity 
(ways)

Line Size 
(bytes)

Access Latency, 
Integer/floating-point 
(clocks) Write Update Policy

First 8 KB 4 64 2/9 write through

TC 12K µops 8 N/A N/A N/A

Second 256 KB or 
512 KB2

8 1281 7/7 write back

Third 0, 512 KB, 
or 1 MB

8 1281 14/14 write back
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The system bus interface supports using a scalable bus clock and achieves an effective 
speed that quadruples the speed of the scalable bus clock. It takes on the order of 12 
processor cycles to get to the bus and back within the processor, and 6-12 bus cycles to 
access memory if there is no bus congestion. Each bus cycle equals several processor 
cycles. The ratio of processor clock speed to the scalable bus clock speed is referred to 
as bus ratio. For example, one bus cycle for a 100 MHz bus is equal to 15 processor 
cycles on a 1.50 GHz processor. Since the speed of the bus is implementation- 
dependent, consult the specifications of a given system for further details.

Data Prefetch

The Pentium 4 processor has two mechanisms for prefetching data: a software- 
controlled prefetch and an automatic hardware prefetch. In many situations, the 
hardware prefetch alone can achieve good performance.

Software-controlled prefetch is enabled using the four prefetch instructions 
(PREFETCHh) introduced with Streaming SIMD Extensions (SSE) instructions. The 
software-controlled prefetch is not intended for prefetching code. Using it can incur 
significant penalties on a multiprocessor system where code is shared.

Software-controlled data prefetch can provide benefits in some selected situations, and 
may not be beneficial in other situations. The situations that can benefit from 
software-controlled data prefetch are the following:

• when the pattern of memory access operations in software allows the programmer 
to hide memory latency

• when a reasonable choice can be made of how many cache lines to fetch ahead of 
the current line being executed

• when an appropriate choice can be made for the type of prefetch to use. 

The four prefetch instructions have different behaviors, both in terms of which 
cache levels are updated and the performance characteristics for a given processor 
implementation. For instance, a processor may implement the non-temporal 
prefetch by only returning data to the cache level closest to the processor core. 
This approach can have the following effects:

a) minimizing disturbance of temporal data in other cache levels

b) avoiding the need to access off-chip caches, which can increase the realized 
bandwidth compared to a normal load-miss, which returns data to all cache levels.
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The situations that are less likely to benefit from software-controlled data prefetch are 
the following:

• In cases that are already bandwidth bound, prefetching tends to increase bandwidth 
demands, and thus not be effective.

• Prefetching too far ahead may cause eviction of cached data from the caches prior 
to actually being used in execution; not prefetching far enough ahead can reduce 
the ability to overlap memory and execution latencies.

• When the prefetch can only be usefully placed in locations where the likelihood of 
that prefetch’s getting used is low. Software prefetches consume resources in the 
processor and the use of too many prefetches can limit their effectiveness. 
Examples of this include prefetching data in a loop for a reference outside the loop, 
and prefetching in a basic block that is frequently executed, but which seldom 
precedes the reference for which the prefetch is targeted.

For more details on software prefetching see Chapter 6, “Optimizing Cache Usage for 
Intel Pentium 4 Processors”.

Automatic hardware prefetch is a new feature in the Pentium 4 processor. It can 
bring cache lines into the unified second-level cache based on prior reference patterns.  
For more details on the automatic hardware prefetcher, see Chapter 6, “Optimizing 
Cache Usage for Intel Pentium 4 Processors”.

Pros and Cons of Software and Hardware Prefetching. Software prefetching has 
the following characteristics:

• Handles irregular access patterns, which would not trigger the hardware prefetcher

• Handles prefetching of short arrays and avoids hardware prefetching’s start-up 
delay before initiating the fetches

• Must be added to new code; does not benefit existing applications. 

In comparison, hardware prefetching for Pentium 4 processor has the following 
characteristics:

• Works with existing applications

• Does not require extensive study of using prefetch instructions

• Requires regular access patterns
1-21



Intel Pentium 4 and Intel Xeon Processor Optimization Intel Pentium 4 Processor Overview 1

• Has a start-up penalty before the hardware prefetcher triggers and begins initiating 

fetches. This has a larger effect for short arrays when hardware prefetching 
generates a request for data beyond the end of an array, which is not actually 
utilized.  However, software prefetching can recognize and handle these cases by 
using fetch bandwidth to hide the latency for the initial data in the next array. The 
penalty diminishes if it is amortized over longer arrays.

• Avoids instruction and issue port bandwidth overhead.

Loads and Stores

The Pentium 4 processor employs the following techniques to speed up the execution 
of memory operations:

• speculative execution of loads

• reordering of loads with respect to loads and stores

• multiple outstanding misses

• buffering of writes

• forwarding of data from stores to dependent loads.

Performance may be enhanced by not exceeding the memory issue bandwidth and 
buffer resources provided by the machine. Up to one load and one store may be issued 
each cycle from the memory port’s reservation stations. In order to be dispatched to the 
reservation stations, there must be a buffer entry available for that memory operation. 
There are 48 load buffers and 24 store buffers. These buffers hold the µop and address 
information until the operation is completed, retired, and deallocated.

The Pentium 4 processor is designed to enable the execution of memory operations out 
of order with respect to other instructions and with respect to each other. Loads can be 
carried out speculatively, that is, before all preceding branches are resolved. However, 
speculative loads cannot cause page faults. Reordering loads with respect to each other 
can prevent a load miss from stalling later loads. Reordering loads with respect to other 
loads and stores to different addresses can enable more parallelism, allowing the 
machine to execute more operations as soon as their inputs are ready. Writes to 
memory are always carried out in program order to maintain program correctness.
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A cache miss for a load does not prevent other loads from issuing and completing. The 
Pentium 4 processor supports up to four outstanding load misses that can be serviced 
either by on-chip caches or by memory.

Store buffers improve performance by allowing the processor to continue executing 
instructions without having to wait until a write to memory and/or cache is complete. 
Writes are generally not on the critical path for dependence chains, so it is often 
beneficial to delay writes for more efficient use of memory-access bus cycles.

Store Forwarding

Loads can be moved before stores that occurred earlier in the program if they are not 
predicted to load from the same linear address. If they do read from the same linear 
address, they have to wait for the store’s data to become available. However, with store 
forwarding, they do not have to wait for the store to write to the memory hierarchy and 
retire. The data from the store can be forwarded directly to the load, as long as the 
following conditions are met:

• Sequence: The data to be forwarded to the load has been generated by a 
programmatically-earlier store, which has already executed.

• Size: the bytes loaded must be a subset of (including a proper subset, that is, the 
same) bytes stored.

• Alignment: the store cannot wrap around a cache line boundary, and the linear 
address of the load must be the same as that of the store.

Hyper-Threading Technology
The Intel Xeon processor is the first hardware implementation of Hyper-Threading 
Technology in IA-32 processor family. Hyper-Threading Technology enables software 
to take advantage of task-level, or thread-level parallelism by providing multiple 
logical processors within a physical processor package. The performance level of a 
single-threaded application is limited by the amount of available instruction-level 
parallelism. Typically, single-threaded applications can only use 20-30% of execution 
resources in modern super-scalar processors. Hyper-Threading Technology brings the 
concept of simultaneous multithreading to the IA-32 Intel Architecture. In its first 
implementation in Intel Xeon processor, Hyper-Threading Technology makes a single 
physical processor appear as two logical processors.
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The two logical processors each have a complete set of architectural registers while 
sharing one single physical processor’s resources. By maintaining the architecture state 
of two processors, a Hyper-Threading Technology capable processor looks like two 
processors to software, including operating system and application code. 

Hyper-Threading Technology is well suited for multiprocessor systems to provide an 
additional performance boost in throughput when compared to traditional MP systems. 
Figure 1-5 shows a typical bus-based symmetric multiprocessor (SMP) based on 
processors with Hyper-Threading Technology. Each logical processor can execute a 
software thread, allowing a maximum of two software threads to execute 
simultaneously on one physical processor. The two software threads execute 
simultaneously, meaning that in the same clock cycle an “add” operation from logical 
processor 0 and another “add” operation and load from logical processor 1 can be 
executed simultaneously by the execution engine.

In the first implementation of Hyper-Threading Technology, the physical execution 
resources are shared and the architecture state is duplicated for each logical processor. 
This minimizes the die area cost of implementing Hyper-Threading Technology, and in 
addition, can achieve significant performance gains for multithreaded applications or 
multitasking workloads. The performance potential due to Hyper-Threading 
Technology arises from the following factors: (a) operating systems and user programs 

Figure 1-5 Hyper-Threading Technology on an SMP
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can schedule processes or threads to execute simultaneously on the logical processors 
in each physical processor; (b) on-chip execution resources are utilized at a higher 
level than when only a single thread is consuming the execution resources. Higher 
level of resource utilization can lead to higher system throughput. In future 
implementations of Hyper-Threading Technology, the performance potential is 
expected to be even greater, as more functional units can be added in the execution 
engine to take advantage of both instruction-level parallelism and thread-level 
parallelism.

Processor Resources and Hyper-Threading Technology

The vast majority of microarchitecture resources in a physical processor are shared 
between the logical processors. Only a few small data structures were replicated for 
each logical processor. This section describes the different ways resources are shared, 
partitioned or replicated. 

Replicated Resources 

The architectural state is replicated for each logical processor. The architecture state 
consists of the registers that are used by the operating system and application code to 
control program behavior and store data for computations. This state includes the eight 
general-purpose registers, the control registers, machine state registers, debug 
registers, and others. There are a few exceptions, most notably the memory type range 
registers (MTRRs) and the performance monitoring counters. For a complete list of the 
architecture state and exceptions, see the IA-32 Intel Architecture System 
Programming Guide.

Other resources such as the instruction pointers and register renaming tables were 
replicated to simultaneously track execution and state changes of the two logical 
processors. The return stack predictor was replicated to improve branch prediction of 
return instructions.

In addition, a few small buffers such as the 2-entry instruction streaming buffers were 
replicated to reduce complexity. 
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Partitioned Resources

Several buffers are shared by limiting the use of each logical processor to only half the 
entries. They are referred to as partitioned resources. Some of the reasons for 
partitioning the buffers include fairness and allowing operations from one logical 
processor to bypass operations of the other logical processor that may have stalled. For 
example, a cache miss, a branch misprediction, or instruction dependencies may 
prevent a logical processor from making forward progress for some number of cycles. 
The partitioning prevents the stalled logical processor from using all the entries so that 
the other logical processor can continue to make forward progress. In general, the 
buffers for staging instructions between major pipe stages are partitioned. These 
buffers include µop queues after the execution trace cache, the queues after the register 
rename stage, the reorder buffer which stages instructions for retirement, and the load 
and store buffers.

In the case of the load and store buffers, the partitioning also provided an easier 
implementation to maintain memory ordering for each logical processor and detect 
memory-ordering violations. 

Shared Resources

Most of the resources in a physical processor are fully shared to improve the dynamic 
utilization of the resource, including caches and all the execution units. Some shared 
resources which are linearly addressed, like the DTLB, include a logical processor ID 
bit to distinguish whether the entry belongs to one logical processor or the other. The 
other resources are fully shared.

Microarchitecture Pipeline and Hyper-Threading Technology

This section describes the Hyper-Threading Technology microarchitecture pipeline 
and how instructions from the two logical processors are handled between the front 
end and the back end of the pipeline.

Although instructions originating from two programs or two threads execute 
simultaneously and not necessarily in program order in the execution core and memory 
hierarchy, the front end and back end contain several selection points to select between 
instructions from the two logical processors. All selection points alternate between the 
two logical processors unless one logical processor cannot make use of a pipeline 
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stage. In this case, the other logical processor has full use of every cycle of the pipeline 
stage. Reasons why a logical processor may not use a pipeline stage include cache 
misses, branch mispredictions, and instruction dependencies.

 Front End Pipeline 

The Execution Trace Cache is shared between the two logical processors. Execution 
Trace Cache access is arbitrated by the two logical processors every clock. If a cache 
line is fetched for one logical processor in one clock cycle, the next clock cycle a line 
would be fetched for the other logical processor provided that both logical processors 
are requesting access to the trace cache. If one logical processor is stalled or is unable 
to use the Execution Trace Cache, the other logical processor can use the full 
bandwidth of the trace cache until the initial logical processor’s instruction fetches 
return from the L2 cache. After fetching the instructions and building traces of µops, 
the µops are placed in a queue. This µop queue decouples the Execution Trace Cache 
from the register rename pipeline stage. As described earlier, if both logical processors 
are active, this queue is partitioned so that both logical processors can make 
independent forward progress. 

Execution Core

The core can dispatch up to six µops per cycle, provided the µops are ready to execute, 
that is, not waiting for data, or waiting for required resources. Once the µops are 
placed in the queues waiting for execution, there is no distinction between instructions 
from the two logical processors. The execution core and memory hierarchy is also 
oblivious to which instructions belong to which logical processor.

After execution, the instructions are placed in the re-order buffer. The re-order buffer 
decouples the execution stage from the retirement stage. The re-order buffer is 
partitioned such that each logical processor can use half the entries.

Retirement

Instruction retirement logic commits the architecture stage in program order. The 
retirement logic tracks when instructions from the two logical processors are ready to 
be retired, then retires the instruction in program order for each logical processor by 
1-27



Intel Pentium 4 and Intel Xeon Processor Optimization Intel Pentium 4 Processor Overview 1

alternating between the two logical processors. Retirement logic will retire instructions 
for one logical processor, then the other, alternating back and forth. If one logical 
processor is not ready to retire any instructions, then all retirement bandwidth is 
dedicated to the other logical processor.

Once stores have retired, the processor needs to write the store data into the level-one 
data cache. Selection logic alternates between the two logical processors to commit 
store data to the cache.
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General Optimization 
Guidelines
This chapter discusses general optimization techniques that can improve the 
performance of applications running on the Intel Pentium 4 processor. These 
techniques take advantage of the microarchitectural features of the Pentium 4 
processor described in Chapter 1.

This chapter explains the optimization techniques both for those who use the 
Intel® C++ or Fortran Compiler and for those who use other compilers. The Intel® 
compiler, which is specifically tuned for the Pentium 4 processor, provides the most of 
the optimization. For those not using the Intel C++ or Fortran Compiler, the assembly 
code tuning optimizations may be useful. The explanations are supported by coding 
examples.

Tuning to Achieve Optimum Performance
The most important factors in achieving optimum processor performance are:

• good branch prediction

• avoiding memory access stalls

• good floating-point performance

• instruction selection, including use of SIMD instructions

• instruction scheduling (to maximize trace cache bandwidth)

• vectorization.

The following sections describe important practices, tools, coding rules and 
recommendations associated with these factors that will aid in optimizing the 
performance on IA-32 processors.
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Tuning to Prevent Known Coding Pitfalls

To produce program code that takes advantage of the strengths of the Intel NetBurst 
micro-architecture (as summarized in the previous section), performance tuning 
requires avoiding coding pitfalls that limit the performance of the target processor. 
This section lists several known coding pitfalls that could limit the performance of the 
Pentium 4 processor. Some of the coding pitfalls, such as the store-forwarding cases, 
also limit performance on Pentium III processors. This chapter provides 
recommendations and coding rules that help avoid them.

Table 2-1 lists several known coding pitfalls that cause performance degradation in 
Pentium 4 processors. This table should be used as a check list for establishing a 
performance-tuning baseline for the Pentium 4 processor. For every issue, Table 2-1 
provides a reference to a section in this document, which describes in detail the causes 
of performance penalties and presents code examples, coding rules, and recommended 
solutions. Note that “aligned” here means that the address of the load is aligned with 
respect to the address of the store.  

Table 2-1 Factors Affecting Performance in the Pentium 4 Processor

Factors Affecting Performance Symptom
Example 
(if applicable) Section Reference

Small, unaligned load after large 
store

Store-forwarding 
blocked

Example 2-12 Store Forwarding, 
Store-forwarding 
Restriction on Size and 
Alignment

Large load after small store;

Load dword after store dword, 
store byte;

Load dword, AND with 0xff after 
store byte

Store-forwarding 
blocked

Example 2-13, 
Example 2-14

Store Forwarding, 
Store-forwarding 
Restriction on Size and 
Alignment

Cache line splits Access across 
cache line boundary

Example 2-11 Align data on natural 
operand size address 
boundaries

Integer shift and multiply latency Longer latency than 
Pentium III 
processor

Use of the shift and 
rotate Instructions, 
Integer and 
Floating-point Multiply

continued
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*   Streaming SIMD Extensions (SSE)

** Streaming SIMD Extensions 2 (SSE2)

General Practices and Coding Guidelines
This section discusses the general guidelines that derive from the optimum 
performance factors listed in “Tuning to Achieve Optimum Performance”. It also 
highlights key practices of using the performance tools.

The following is a summary of key practices of performance tools usage and general 
coding guidelines. Each heading is discussed in detail in subsequent sections in this 
chapter. The coding practices recommended under each heading and the bullets under 
each heading are listed in order of importance.

Use Available Performance Tools

• Current-generation compiler, such as the Intel C++ Compiler:

— Set this compiler to produce code for the target processor implementation

— Use the compiler switches for optimization and/or profile-guided 
optimization. These features are summarized in “Intel® C++ Compiler” and, 
in more detail, in the Intel C++ Compiler User’s Guide.

• Current-generation performance monitoring tools, such as VTune™ Performance 
Analyzer:

— Identify performance issues, use event-based sampling, code coach and other 
analysis resource

— Characterize performance gain.

Denormal inputs and outputs Slows x87, SSE*, 
SSE2** floating-

point operations

Floating-point Exceptions

Cycling more than 2 values of 
Floating-point Control Word

fldcw not 
optimized

Floating-point Modes

Table 2-1 Factors Affecting Performance in the Pentium 4 Processor (continued)

Factors Affecting Performance Symptom
Example 
(if applicable) Section Reference
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Optimize Performance Across Processor Generations

• Use cpuid dispatch strategy to deliver optimum performance for all processor 
generations.

• Use compatible code strategy to deliver optimum performance for Pentium 4 
processor and future IA-32 processors.

Optimize Branch Predictability

• Improve branch predictability and optimize instruction prefetching by arranging 
code to be consistent with the static branch prediction assumptions: backward 
taken and forward not taken.

• Avoid mixing near and far calls and returns.

• Avoid implementing a call by pushing the return address and jumping to the target. 
The hardware can pair up call and return instructions to enhance predictability.

• Use the pause instruction in spin-wait loops.

• Inline functions according to coding recommendations.

• Eliminate branches.

• Avoid indirect calls.

Optimize Memory Access

• Observe store-forwarding constraints.

• Ensure proper data alignment to prevent data split across cache line. boundary. 
This includes stack and passing parameters.

• Avoid mixing code and data (self-modifying code).

• Choose data types carefully (see next bullet below) and avoid type casting.

• Employ data structure layout optimization to ensure efficient use of longer 
Pentium 4 processor cache lines.

• Use prefetching appropriately.

• Minimize use of global variables and pointers.

• Use the const modifier; use the static modifier for global variables.
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• Use the following techniques to enhance locality: blocking, loop interchange, loop 

skewing.

• Use new cacheability instructions and memory-ordering behavior for Pentium 4 
processor.

Optimize Floating-point Performance

• Avoid exceeding representable ranges during computation, since handling these 
cases can have a performance impact; however, do not use a larger precision 
format (double-extended floating point) unless required, since it increases memory 
size and bandwidth utilization.

• Use the optimized fldcw when possible, avoid changing floating-point 
control/status registers (rounding modes) between more than two values.

• Use efficient conversions, such as those that implicitly include a rounding mode, in 
order to avoid changing control/status registers.

• Take advantage of the SIMD capabilities of Streaming SIMD Extensions (SSE), 
and Streaming SIMD Extensions 2 (SSE2) instructions; enable flush-to-zero mode 
and DAZ mode when using SSE and SSE2 instructions.

• Avoid denormalized input values, denormalized output values, and explicit 
constants that could cause denormal exceptions.

• Avoid excessive use of the fxch instruction.

Optimize Instruction Selection

• Avoid longer latency instructions: shifts, integer multiplies and divides. Replace 
them with alternate code sequences (e.g. adds instead of shifts, and shifts instead 
of multiplies).

• Use the lea instruction and the full range of addressing modes to do address 
calculation.

• Some types of stores use more µops than others, try to use simpler store variants 
and/or reduce the number of stores.

• Avoid use of complex instructions that require more than 4 µops.
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• Avoid instructions that unnecessarily introduce dependence-related stalls: inc and 

dec instructions, partial register operations (8/16-bit operands).

• Avoid use of ah, bh, and other higher 8-bits of the 16-bit registers, because 
accessing them requires a shift operation internally.

• Use xor and pxor instructions to clear registers and break dependencies.

• Use efficient approaches for performing comparisons.

Optimize Instruction Scheduling

• Consider latencies and resource constraints.

• Calculate store addresses as early as possible.

• Arrange load operations and store operations using the same address such that the 
load does not follow the store immediately, especially if the store depends on a 
long-latency operation.

Enable Vectorization

• Use the smallest possible data type, to enable more parallelism with the use of a 
longer vector.

• Arrange the nesting of loops so that the innermost nesting level is free of 
inter-iteration dependencies. Especially avoid the case where the store of data in an 
earlier iteration happens lexically after the load of that data in a future iteration, 
something which is called a lexically-backward dependence.

• Avoid the use of conditionals.

• Keep induction (loop) variable expressions simple.

• Avoid using pointers, try to replace pointers with arrays and indices.

Coding Rules, Suggestions and Tuning Hints
Chapter 2 includes rules, suggestions and hints. They are maintained in 
separately-numbered lists and are targeted for three audiences: 

• those modifying the source to enhance performance (user/source rules)
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• those writing assembly or compilers (assembly/compiler rules)

• those doing detailed performance tuning (tuning suggestions)

Coding recommendations are ranked by importance in two ways:

• Local impact (later on referred to as “impact”) is the difference that a 
recommendation makes to performance for a given instance with the priority 
marked as: H = high, M = medium, L = low.

• Generality – how frequently such instances occur across all application domains 
with the priority marked as: H = high, M = medium, L = low.

These rules are intentionally very approximate. They can vary depending on coding 
style, application domain, and other factors. The purpose of including high, medium 
and low priorities to each recommendation is to provide some hints to the degree of 
performance gain that one can expect if a recommendation is implemented. Because it 
is not possible to predict the frequency of occurrence of a code instance in 
applications, a priority hint cannot be directly correlated to application-level 
performance gain. However, in a few important cases where relevant application-level 
performance gain has been observed, a more quantitative characterization of 
application-level performance gain is provided for information only (See 
“Store-forwarding Restriction on Size and Alignment” and “Instruction Selection”). In 
places where there is no priority assigned, the impact or generality has been deemed 
inapplicable.

Performance Tools
Intel offers several tools that can facilitate your effort of optimizing your application’s 
performance.

Intel® C++ Compiler

Use the Intel C++ Compiler following the recommendations described here wherever 
possible. The Intel Compiler’s advanced optimization features provide good 
performance without the need to hand-tune assembly code. However, the following 
features may enhance performance even further:
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• Inlined assembly.

• Intrinsics, which have a one-to-one correspondence with assembly language 
instructions, but allow the compiler to perform register allocation and instruction 
scheduling so the user does not need to do this. (Refer to the “Intel C++ Intrinsics 
Reference” section of the Intel C++ Compiler User’s Guide.)

• C++ class libraries (Refer to the “Intel C++ Class Libraries for SIMD Operations 
Reference” section of the Intel C++ Compiler User’s Guide.) 

• Vectorization, in conjunction with compiler directives (pragmas). (Refer to the 
“Compiler Vectorization Support and Guidelines” section of the Intel C++ 
Compiler User’s Guide.)

The Intel C++ Compiler can generate a single executable which uses features such as 
Streaming SIMD Extensions 2 to maximize performance on a Pentium 4 processor, but 
which will still execute correctly on older processors without such features. (Refer to 
the “Processor Dispatch Support” section in the Intel C++ Compiler User’s Guide.)

General Compiler Recommendations

Any compiler that has been extensively tuned for the Pentium 4 processor can be 
expected to match or outperform hand-coding in the general case. However, if 
particular performance problems are noted with the compiled code, some compilers 
(like the Intel C++ and Fortran Compilers) allow the coder to insert intrinsics or inline 
assembly, to exert greater control over what code is generated. If inlined assembly is 
used, the user should verify that the code generated to integrate the inline assembly is 
of good quality and yields good overall performance.

Default compiler switches are generally targeted for the common case. That is, an 
optimization is may be made the default if it is beneficial for most programs. In the 
unlikely event that a performance problem is root-caused to a poor choice on the part 
of the compiler, using different switches for that compiler, or compiling that module 
with a different compiler may be fruitful alternatives.

Performance of compiler-generated code may vary from one compiler vendor to 
another. Intel’s C++ and Fortran Compilers are highly optimized for the Pentium 4 
processor. You may find significant performance advantages to using this as your 
back-end compiler. 
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VTune™ Performance Analyzer

Where performance is of critical concern, use performance monitoring hardware and 
software tools to tune your application and its interaction with the hardware. The 
Pentium 4 processor provides counters which monitor a large number of 
performance-related events, effecting overall performance, branch prediction, the 
number and type of cache misses, and average trace length. The counters also provide 
information that helps resolve the coding pitfalls.

The VTune Performance Analyzer uses these counters to provide you with two kinds 
of feedback:

• an indication of a performance improvement from using a specific coding 
recommendation or microarchitectural feature

• information on whether a change in the program has improved or degraded 
performance with respect to a particular metric

Note that improving performance in one part of the machine does not necessarily bring 
significant gains to overall performance. In general, improving each component of 
performance should have an overall positive effect, although it is possible to degrade 
overall performance by improving performance for some particular metric.

Where appropriate, coding recommendations in this chapter include descriptions of the 
VTune analyzer events that provide measurable data of the performance gain achieved 
by following those recommendations. Refer to the VTune analyzer online help for 
instructions on how to use this tool.

The VTune analyzer events include a number of Pentium 4 processor performance 
metrics described in Appendix B, “Intel Pentium 4 Processor Performance Metrics”.

Processor Generations Perspective
The Pentium 4 processor retains many of the features of the Pentium III processors, and 
adds a few new features. The majority of the coding recommendations for the 
Pentium 4 processor also apply to the Pentium III processors. However, there are 
notable differences, the most important of which are as follows:

• Instruction decode is now much less important. The scheduling concerns regarding 
the 4-1-1 template (instruction with four µops followed by two instructions with 
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one µop each) no longer apply. The introduction of the trace cache (TC) means that 
the machine spends much less time decoding instructions.

• The loops should be exited with forward branches, if the extra branch incurs no 
added delay.

• Dependencies on partial register writes incurred large penalties on Pentium II and 
Pentium III processors. These penalties have been resolved by artificial 
dependencies between each partial register write.  However, to avoid false 
dependences from partial register updates, full register updates and extended 
moves should be used.

• Some latencies have decreased; for example, these simple arithmetic operations 
are twice as fast: add, sub, cmp, test, and, or, xor, neg, not, sahf, mov.

• Some latencies have increased: shifts, rotates, integer multiplies, and moves from 
memory with sign extension are longer than before. Additional care must be taken 
regarding when to use the lea instruction. See the “Use of the lea Instruction” for 
specific recommendations.

• The inc and dec instructions should always be avoided. Using add and sub 
instructions instead of inc and dec instructions avoid data dependence and 
improve performance.

• Dependence-breaking support is added for the pxor instruction.

• Floating point register stack exchange instructions were free; now they are slightly 
more expensive due to issue restrictions.

• Writes and reads to the same location should now be spaced apart. This is 
especially true for writes that depend on long-latency instructions.

• Hardware prefetching may shorten the effective memory latency for data and 
instruction accesses.

• New cacheability instructions are available to streamline stores and manage cache 
utilization.  

• Cache lines are 64 bytes on Pentium 4 processor (See Table 1-1), compared to  
cache line size of 32 bytes in Pentium II and Pentium III processors.  Thus optimal 
prefetching should be done less often on Pentium 4 processors, and false sharing is 
more of an issue.
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• The primary code size limit of interest is now imposed by the trace cache instead 

of the instruction cache.

• There may be a penalty when instructions with immediates requiring more than 
16-bit signed representation are placed next to other instructions that use 
immediates.

Note that all of the memory-related optimization techniques for store-forwarding, data 
splits and alignments help Pentium 4 processor as well as Pentium III processors. 
Instruction selection using instruction latencies is one of the few instances where 
tuning for the Pentium 4 processor can slightly degrade performance of some code on 
the Pentium III processor.

The CPUID Dispatch Strategy and Compatible Code Strategy

Where optimum performance on all processor generations is desired, the application 
can take advantage of the cpuid instruction to identify the processor generation and 
integrate processor-specific instructions (such as SSE2 instructions) into the source 
code where appropriate. The Intel C++ Compiler supports the integration of different 
versions of the code for each target processor within the same binary code. The 
selection of which code to execute at runtime is made based on the CPU identifier that 
is read with the cpuid instruction. Binary code targeted for different processor 
generations can either be generated under the control of the programmer or 
automatically by the compiler.

For applications that must run on more than one generation of IA-32 processors, such 
as the Intel Pentium 4 and Pentium III processors, and where minimum binary code 
size and single code path is important, a compatible code strategy is the best. Using 
this strategy, only instructions common to the Pentium 4 and Pentium III processors are 
used in the source code. The programmer should optimize the application to achieve 
optimum performance on the Pentium 4 processor. This approach to optimization is 
also likely to deliver high performance on previous processor generations. 
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Branch Prediction

Branch optimizations have some of the greatest impact on performance. 
Understanding the flow of branches and improving the predictability of branches can 
increase the speed of your code significantly.

The basic kinds of optimizations that help branch prediction are:

• Keep code and data on separate pages (a very important item, see more details in 
the “Memory Accesses” section).

• Eliminate branches.

• Arrange code to be consistent with the static branch prediction algorithm.

• If it is not possible to arrange code, use branch direction hints where appropriate.

• Use the pause instruction in spin-wait loops.

• Inline functions and pair up calls and returns.

• Unroll as necessary so that repeatedly-executed loops have sixteen or fewer 
iterations, unless this causes an excessive code size increase.

• Separate branches so that they occur no more frequently than every three µops 
where possible.

Eliminating Branches

Eliminating branches improves performance due to:

• reducing the possibility of mispredictions

• reducing the number of required branch target buffer (BTB) entries; conditional 
branches, which are never taken, do not consume BTB resources.

There are four principal ways of eliminating branches:

• Arrange code to make basic blocks contiguous.

• Unroll loops, as discussed in the “Loop Unrolling” section.

• Use the cmov instruction.

• Use the setcc instruction.

Assembly/Compiler Coding Rule 1. (MH impact, H generality) Arrange code to make basic 
blocks contiguous to eliminate unnecessary branches.
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Assembly/Compiler Coding Rule 2. (M impact, ML generality) Use the setcc and cmov 
instructions to eliminate unpredictable conditional branches where possible. Do not do this for 
predictable branches. Also, do not use these instructions to eliminate all unpredictable 
conditional branches. Because using these instructions will incur execution overhead due to 
executing both paths of a conditional branch; Use these instructions only if the increase in 
computation time is less than the expected cost of a mispredicted branch.

Consider a line of C code that has a condition dependent upon one of the constants:

X = (A < B) ? CONST1 : CONST2;

This code conditionally compares two values, A and B. If the condition is true, X is set 
to CONST1; otherwise it is set to CONST2. An assembly code sequence equivalent to the 
above C code can contain branches that are not predictable if there are no correlation in 
the two values. Example 2-1 shows the assembly code with unpredictable branches.

The unpredictable branches in Example 2-1 can be removed with the use of the setcc 
instruction. Example 2-2 shows an optimized code that does not have branches.

Example 2-1 Assembly Code with an Unpredictable Branch

cmp   A, B ; condition
jge   L30 ; conditional branch
mov   ebx, CONST1     ; ebx holds X
jmp   L31 ; unconditional branch

L30:
mov   ebx, CONST2

L31:

Example 2-2 Code Optimization to Eliminate Branches

xor   ebx, ebx     ; clear ebx (X in the C code)

cmp   A, B 

setge bl     ; When ebx = 0 or 1

    ; OR the complement condition

sub   ebx, 1     ; ebx=11...11 or 00...00

and   ebx, CONST3  ; CONST3 = CONST1-CONST2

add   ebx, CONST2  ; ebx=CONST1 or CONST2
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The optimized code sets ebx to zero, then compares A and B. If A is greater than or 
equal to B, ebx is set to one. Then ebx is decreased and “and-ed” with the difference of 
the constant values. This sets ebx to either zero or the difference of the values. By 
adding CONST2 back to ebx, the correct value is written to ebx. When CONST2 is equal 
to zero, the last instruction can be deleted.

Another way to remove branches on Pentium II and following processors is to use the 
cmov and fcmov instructions. Example 2-3 shows changing a test and branch 
instruction sequence using cmov and eliminating a branch. If the test sets the equal 
flag, the value in ebx will be moved to eax. This branch is data-dependent, and is 
representative of an unpredictable branch.

Example 2-3 Eliminating Branch with CMOV Instruction

test ecx, ecx

jne  1h

mov  eax, ebx

1h:

; To optimize code, combine jne and mov into one cmovcc 
; instruction that checks the equal flag

test      ecx, ecx ; test the flags 
cmoveq    eax, ebx ; if the equal flag is set, move 

; ebx to eax - the lh: tag no longer needed

The cmov and fcmov instructions are available on the Pentium II and subsequent 
processors, but not on Pentium processors and earlier 32-bit Intel architecture 
processors. Be sure to check whether a processor supports these instructions with the 
cpuid instruction if an application needs to run on older processors as well. Code can 
often be arranged so that control can flow from one basic block to the next without 
having to execute a branch.
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Spin-Wait and Idle Loops

The Pentium 4 processor introduces a new pause instruction which is architecturally a 
nop on all known IA-32 implementations. To the Pentium 4 processor, it acts as a hint 
that the code sequence is a spin-wait loop. Without a pause instruction in these loops, 
the Pentium 4 processor may suffer a severe penalty when exiting the loop because the 
processor detects a possible memory order violation. Inserting the pause instruction 
significantly reduces the likelihood of a memory order violation, improving 
performance. The Pentium 4 processor can execute a spin-wait loop using fewer 
resources and little power.

In Example 2-4, the code is spinning until memory location A matches the value stored 
in the register eax. Such code sequences are common when protecting a critical 
section, in producer-consumer sequences, for barriers, or other synchronization.

Example 2-4 Use of pause Instruction

lock: cmp eax, A

jne loop

; code in critical section:

loop: pause

cmp eax, A

jne loop

jmp lock

Static Prediction

Branches that do not have a history in the BTB (see “Branch Prediction”) are predicted 
using a static prediction algorithm. The Pentium 4, Pentium III and Pentium II 
processors have the same static prediction algorithm. as follows:

• Predict unconditional branches to be taken.

• Predict backward conditional branches to be taken. This rule is suitable for loops.

• Predict forward conditional branches to be NOT taken.

• Predict indirect branches to be NOT taken.
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Assembly/Compiler Coding Rule 3. (M impact, H generality) Arrange code to be consistent 
with the static branch prediction algorithm: make the fall-through code following a conditional 
branch be the likely target for a branch with a forward target, and make the fall-through code 
following a conditional branch be the unlikely target for a branch with a backward target.

Example 2-5 illustrates the static branch prediction algorithm. The body of an if-then 
conditional is predicted to be executed.

Example 2-5 Pentium 4 Processor Static Branch Prediction Algorithm

Examples 2-6, 2-7 provide basic rules for the static prediction algorithm.

Example 2-6 Static Taken Prediction Example

Begin: mov  eax, mem32

and  eax, ebx
imul eax, edx
shld eax, 7
jc Begin

forward conditional branches not taken (fall through)

If <condition> {
...

} Unconditional Branches taken
JMP

for <condition> {
...

}

Backward Conditional Branches are taken

loop {

} <condition>
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In Example 2-6, the backward branch (JC Begin) is not in the BTB the first time 
through, therefore, the BTB does not issue a prediction. The static predictor, however, 
will predict the branch to be taken, so a misprediction will not occur. 

Example 2-7 Static Not-Taken Prediction Example

mov eax, mem32

and eax, ebx

imul eax, edx

shld eax, 7

jc Begin

mov eax, 0

Begin: call Convert

The first branch instruction (JC Begin) in Example 2-7 segment is a conditional 
forward branch. It is not in the BTB the first time through, but the static predictor will 
predict the branch to fall through.

The static prediction algorithm correctly predicts that the Call Convert instruction 
will be taken, even before the branch has any branch history in the BTB.

Branch Hints

The Pentium 4 processor provides a feature that permits the programmer to provide 
hints to the branch prediction and trace formation hardware to enhance their 
performance. These hints take the form of prefixes to any type of branch instruction. 
Branch hints are not guaranteed to have any effect, and their function may vary across 
implementations. On the Pentium 4 processor, branch hints are active only for relative 
conditional branches. However, since branch hints are architecturally visible to the 
decoder, they should be inserted only in cases which are likely to be helpful across all 
implementations or have significant benefit to the Pentium 4 processor 
implementation.

Branch hints are interpreted by the translation engine, and are used to assist branch 
prediction and trace construction hardware. They are only used at trace build time, and 
have no effect within built traces.
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Directional hints override the static (forward-taken, backward-not-taken) prediction in 
the event that a BTB prediction is not available. Because branch hints increase code 
size slightly, the preferred approach to providing directional hints is by the 
arrangement of code so that forward branches are probably not taken and backward 
branches are. Since the branch prediction information, available when the trace is built, 
is used to predict which path or trace through the code will be taken, directional branch 
hints can help traces be built along the most likely path. 

Use prefix 3E for taken and 2E for not taken conditional branches.

Assembly/Compiler Coding Rule 4. (L impact, MH generality) Do not use directional 
branch hints if it is possible to position code to be consistent with the static branch prediction 
algorithm. 

In that case, there is no need to introduce a prefix, which increases code size.

Assembly/Compiler Coding Rule 5. Use directional branch hints only in the case if the 
probability of the branch being taken in the prescribed direction is greater than 50%. Use code 
positioning to adhere to the static prediction algorithm wherever possible.

There may be cases where predicting the initial direction differently from the typical 
direction may improve performance, but doing so is not recommended for long-term 
compatibility reasons. 

Inlining, Calls and Returns

The return address stack mechanism augments the static and dynamic predictors to 
optimize specifically for calls and returns. It holds 16 entries, which is large enough to 
cover the call depth of most programs. If there is a chain of more than 16 nested calls, 
then more than 16 returns in rapid succession, performance may be degraded. 

The trace cache maintains branch prediction information for calls and returns. As long 
as the trace with the call or return remains in the trace cache, and if the call and return 
targets remain unchanged, the depth limit of the return address stack described above 
will not impede performance.

To enable the use of the return stack mechanism, calls and returns must be matched up 
in pairs exactly.  The likelihood of exceeding the stack depth in a manner that will 
impact performance is very low.
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Assembly/Compiler Coding Rule 6. (MH impact, MH generality) Near calls must be 
matched with near returns, and far calls must be matched with far returns. Pushing the return 
address on the stack and jumping to the routine to be called is not recommended since it 
creates a mismatch in calls and returns.

Calls and returns are expensive, therefore inlining can be used for these reasons:

• The parameter passing overhead can be eliminated.

• In a compiler, inlining a function can expose more opportunity for optimization.

• If the inlined routine contains branches, the additional context of the caller may 
improve branch prediction within the routine.

• A mispredicted branch can lead to larger performance penalties inside a small 
function than if that function is inlined. 

Assembly/Compiler Coding Rule 7. (MH impact, MH generality)  Selectively inline a 
function where doing so decreases code size, or if the function is small and the call site is 
frequently executed. 

Assembly/Compiler Coding Rule 8. (H impact, M generality) Do not inline a function if 
doing so increases the working set size beyond what will fit in the trace cache.

Assembly/Compiler Coding Rule 9. (ML impact, ML generality) If there are more than 16 
nested calls and returns in rapid succession, then consider transforming the program, for 
example, with inline, to reduce the call depth.

Assembly/Compiler Coding Rule 10. (ML impact, ML generality)  Favor inlining small 
functions that contain branches with poor prediction rates. If a branch misprediction results in 
a RETURN being prematurely predicted as taken, a performance penalty may be incurred.

Assembly/Compiler Coding Rule 11. (L impact, L generality)  If the last statement in  a 
function is a call to another function, consider converting the call to a jump. This will save the 
call/ return overhead as well as an entry in the return stack buffer.

Branch Type Selection

Counting loops can have a test and conditional branch at the top of the loop body or at 
the bottom.

Assembly/Compiler Coding Rule 12. (M impact, MH generality) If the average number of 
total iterations is less than or equal to 100, use a forward branch to exit the loop. 
2-19



Intel Pentium 4 and Intel Xeon Processor Optimization General Optimization Guidelines 2

The default predicted target for indirect branches and calls is the fall-through path. The 
fall-through prediction is overridden if and when a hardware prediction is available for 
that branch. The predicted branch target from branch prediction hardware for an 
indirect branch is the previously executed branch target.

The default prediction to the fall-through path is only a significant issue if no branch 
prediction is available, due to poor code locality or pathological branch conflict 
problems. For indirect calls, predicting the fall-through path is usually not an issue, 
since execution will likely return to the instruction after the associated return.

Placing data immediately following an indirect branch can cause a performance 
problem. If the data consist of all zeros, it looks like a long stream of adds to memory 
destinations, which can cause resource conflicts and slow down branch recovery. Also, 
the data immediately following indirect branches may appear as branches to the branch 
predication hardware, which can branch off to execute other data pages. This can lead 
to subsequent self-modifying code problems.

Assembly/Compiler Coding Rule 13. (M impact, L generality) When indirect branches are 
present, try to put the most likely target of an indirect branch immediately following that 
indirect branch. Alternatively, if indirect branches are common but they cannot be predicted by 
branch prediction hardware, then follow the indirect branch with a UD2 instruction, which will 
stop the processor from decoding down the fall-through path.

Indirect branches resulting from code constructs, such as switch statements, computed 
GOTOs or calls through pointers, can jump to an arbitrary number of locations. If the 
code sequence is such that the target destination of a branch goes to the same address 
most of the time, then the BTB will predict accurately most of the time. Since only one 
taken (non-fall-through) target can be stored in the BTB, indirect branches with 
multiple taken targets may have lower prediction rates. 

The effective number of targets stored may be increased by introducing additional 
conditional branches. Adding a conditional branch to a target is fruitful if and only if:

• The branch direction is correlated with the branch history leading up to that 
branch, that is, not just the last target, but how it got to this branch.

• The source/target pair is common enough to warrant using the extra branch 
prediction capacity. (This may increase the number of overall branch 
mispredictions, while improving the misprediction of indirect branches. The 
profitability is lower if the number of mispredicting branches is very large).
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User/Source Coding Rule 1. (M impact, L generality) If an indirect branch has two or more 
common taken targets, and at least one of those targets are correlated with branch history 
leading up to the branch, then convert the indirect branch into a tree where one or more 
indirect branches are preceded by conditional branches to those targets. Apply this “peeling” 
procedure to the common target of an indirect branch that correlates to branch history. 

The purpose of this rule is to reduce the total number of mispredictions by enhancing 
the predictability of branches, even at the expense of adding more branches. The added 
branches must be very predictable for this to be worthwhile. One reason for such 
predictability is a strong correlation with preceding branch history, that is, the 
directions taken on preceding branches are a good indicator of the direction of the 
branch under consideration.  

Example 2-8 shows a simple example of the correlation between a target of a 
preceding conditional branch with a target of an indirect branch. Correlation can be 
difficult to determine analytically, either for a compiler or sometimes for an assembly 
language programmer. It may be fruitful to evaluate performance with and without this 
peeling, to get the best performance from a coding effort. An example of peeling out 
the most favored target of an indirect branch with correlated branch history is shown in 
Example 2-9.

Example 2-8 Indirect Branch With Two Favored Targets

function () 
{

    int n    = rand();   // random integer  0 to RAND_MAX 
if( !(n & 0x01) ){ // n will be 0 half the times 
 n = 0;             // updates branch history to predict taken
}  

// indirect branches with multiple taken targets 

// may have lower prediction rates
    switch (n) {

case 0: handle_0(); break; // common target, correlated with
// branch history that is forward taken

    case 1: handle_1(); break;// uncommon
case 3: handle_3(); break;// uncommon
default: handle_other();  // common target

    }

}
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Example 2-9 A Peeling Technique to Reduce Indirect Branch Misprediction

function () 

{

    int n    = rand(); // random integer  0 to RAND_MAX 

if( !(n & 0x01) ) n = 0;

      // n will be 0 half the times 

if (!n) handle_0();  // peel out the most common target
// with correlated branch history

else {

    switch (n) { 

case 1: handle_1(); break; // uncommon

case 3: handle_3(); break;// uncommon

default: handle_other(); // make the favored target in
// the fall-through path 

}

    }

}

 Loop Unrolling

The benefits of unrolling loops are:

• Unrolling amortizes the branch overhead, since it eliminates branches and some of 
the code to manage induction variables.

• Unrolling allows you to aggressively schedule (or pipeline) the loop to hide 
latencies. This is useful if you have enough free registers to keep variables live as 
you stretch out the dependence chain to expose the critical path. 

• Unrolling exposes the code to various other optimizations, such as removal of 
redundant loads, common subexpression elimination, and so on.

• The Pentium 4 processor can correctly predict the exit branch for an inner loop that 
has 16 or fewer iterations, if that number of iterations is predictable and there are 
no conditional branches in the loop. Therefore, if the loop body size is not 
excessive, and the probable number of iterations is known, unroll inner loops until 
they have a maximum of 16 iterations. With Pentium III or Pentium II processors, 
do not unroll loops more than 4 iterations.
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The potential costs of unrolling loops are:

• Excessive unrolling, or unrolling of very large loops can lead to increased code 
size. This can be harmful if the unrolled loop no longer fits in the trace cache (TC).

• Unrolling loops whose bodies contain branches increases the demands on the BTB 
capacity. If the number of iterations of the unrolled loop is 16 or less, the branch 
predictor should be able to correctly predict branches in the loop body that 
alternate direction.

Assembly/Compiler Coding Rule 14. (H impact, M generality) Unroll small loops until the 
overhead of the branch and the induction variable accounts, generally, for less than about 10% 
of the execution time of the loop.

Assembly/Compiler Coding Rule 15. (H impact, M generality) Avoid unrolling loops 
excessively, as this may thrash the TC.

Assembly/Compiler Coding Rule 16. (M impact, M generality) Unroll loops that are 
frequently executed and that have a predictable number of iterations to reduce the number of 
iterations to 16 or fewer, unless this increases code size so that the working set no longer fits in 
the trace cache.  If the loop body contains more than one conditional branch, then unroll so 
that the number of iterations is 16/(# conditional branches).

Example 2-10 shows how unrolling enables other optimizations. 

Example 2-10 Loop Unrolling 

Before unrolling:

do i=1,100
  if (i mod 2 == 0) then a(i) = x
  else a(i) = y
enddo

After unrolling

do i=1,100,2
   a(i) = y
  a(i+1) = x
enddo

In this example, a loop that executes 100 times assigns x to every even-numbered 
element and y to every odd-numbered element. By unrolling the loop you can make 
both assignments each iteration, removing one branch in the loop body.
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Compiler Support for Branch Prediction

Compilers can generate code that improves the efficiency of branch prediction in the 
Pentium 4 and Pentium III processors. The Intel C++ Compiler accomplishes this by:

• keeping code and data on separate pages

• using conditional move instructions to eliminate branches

• generate code that is consistent with the static branch prediction algorithm

• inlining where appropriate

• unrolling, if the number of iterations is predictable.

Also, with profile-guided optimization, the Intel compiler can better lay out basic 
blocks to eliminate branches for the most frequently executed paths of a function, or at 
least improve their predictability. Thus the branch prediction need not be a concern at 
the source level. For more information, see the Intel® C++ Compiler User’s Guide.

Memory Accesses
This section discusses guidelines for optimizing code and data memory accesses. The 
most important recommendations are:

• Align data, paying attention to data layout and stack alignment.

• Enable store forwarding.

• Place code and data on separate pages.

• Enhance data locality.

• Use prefetching and cacheability control instructions.

• Enhance code locality and align branch targets.

• Take advantage of write combining.

Alignment and forwarding problems are among the most common sources of large 
delays on the Pentium 4 processor.
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Alignment

Alignment of data concerns all kinds of variables:

• dynamically allocated

• members of a data structure

• global or local variables

• parameters passed on the stack.

A misaligned data access can incur significant performance penalties. This is 
particularly true for cache line splits. The size of a cache line is 64 bytes in the 
Pentium 4 processor, and is 32 bytes in Pentium III and Pentium II processors. On the 
Pentium 4 processor, an access to data that are unaligned on 64-byte boundary lead to 
two memory accesses and requires several µops to be executed instead of one. 
Accesses that span either 16 byte or 64 byte boundaries are likely to incur a large 
performance penalty, since they are executed near retirement, and can incur stalls that 
are on the order of the depth of the pipeline.

Assembly/Compiler Coding Rule 17. (H impact, H generality) Align data on natural 
operand size address boundaries

For best performance, align data as follows:

• Align 8-bit data at any address.

• Align 16-bit data to be contained within an aligned four byte word.

• Align 32-bit data so that its base address is a multiple of four.

• Align 64-bit data so that its base address is a multiple of eight.

• Align 80-bit data so that its base address is a multiple of sixteen.

• Align 128-bit data so that its base address is a multiple of sixteen.

A 64-byte or greater data structure or array should be aligned so that its base address is 
a multiple of 64. Sorting data in decreasing size order is one heuristic for assisting with 
natural alignment.  As long as 16-byte boundaries (and cache lines) are never crossed, 
natural alignment is not strictly necessary, though it is an easy way to enforce this.

Example 2-11 shows the type of code that can cause a cache line split. The code loads 
the addresses of two dword arrays.  029e70feh is not a 4-byte-aligned address, so a 
4-byte access at this address will get 2 bytes from the cache line this address is 
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contained in, and 2 bytes from the cache line that starts at 029e7100h.  On processors 
with 64-byte cache lines, a similar cache line split will occur every 8 iterations.  
Figure 2-1 illustrates the situation of accessing a data element that span across cache 
line boundaries.

Example 2-11 Code That Causes Cache Line Split

mov esi, 029e70feh

mov edi, 05be5260h

Blockmove:

mov eax, DWORD PTR [esi]

mov ebx, DWORD PTR [esi+4]

mov DWORD PTR [edi], eax

mov DWORD PTR [edi+4], ebx

add esi, 8

add edi, 8

sub edx, 1

jnz Blockmove

   

Figure 2-1 Cache Line Split in Accessing Elements in a Array

Index 1Index 0 cont’d

Index 0

Index 15 Index 16Cache Line 029e7100h

Cache Line 029e70c0h

Index 17Index 16 cont’d Index 31 Index 32Cache Line 029e7140h

Address 029e70fehAddress 029e70c1h
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Alignment of code is much less of an issue for the Pentium 4 processor than for earlier 
processors.  Alignment of branch targets to maximize bandwidth of fetching cached 
instructions is an issue only when not executing out of the trace cache.

Store Forwarding

The processor’s memory system only sends stores to memory (including cache) after 
store retirement. However, store data can be forwarded from a store to a subsequent 
load from the same address to give a much shorter store-load latency.

There are two kinds of requirements for store forwarding. If these requirements are 
violated, store forwarding cannot occur, and the load must get its data from the cache 
(so the store must write its data back to the cache first). This incurs a penalty that is 
related to the pipeline depth. The first requirement pertains to the size and alignment of 
the store-forwarding data. This restriction is likely to have high impact to overall 
application performance. Typically, performance penalty due to violating this 
restriction can be prevented. Several examples of coding pitfalls that cause 
store-forwarding stalls and solutions to these pitfalls are discussed in detail in 
“Store-forwarding Restriction on Size and Alignment”. The second requirement is the 
availability of data, discussed in “Store-forwarding Restriction on Data Availability”. 

A good practice is to eliminate redundant load operations, see some guidelines below: 

Assembly/Compiler Coding Rule 18. (H impact, H generality) Promote variables to 
registers where profitable.

It may be possible to keep a temporary scalar variable in a register and never write it to 
memory. Generally, such a variable must not be accessible via indirect pointers. 
Moving a variable to a register eliminates all loads and stores of that variable, and thus 
eliminates potential problems associated with store forwarding. However, it also 
increases register pressure.

Assembly/Compiler Coding Rule 19. (MH impact, H generality)  Eliminate redundant 
loads.

If a variable is known not to change between when it is stored and when it is used 
again, the register that was stored can be copied or used directly. If register pressure is 
too high, or an unseen function is called before the store and the second load, it may 
not be possible to eliminate the second load.
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Assembly/Compiler Coding Rule 20. (H impact, M generality) Pass parameters in registers 
instead of on the stack where possible.

Parameter passing conventions may limit the choice of which parameters are passed in 
registers vs. on the stack. However, these limitations may be overcome if the compiler 
has control of the compilation of the whole binary, with whole-program optimization.

Store-forwarding Restriction on Size and Alignment

Data size and alignment restrictions for store-forwarding apply to Pentium 4 processor 
and previous generations of IA-32 processors. The performance penalty from violating 
store-forwarding restrictions was present in the Pentium II and Pentium III processors, 
but the penalty is larger on the Pentium 4 processor. It has been observed in several 
popular applications that the performance gain from not violating these restrictions is 
greater than 10%, at the application level on Pentium III processor as well as Pentium 4 
processor. In general, the application-level performance gain will vary by application. 
This section describes this restriction in all its cases, and prescribes recommendations 
to prevent the non-forwarding penalty. Fixing this problem for the Pentium 4 processor 
also fixes the same kind of problem on Pentium II and Pentium III processors. 

The size and alignment restrictions for store forwarding are illustrated in Figure 2-2. 
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Coding rules to help programmers satisfy size and alignment restrictions for store 
forwarding follow.

Assembly/Compiler Coding Rule 21. (H impact, M generality) A load that forwards from a 
store must have the same address start point and therefore the same alignment as the store 
data.

Assembly/Compiler Coding Rule 22. (H impact, M generality) The data of a load which is 
forwarded from a store must be completely contained within the store data.

A load that forwards from a store must wait for the store’s data to be written to the 
store buffer before proceeding, but other, unrelated loads need not wait. 

Assembly/Compiler Coding Rule 23. (H impact, ML generality) If it is necessary to extract 
a non-aligned portion of stored data, read out the smallest aligned portion that completely 
contains the data and shift/mask the data as necessary. The penalty for not doing this is much 
higher than the cost of the shifts.

This is better than incurring the penalties of a failed store-forward.

Figure 2-2 Size and Alignment Restrictions in Store Forwarding
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Assembly/Compiler Coding Rule 24. (MH impact, ML generality)  Avoid several small 
loads after large stores to the same area of memory by using a single large read and register 
copies as needed.

Example 2-12 contains several store-forwarding situations when small loads follow 
large stores. The first three load operations illustrate the situations described in Rule 
22. However, the last load operation gets data from store-forwarding without problem.

Example 2-12 Several Situations of Small Loads After Large Store

mov [EBP],‘abcd’
mov AL, [EBP] ; not blocked - same alignment
mov BL, [EBP + 1] ; blocked

mov CL, [EBP + 2] ; blocked

mov DL, [EBP + 3] ; blocked

mov AL, [EBP] ; not blocked - same alignment
; n.b. passes older blocked loads

Example 2-13 illustrates a store-forwarding situation when a large load follows after 
several small stores. The data needed by the load operation cannot be forwarded 
because all of the data that needs to be forwarded is not contained in the store buffer. 
Avoid large loads after small stores to the same area of memory.

Example 2-13 A Non-forwarding Example of Large Load After Small Store 

mov [EBP],     ‘a’
mov [EBP + 1], ‘b’
mov [EBP + 2], ‘c’
mov [EBP + 3], ‘d’
mov EAX, [EBP] ; blocked

; The first 4 small store can be consolidated into 
; a single DWORD store to prevent this non-forwarding situation

Example 2-14 illustrates a stalled store-forwarding situation that may appear in 
compiler generated code. Sometimes a compiler generates code similar to that shown 
in Example 2-14 to handle spilled byte to the stack and convert the byte to an integer 
value. 
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Example 2-14 A Non-forwarding Situation in Compiler Generated Code 

mov DWORD PTR [esp+10h], 00000000h
mov BYTE PTR [esp+10h], bl
mov eax, DWORD PTR [esp+10h]  ; Stall 

and eax, 0xff ; converting back to byte value

Example 2-15 offers two alternatives to avoid the non-forwarding situation shown in 
Example 2-14.

Example 2-15 Two Examples to Avoid the Non-forwarding Situation in Example 2-14

;A. Use movz instruction to avoid large load after small store, when 
; spills are ignored

movz eax, bl ; Replaces the last three instructions
 ; in Example 2-12

;B. Use movz instruction and handle spills to the stack

mov DWORD PTR [esp+10h], 00000000h  

mov BYTE PTR [esp+10h], bl

movz eax, BYTE PTR [esp+10h]  ; not blocked

When moving data that is smaller than 64 bits between memory locations, 64- or 
128-bit SIMD register moves are more efficient (if aligned) and can be used to avoid 
unaligned loads. Although floating-point registers allow the movement of 64 bits at a 
time, floating point instructions should not be used for this purpose, as data may be 
inadvertently modified.

As an additional example, consider the following cases in Example 2-16. In the first 
case (A), there is a large load after a series of small stores to the same area of memory 
(beginning at memory address mem), and the large load will stall.

The fld must wait for the stores to write to memory before it can access all the data it 
requires. This stall can also occur with other data types (for example, when bytes or 
words are stored and then words or doublewords are read from the same area of 
memory).
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Example 2-16 Large and Small Load Stalls

;A. Large load stall

mov mem, eax ; store dword to address “mem"
mov mem + 4, ebx ; store dword to address “mem + 4"
fld mem ; load qword at address “mem", stalls

;B. Small Load stall

fstp  mem   ; store qword to address “mem"
mov   bx,mem+2 ; load word at address “mem + 2", stalls
mov   cx,mem+4 ; load word at address “mem + 4", stalls

In the second case (Example 2-16, B), there is a series of small loads after a large store 
to the same area of memory (beginning at memory address mem), and the small loads 
will stall.

The word loads must wait for the quadword store to write to memory before they can 
access the data they require. This stall can also occur with other data types (for 
example, when doublewords or words are stored and then words or bytes are read from 
the same area of memory). This can be avoided by moving the store as far from the 
loads as possible. 

Store-forwarding Restriction on Data Availability

The value to be stored must be available before the load operation can be completed. If 
this restriction is violated, the execution of the load will be delayed until the data is 
available. This delay causes some execution resources to be used unnecessarily, and 
that can lead to some sizable but non-deterministic delays. However, the overall 
impact of this problem is much smaller than that from size and alignment requirement 
violations.

Assembly/Compiler Coding Rule 25. (H impact, M generality) Space out loads from the 
store that forwards data to them. Note that placing intervening instructions between the load 
and store does not guarantee separation in time.
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The Pentium 4 processor predicts when loads are both, dependent on and get their data 
forwarded from, preceding stores. These predictions can significantly improve 
performance. However, if a load is scheduled too soon after the store it depends on, or 
more likely, if the generation of the data to be stored is delayed, there can be a 
significant penalty. 

There are several cases where data is passed through memory, where the store may 
need to be separated from the load:

• spills, save and restore registers in a stack frame

• parameter passing

• global and volatile variables

• type conversion between integer and floating point

• some compilers do not analyze code that is inlined, forcing variables that are 
involved in the interface with inlined code to be in memory, creating more memory 
variables and preventing the elimination of redundant loads.

Assembly/Compiler Coding Rule 26. (ML impact, M generality) If a routine is small, space 
apart the loads and stores that manage registers temporarily stored on the stack by re-loading 
the registers in the same order that they were stored; that is, replace pushes and pops with 
loads and stores, with the stores in the reverse order of pops. 

Assembly/Compiler Coding Rule 27. (H impact, MH generality) Where it is possible to do 
so without incurring other penalties, prioritize the allocation of variables to registers, as in 
register allocation and for parameter passing, so as to minimize the likelihood and impact of 
store- forwarding problems. Try not to store-forward data generated from a long latency 
instruction, e.g. mul, div. Avoid store-forwarding data for variables with the shortest store-load 
distance. Avoid store-forwarding data for variables with many and/or long dependence chains, 
and especially avoid including a store forward on a loop-carried dependence chain. 

An example of a loop-carried dependence chain is shown in Example 2-17.
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Example 2-17 An Example of Loop-carried Dependence Chain 

for (i=0; i<MAX; i++) {

  a[i] = b[i] * foo;

  foo = a[i]/3;

}  // foo is a loop-carried dependence

Data Layout Optimizations

User/Source Coding Rule 2. (H impact, M generality) Pad data structures defined in the 
source code so that every data element is aligned to a natural operand size address boundary. 

Align data by providing padding inside structures and arrays. Programmers can 
reorganize structures and arrays to minimize the amount of memory wasted by 
padding. However, compilers might not have this freedom. The C programming 
language, for example, specifies the order in which structure elements are allocated in 
memory. Section “Stack and Data Alignment” of Chapter 3, and Appendix D, “Stack 
Alignment”, further defines the exact storage layout. Example 2-18 shows how a data 
structure could be rearranged to reduce its size.

Example 2-18 Rearranging a Data Structure

struct unpacked { /* fits in 20 bytes due to padding */

int a;
char b;
int c;
char d;
int e;

}

struct packed {  /* fits in 16 bytes */

int a, c, e;
char b, d;

}

Additionally, the longer cache line size for Pentium 4 processor can impact streaming 
applications (for example, multimedia) which reference and use data only once before 
discarding it. Data accesses which sparsely utilize the data within a cache line can 
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result in less efficient utilization of system memory bandwidth. For example, arrays of 
structures can be decomposed into several arrays to achieve better packing, as shown 
in Example 2-19.

Example 2-19 Decomposing an Array

struct {/* 1600 bytes */

int  a, c, e;
char b, d;

} array_of_struct [100];

struct {/* 1400 bytes */
int  a[100], c[100], e[100];
char b[100], d[100];

} struct_of_array;

struct {/* 1200 bytes */

int a, c, e;
} hybrid_struct_of_array_ace[100];

struct {/* 200 bytes */

char b, d;
} hybrid_struct_of_array_bd[100];

The efficiency of such optimizations depends on usage patterns. If the elements of the 
structure are all accessed together, but the access pattern of the array is random, then 
array_of_struct avoids unnecessary prefetch even though it wastes memory.

However, if the access pattern of the array exhibits locality, such as if the array index is 
being swept through, then the Pentium 4 processor prefetches data from 
struct_of_array, even if the elements of the structure are accessed together. 

Moreover, when the elements of the structure are not accessed with equal frequency, 
such as when element a is accessed ten times more often than the other entries, then 
struct_of_array not only saves memory, but it also prevents fetching unnecessary 
data items b, c, d, and e.
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Using struct_of_array also enables the use of the SIMD data types by the 
programmer and the compiler.

Note that struct_of_array can have the disadvantage of requiring more independent 
memory stream references. This can require the use of more prefetches, additional 
address generation calculations, as well as having a greater impact on DRAM page 
access efficiency. An alternative, hybrid_struct_of_array blends the two 
approaches. In this case, only 2 separate address streams are generated and referenced: 
1 for hybrid_struct_of_array_ace and 1 for hybrid_struct_of_array_bd. This 
also prevents fetching unnecessary data, assuming the variables a, c and e are always 
used together; whereas the variables b and d would be also used together, but not at the 
same time as a, c and e. This hybrid approach ensures:

• simpler/fewer address generation than struct_of_array

• fewer streams, which reduces DRAM page misses

• use of fewer prefetches due to fewer streams

• efficient cache line packing of data elements that are used concurrently.

Assembly/Compiler Coding Rule 28. (H impact, M generality) Try to arrange data 
structures such that they permit sequential access.

If the data is arranged into set of streams, the automatic hardware prefetcher can 
prefetch data that will be needed by the application, reducing the effective memory 
latency. If the data is accessed in a non-sequential manner, the automatic hardware 
prefetcher cannot prefetch the data. The prefetcher can recognize up to eight 
concurrent streams. See Chapter 6 for more information and the hardware prefetcher.

Memory coherence is maintained on 64-byte cache lines on Pentium 4, rather than 
earlier processors’ 32-byte cache lines.  This can increase the opportunity for false 
sharing.

User/Source Coding Rule 3. (M impact, L generality) Beware of false sharing within a 
cache line (64 bytes on Intel Pentium 4 and Intel Xeon processors, and 32 bytes on Pentium III 
processors). 
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Stack Alignment

The easiest way to avoid stack alignment problems is to keep the stack aligned at all 
times. For example, if a language only supports 8-bit, 16-bit, 32-bit, and 64-bit data 
quantities, but never uses 80-bit data quantities, the language can require the stack to 
always be aligned on a 64-bit boundary.

Assembly/Compiler Coding Rule 29. (H impact, M generality) If 64-bit data is ever passed 
as a parameter or allocated on the stack, make sure that the stack is aligned to an 8-byte 
boundary.

A routine that makes frequent use of 64-bit data can avoid stack misalignment by 
placing the code described in Example 2-20 in the function prologue and epilogue.

Example 2-20 Dynamic Stack Alignment

prologue:

subl esp, 4 ; save frame ptr

movl [esp], ebp

movl ebp, esp ; new frame pointer

andl ebp, 0xFFFFFFFC; aligned to 64 bits

movl [ebp], esp ; save old stack ptr

subl esp, FRAMESIZE ; allocate space

; ... callee saves, etc.

epilogue:

; ... callee restores, etc.

movl esp, [ebp] ; restore stack ptr

movl ebp, [esp] ; restore frame ptr

addl esp, 4

ret

If for some reason it is not possible to align the stack for 64-bit, the routine should 
access the parameter and save it into a register or known aligned storage, thus 
incurring the penalty only once.
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Aliasing Cases

There are several cases where addresses with a given stride will compete for some 
resource in the memory hierarchy. Note that first-level cache lines are 64 bytes and 
second-level cache lines are 128 bytes. Thus the least significant 6 or 7 bits are not 
considered in alias comparisons. The aliasing cases are listed below.

• 2K for data – map to the same first-level cache set (32 sets, 64-byte lines). There 
are 4 ways in the first-level cache, so if there are more that 4 lines that alias to the 
same 2K modulus in the working set, there will be an excess of first-level cache 
misses.

• 16K for data – will look the same to the store-forwarding logic. If there has been a 
store to an address which aliases with the load, the load will stall until the store 
data is available. 

• 16K for code – can only be one of these in the trace cache at a time. If two traces 
whose starting addresses are 16K apart are in the same working set, the symptom 
will be a high trace cache miss rate. Solve this by offsetting one of the addresses by 
1 or more bytes.

• 32K for code or data – map to the same second-level cache set (256 sets, 128-byte 
lines). There are 8 ways in the second-level cache, so if there are more than 8 lines 
that alias to the same 32K modulus in the working set, there will be an excess of 
second-level cache misses.

• 64K for data – can only be one of these in the first-level cache at a time. If a 
reference (load or store) occurs that has bits 0-15 of the linear address, which are 
identical to a reference (load or store) which is under way, then the second 
reference cannot begin until the first one is kicked out of the cache. Avoiding this 
kind of aliasing can lead to a factor of three speedup.

If a large number of data structures are in the same working set, accesses to aliased 
locations in those different data sets may cause cache thrashing and store forwarding 
problems. For example, if the code dynamically allocates many data 3 KB structures, 
some memory allocators will return starting addresses for these structures which are on 
4 KB boundaries. For the sake of simplifying this discussion, suppose these allocations 
were made to consecutive 4 KB addresses (though that scenario is more likely to be 
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random in a real system). Then every structure would alias with the structure allocated 
16 structures after it. Thus the likelihood of aliasing conflicts may increase with the 
sizes of the data structures.

Assembly/Compiler Coding Rule 30. (H impact, MH generality) Lay out data or order 
computation to avoid having cache lines that have linear addresses that are a multiple of 
64 KB apart in the same working set. Avoid having more than 4 cache lines that are some 
multiple of 2 KB apart in the same first-level cache working set, and avoid having more than 
8 cache lines that are some multiple of 32 KB apart in the same second-level cache working 
set. Avoid having a store followed by a non-dependent load with addresses that differ by a 
multiple of 16 KB.

When declaring multiple arrays that are referenced with the same index and are each a 
multiple of 64 KB (as can happen with struct_of_array data layouts), pad them to 
avoid declaring them contiguously. Padding can be accomplished by either intervening 
declarations of other variables, or by artificially increasing the dimension. 

User/Source Coding Rule 4. (H impact, ML generality) Consider using a special memory 
allocation library to avoid aliasing. 

One way to implement a memory allocator to avoid aliasing is to allocate more than 
enough space and pad. For example, allocate structures that are 68 KB instead of 
64 KB to avoid the 64 KB aliasing, or have the allocator pad and return random offsets 
that are a multiple of 128 Bytes (the size of a cache line). 

User/Source Coding Rule 5. (M impact, M generality) When padding variable declarations 
to avoid aliasing, the greatest benefit comes from avoiding aliasing on second-level cache 
lines, suggesting an offset of 128 bytes or more.

Mixing Code and Data

The Pentium 4 processor’s aggressive prefetching and pre-decoding of instructions has 
two related effects:

• Self-modifying code works correctly, according to the Intel architecture processor 
requirements, but incurs a significant performance penalty. Avoid self-modifying 
code.

• Placing writable data in the code segment might be impossible to distinguish from 
self-modifying code. Writable data in the code segment might suffer the same 
performance penalty as self-modifying code.
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Assembly/Compiler Coding Rule 31. (M impact, L generality) If (hopefully read-only) data 
must occur on the same page as code, avoid placing it immediately after an indirect jump. For 
example, follow an indirect jump with its mostly likely target, and place the data after an 
unconditional branch.

Tuning Suggestion 1. Rarely, a performance problem may be noted due to executing data on a 
code page as instructions. The only condition where this is very likely to happen is following an 
indirect branch that is not resident in the trace cache. Only if a performance problem is clearly 
due to this problem, try moving the data elsewhere, or inserting an illegal opcode or a pause 
instruction immediately following the indirect branch. The latter two alternatives may degrade 
performance in some circumstances.

Assembly/Compiler Coding Rule 32. (H impact, L generality) Always put code and data on 
separate pages. Avoid self-modifying code wherever possible. If code is to be modified, try to 
do it all at once and make sure the code that performs the modifications and the code being 
modified are on separate 4 KB pages or on separate aligned 1 KB subpages.

Self-modifying Code

Although self-modifying code (SMC) ran correctly on Pentium III processors and prior 
implementations will run correctly on all implementations that follow them, including 
Pentium 4 and Intel Xeon processors, SMC and cross-modifying code (more than one 
processors in a multi-processor system are writing to a code page) should be avoided 
whenever high performance is desired. 

Specifically, software should avoid writing to a code page within the same 1 KB 
subpage of what has been executed before, or fetching code within the same 2 KB 
subpage of what is currently being written. In addition, sharing a page containing 
directly or speculatively executed code with another processor as a data page, can 
trigger an SMC condition that causes the entire pipeline of the machine and the trace 
cache to be cleared due to the self-modifying code condition.

Dynamic code need not cause the SMC condition if the code written fills up a data 
page before that page is ever accessed as code.  Dynamically-modified code (for 
example, from targets fix-ups) is likely to suffer from the SMC condition, and should 
be avoided where possible, by introducing indirect branches and using data tables on 
data (not code) pages via register-indirect calls. 
2-40



Intel Pentium 4 and Intel Xeon Processor Optimization General Optimization Guidelines 2

Write Combining

Write combining (WC) improves performance in two ways:

• On a write miss to the first-level cache, it allows multiple stores to the same cache 
line to occur before that cache line is read for ownership (RFO) from further out in 
the cache/memory hierarchy. Then the rest of line is read, and the bytes that have 
not been written to are combined with the unmodified bytes in the returned line.

• It allows multiple writes to be assembled and written further out in the cache 
hierarchy as a unit, saving port and bus traffic. This is particularly important for 
avoiding partial writes to uncached memory.

There are 6 write-combining buffers. Up to two of those buffers may be written out to 
higher cache levels and freed up for use on other write misses, so only four 
write-combining buffers are guaranteed to be available for simultaneous use. 

Assembly/Compiler Coding Rule 33. (H impact, L generality) If an inner loop writes to 
more than four arrays, (four distinct cache lines), apply loop fission to break up the body of the 
loop such that only four arrays are being written to in each iteration of each of the resulting 
loops.

The write combining buffers are used for stores of all memory types. They are 
particularly important for writes to uncached memory: writes to different parts of the 
same cache line can be grouped into a single, full-cache-line bus transaction instead of 
going across the bus (since they are not cached) as several partial writes. Avoiding 
partial writes can have a critical impact on bus bandwidth-bound graphics applications, 
where graphics buffers are in uncached memory. Separating writes to uncached 
memory and writes to writeback memory into separate phases can assure that the write 
combining buffers can fill before getting evicted by other write traffic. Eliminating 
partial write transactions has been found to have performance impact of the order of 
20% for some applications. Because the cache lines are 64 bytes for Pentium 4 
processor instead of 32 bytes for Pentium III processor, and the maximum bandwidth is 
higher for Pentium 4 processor, the potential gain for Pentium 4 processor is greater. 

When coding functions that execute simultaneously on two threads, effectively 
reducing the number of writes that are allowed in an inner loop is likely to take full 
advantage of write-combining store buffers. See Chapter 7 for write-combining buffer 
recommendation with Hyper-Threading Technology.
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Store ordering and visibility is another important issue for write combining. When a 
write to a write-combining buffer for a previously-unwritten cache line occurs, there 
will be a read-for-ownership (RFO). If a subsequent write happens to another write- 
combining buffer, a separate RFO may be caused for that cache line. Subsequent 
writes to the first cache line and write-combining buffer will be delayed  until the 
second RFO has been serviced to guarantee properly ordered visibility of the writes. If 
the memory type for the writes is write-combining, there will be no RFO since the line 
is not cached, and there is no such delay. For more details on write-combining, see the 
Intel Architecture Software Developer’s Manual.

Locality Enhancement

Although cache miss rates may be low, processors typically spend a sizable portion of 
their execution time waiting for cache misses to be serviced. Reducing cache misses by 
enhancing a program’s locality is a key optimization. This can take several forms: 
blocking to iterate over a portion of an array that will fit in the cache, loop interchange 
to avoid crossing cache lines or page boundaries, and loop skewing to make accesses 
contiguous.

User/Source Coding Rule 6. (H impact, H generality)   Optimization techniques such as 
blocking, loop interchange, loop skewing and packing are best done by the compiler. Optimize 
data structures to either fit in one-half of the first-level cache or in the second-level cache, and 
turn on loop optimizations in the compiler to enhance locality for nested loops. 

Optimizing for one-half of the first-level cache will bring the greatest performance 
benefit. If one-half of the first-level cache is too small to be practical, optimize for the 
second-level cache. Optimizing for a point in between (for example, for the entire 
first-level cache) will likely not bring a substantial improvement over optimizing for 
the second-level cache.

Hiding Bus Latency

The system bus provides up to 3.2 GB/sec bandwidth of data throughput. However, 
each individual bus transaction includes the overhead of making request and 
arbitrations. The average latency of bus read and bus write transactions will be longer, 
if reads and writes alternate. Segmenting reads and writes into phases can reduce the 
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average latency of bus transactions because the number of incidences of two 
successive bus transactions involving a read following a write or a write following a 
read are reduced.

User/Source Coding Rule 7. (M impact, ML generality) If there is a blend of reads and 
writes on the bus, changing the code to separate these bus transactions into read phases and 
write phases can help performance. 

Prefetching

The Pentium 4 processor has three prefetching mechanisms: 

• hardware instruction prefetcher

• software prefetch for data

• hardware prefetch for cache lines of data or instructions. 

Hardware Instruction Fetching

The hardware instruction fetcher reads instructions, 32 bytes at a time, into the 64-byte 
instruction streaming buffers. 

Software and Hardware Cache Line Fetching

The Pentium 4 processor provides hardware prefetching, in addition to software 
prefetching. The hardware prefetcher operates transparently to fetch data and 
instruction streams from memory, without requiring programmer’s intervention.

Starting to prefetch data before it is actually needed for a load can reduce the wait time 
for the data and hence reduce the latency penalty of the load. The Pentium III and 
subsequent processors provide software prefetch instructions. The prefetchnta 
instruction is likely to be a good choice for most cases, because it brings the data close 
and doesn’t pollute the caches.

Prefetching can provide significant gains, and the use of prefetches is recommended, 
particularly for regular strided accesses. It must be used carefully however, and there is 
a trade-off to be made between hardware and software prefetching, based on 
application characteristics such as regularity and stride of accesses, whether the 
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problem is bus bandwidth, issue bandwidth or the latency of loads on the critical path, 
and whether the access patterns are suitable for non-temporal prefetch. An optimum 
implementation of software-controlled prefetch can be determined empirically.

For a detailed description of how to use prefetching, see Chapter 6, “Optimizing Cache 
Usage for Intel Pentium 4 Processors”. 

User/Source Coding Rule 8. (M impact, H generality) Enable the prefetch generation in 
your compiler. Note: As the compiler’s prefetch implementation improves, it is expected that its 
prefetch insertion will outperform manual insertion except for code tuning experts, but this is 
not always the case. If the compiler does not support software prefetching, intrinsics or inline 
assembly may be used to manually insert prefetch instructions.  

Chapter 6 contains an example of using software prefetch to implement memory copy 
algorithm.

Tuning Suggestion 2. If a load is found to miss frequently, either insert a prefetch before it, or, 
if issue bandwidth is a concern, move the load up to execute earlier.

Cacheability instructions

SSE2 provides additional cacheability instructions that extend further from the 
cacheability instructions provided in SSE. The new cacheability instructions include: 

• new streaming store instructions

• new cache line flush instruction

• new memory fencing instructions

For a detailed description of using cacheability instructions, see Chapter 6.

Code

Because the trace cache (TC) removes the decoding stage from the pipeline for 
frequently executed code, optimizing code alignment for decoding is not as important 
a consideration as it was on prior generation processors.

Careful arrangement of code can enhance cache and memory locality. Likely 
sequences of basic blocks should be laid out contiguously in memory. This may 
involve pulling unlikely code, such as code to handle error conditions, out of that 
sequence. See “Prefetching” section on how to optimize for the instruction prefetcher. 
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Assembly/Compiler Coding Rule 34. (M impact, H generality) If the body of a conditional 
is not likely to be executed, it should be placed in another part of the program. If it is highly 
unlikely to be executed and code locality is an issue, the body of the conditional should be 
placed on a different code page. 

Improving the Performance of Floating-point Applications
When programming floating-point applications, it is best to start with a high-level 
programming language such as C, C++, or Fortran. Many compilers perform 
floating-point scheduling and optimization when it is possible. However in order to 
produce optimal code, the compiler may need some assistance.

Guidelines for Optimizing Floating-point Code

User/Source Coding Rule 9. (M impact, M generality) Target the Pentium 4 and Intel Xeon 
processors and enable the compiler’s use of SSE2 instructions with appropriate switches.

Follow this procedure to investigate the performance of your floating-point 
application:

• Understand how the compiler handles floating-point code. 
• Look at the assembly dump and see what transforms are already performed on the 

program. 
• Study the loop nests in the application that dominate the execution time.
• Determine why the compiler is not creating the fastest code.
• See if there is a dependence that can be resolved.
• Determine the problem area: bus bandwidth, cache locality, trace cache bandwidth, 

or instruction latency. Focus on optimizing the problem area. For example, adding 
prefetch instructions will not help if the bus is already saturated, and if trace cache 
bandwidth is the problem, the added prefetch µops may degrade performance.

For floating-point coding, follow all the general coding  recommendations discussed 
throughout this chapter, including:
• blocking the cache
• using prefetch
• enabling vectorization
• unrolling loops.
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User/Source Coding Rule 10. (H impact, ML generality) Make sure your application stays 
in range to avoid denormal values, underflows. 

Out-of-range numbers cause very high overhead.

User/Source Coding Rule 11. (M impact, ML generality) Do not use double precision unless 
necessary. Set the precision control (PC) field in the x87 FPU control word to “Single 
Precision”. This allows single precision (32-bit) computation to complete faster on some 
operations (for example, divides due to early out).  However, be careful of introducing more 
than a total of two values for the floating point control word, or there will be a large 
performance penalty.  See “Floating-point Modes”. 

User/Source Coding Rule 12. (H impact, ML generality) Use fast float-to-int routines. If 
coding these routines, use the cvttss2si, cvttsd2si instructions if coding with Streaming 
SIMD Extensions 2. 

Many libraries do more work than is necessary. The instructions 
cvttss2si/cvttsd2si save many µops and some store-forwarding delays over some 
compiler implementations, and avoids changing the rounding mode.

User/Source Coding Rule 13. (M impact, ML generality) Break dependence chains where 
possible. 

For example, to calculate z = a + b + c + d, instead of

x = a + b;

y = x + c;

z = y + d;

use

x = a + b;

y = c + d;

z = x + y;

User/Source Coding Rule 14. (M impact, ML generality) Usually, math libraries take 
advantage of the transcendental instructions (for example, fsin) when evaluating elementary 
functions. If there is no critical need to evaluate the transcendental functions using the 
extended precision of 80 bits, applications should consider alternate, software-based 
approach, such as look-up-table-based algorithm using interpolation techniques. It is possible 
to improve transcendental performance with these techniques by choosing the desired numeric 
precision, the size of the look-up tableland taking advantage of the parallelism of the 
Streaming SIMD Extensions and the Streaming SIMD Extensions 2 instructions. 
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Floating-point Modes and Exceptions

When working with floating-point numbers, high-speed microprocessors frequently 
must deal with situations that need special handling either by its hardware design or by 
coding techniques in software. The Pentium 4 processor is optimized to handle the 
most common cases of such situations efficiently.

Floating-point Exceptions

The most frequent situations that can lead to some performance degradations involve 
the masked floating-point exception conditions such as:

• arithmetic overflow

• arithmetic underflow 

• denormalized operand

Refer to Chapter 4 of the IA-32 Intel® Architecture Software Developer’s Manual, 
Volume 1 for the definition of overflow, underflow and denormal exceptions.

Denormalized floating-point numbers can impact performance in two ways:

• directly: when they are used as operands

• indirectly: when they are produced as a result of an underflow situation

If a floating-point application never underflows, the denormals can only come from 
floating-point constants. 

User/Source Coding Rule 15. (H impact, ML generality) Denormalized floating-point 
constants should be avoided as much as possible. 

Denormal and arithmetic underflow exceptions can occur during the execution of 
either x87 instructions or SSE/SSE2 instructions. The Pentium 4 processor can handle 
these exceptions more efficiently when executing SSE/SSE2 instructions and when 
speed is more important than complying to IEEE standard. The following two 
paragraphs give recommendations on how to optimize your code to reduce 
performance degradations related to floating-point exceptions.
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Dealing with floating-point exceptions in x87 FPU code

Every instance of a special situation listed in “Floating-point Exceptions” is costly in 
terms of performance. For that reason, x87 FPU code should be written to avoid these 
special situations.

There are basically three ways to reduce the impact of overflow/underflow situations 
with x87 FPU code:

• Choose floating-point data types that are large enough to accommodate results 
without generating arithmetic overflow and underflow exceptions.

• Scale the range of operands/results to reduce as much as possible the number of 
arithmetic overflow/underflow situations

• Keep intermediate results on the x87 FPU register stack until the final results have 
been computed and stored to memory. Overflow or underflow is less likely to 
happen when intermediate results are kept in the x87 FPU stack (this is because 
data on the stack is stored in double extended-precision format and 
overflow/underflow conditions are detected accordingly). 

Denormalized floating-point constants (which are read only, and hence never change) 
should be avoided and replaced, if possible, with zeros of the same sign.

Dealing with Floating-point Exceptions in SSE and SSE2 code

Most special situations that involve masked floating-point exception are handled very 
efficiently on the Pentium 4 processor. When masked overflow exception occurs while 
executing SSE or SSE2 code, the Pentium 4 processor handles this without 
performance penalty.

Underflow exceptions and denormalized source operands are usually treated according 
to the IEEE 754 specification. If a programmer is willing to trade pure IEEE 754 
compliance for speed, two non-IEEE-754-compliant modes are provided to speed up 
situations where underflows and input are frequent: FTZ mode and DAZ mode.

When the FTZ mode is enabled, an underflow result is automatically converted to a 
zero with the correct sign. Although this behavior is not IEEE-754-compliant, it is 
provided to use in applications where performance is more important than pure 
IEEE-754 compliance. Since denormal results are not produced when the FTZ mode is 
enabled, the only denormal floating-point numbers that can be encountered are the 
ones that are constants (read only).
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The DAZ mode is provided to handle denormal source operands efficiently when 
running an SSE application. When the DAZ mode is enabled, input denormals are 
treated as zeros with the same sign. Enabling the DAZ mode is the way to deal with 
denormal floating-point constants when performance is the objective.

If departing from IEEE 754 specification is acceptable, and especially if performance 
is critical, it is advised to run an SSE/SSE2 application with both FTZ and DAZ modes 
enabled.

Floating-point Modes

On the Pentium III processor, the FLDCW instruction is an expensive operation. On the 
Pentium 4 processor, the FLDCW instruction is improved for situations where an 
application alternates between two constant values of the x87 FPU control word 
(FCW), such as when performing conversions to integers.

Specifically, the optimization for the FLDCW instruction allows programmers to 
alternate between two constant values efficiently. For the FLDCW optimization to be 
effective, the two constant FCW values are only allowed to differ on the following 5 
bits in the FCW:

FCW[8-9] precision control

FCW[10-11] rounding control

FCW[12] infinity control.

If programmers need to modify other bits, for example, the mask bits, in the FCW, the 
FLDCW instruction is still an expensive operation.

In situations where an application cycles between three (or more) constant values, the 
FLDCW optimization does not apply and the performance degradation will occur for 
each FLDCW instruction.

NOTE.  The DAZ mode is available with both the SSE and SSE2 
extensions, although the speed improvement expected from this mode 
is fully realized only in SSE code.
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One solution to this problem is to choose two constant FCW values, take advantage of 
the optimization of the FLDCW instruction to alternate between only these two constant 
FCW values, and devise some means to accomplish the task that required the 3rd FCW 
value without actually changing the FCW to a third constant value. An alternative 
solution is to structure the code, so that for some periods of time, the application first 
alternates between only two constant FCW values. When the application later 
alternates between a pair of different FCW values, the performance degradation occurs 
only briefly during the transition.

It is expected that SIMD applications are unlikely to alternate FTZ and DAZ mode 
values. Consequently, the SIMD control word does not have the short latencies that the 
floating-point control register does. A read of the MXCSR register has a fairly long 
latency, and a write is a serializing instruction.

There is no separate control word for single and double precision; both use the same 
modes. Notably, this applies to both FTZ and DAZ modes.

Assembly/Compiler Coding Rule 35. (H impact, M generality) Minimize changes to bits 
8-12 of the floating point control word.  Changing among more than two values (each value 
being a combination of the following bits: precision, rounding and infinity control, and the rest 
of bits in FCW) leads to delays that are on the order of the pipeline depth.

Rounding Mode

Many libraries provide the float-to-integer library routines that convert floating-point 
values to integer. Many of these libraries conform to ANSI C coding standards which 
state that the rounding mode should be truncation. With the Pentium 4 processor, one 
can use the cvttsd2si and cvttss2si instructions to convert operands with 
truncation and without ever needing to change rounding modes. The cost savings of 
using these instructions over the methods below is enough to justify using Streaming 
SIMD Extensions 2 and Streaming SIMD Extensions wherever possible when 
truncation is involved.

For x87 floating point, the fist instruction uses the rounding mode represented in the 
floating-point control word (FCW). The rounding mode is generally round to nearest, 
therefore many compiler writers implement a change in the rounding mode in the 
processor in order to conform to the C and FORTRAN standards. This implementation 
requires changing the control word on the processor using the fldcw instruction. If this 
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is the only change in the rounding, precision, and infinity bits, then use the fstcw 
instruction to store the floating-point control word and then use the fldcw instruction 
to change the rounding mode to truncation.

In a typical code sequence that changes the rounding mode in the FCW, a fstcw 
instruction is usually followed by a load operation. The load operation from memory 
should be a 16-bit operand to prevent store- forwarding problem. If the load operation 
on the previously-stored FCW word involves either an 8-bit or a 32-bit operand, this 
will cause a store-forwarding problem due to mismatch of the size of the data between 
the store operation and the load operation. 

Make sure that the write and read to the FCW are both 16-bit operations, to avoid 
store-forwarding problems.

Only if there is more than one change to the rounding, precision and infinity bits, and 
the rounding mode is not important to the results, then use the algorithm in 
Example 2-21 to avoid the synchronization and overhead of the fldcw instruction and 
changing the rounding mode. This example suffers from a store-forwarding problem 
which will lead to a severe performance penalty. However, its performance is still 
better than changing the rounding, precision and infinity bits among more than two 
values.

Example 2-21 Algorithm to Avoid Changing the Rounding Mode

_fto132proc

lea ecx,[esp-8]

sub esp,16 ; allocate frame

and ecx,-8 ; align pointer on boundary of 8

fld st(0)  ; duplicate FPU stack top

fistp qword ptr[ecx]

fild qword ptr[ecx]

mov edx,[ecx+4] ; high dword of integer

mov eax,[ecx] ; low dword of integer

test eax,eax

je integer_QnaN_or_zero

continued
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Example 2-21 Algorithm to Avoid Changing the Rounding Mode (continued)

arg_is_not_integer_QnaN:

fsubp st(1),st ; TOS=d-round(d),

; { st(1)=st(1)-st & pop ST}

test edx,edx ; what’s sign of integer

jns positive ; number is negative

fstp dword ptr[ecx] ; result of subtraction

mov ecx,[ecx] ; dword of diff(single-
; precision)

add esp,16

xor ecx,80000000h

add ecx,7fffffffh ; if diff<0 then decrement
; integer

adc eax,0 ; inc eax (add CARRY flag)

ret

positive:

fstp dword ptr[ecx] ; 17-18 result of subtraction

mov ecx,[ecx] ; dword of diff(single precision)

add esp,16

add ecx,7fffffffh ; if diff<0 then decrement integer

sbb eax,0 ; dec eax (subtract CARRY flag)

ret

integer_QnaN_or_zero:

test edx,7fffffffh

jnz arg_is_not_integer_QnaN

add esp,16

ret

Assembly/Compiler Coding Rule 36. (H impact, L generality) Minimize the number of 
changes to the rounding mode. Do not use changes in the rounding mode to implement the 
floor and ceiling functions if this involves a total of more than two values of the set of rounding, 
precision and infinity bits.
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Precision

If single precision is adequate, it is recommended over double precision.  This is true 
for two reasons:

• Single precision operations allow the use of longer SIMD vectors, since more 
single precision data elements fit in a register than double precision elements.

• If the precision control (PC) field in the x87 FPU control word is set to “Single 
Precision,” the floating-point divider can complete a single-precision computation 
much faster than either a double-precision computation or an extended 
double-precision computation. If the PC field is set to “Double Precision,” this will 
enable those x87 FPU operations on double-precision data to complete faster than 
extended double-precision computation. These characteristics affect computations 
including floating-point divide and square root.

Assembly/Compiler Coding Rule 37. (H impact, L generality) Minimize the number of 
changes to the precision mode.

Improving Parallelism and the Use of FXCH

The x87 instruction set relies on the floating point stack for one of its operands for 
most operations. If the dependence graph is a tree, which means each intermediate 
result is used only once, and code is scheduled carefully, it is often possible to use only 
operands that are on the top of the stack or in memory, and to avoid using operands that 
are buried under the top of the stack. When operands need to be pulled from the middle 
of the stack, an fxch instruction can be used to swap the operand on the top of the 
stack with another entry in the stack. 

An fxch instruction can also be used to enhance parallelism. Dependent chains can be 
overlapped to expose more independent instructions to the hardware scheduler. An 
fxch instruction may be required to effectively increase the register name space so that 
more operands can be simultaneously live.   

However, an fxch instruction inhibits issue bandwidth in the trace cache, not only 
because it consumes a slot, but also because of issue slot restrictions imposed on fxch 
instructions. If the application is not bound by issue or retirement bandwidth, the fxch 
instructions will have no impact.
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The Pentium 4 processor’s effective instruction window size is large enough to permit 
instructions that are as far away as the next iteration to be overlapped, often obviating 
the need for using fxch instructions to enhance parallelism.

Thus the fxch instruction should be used only when it is needed to express an 
algorithm, or to enhance parallelism where it can be shown to be lacking. If the size of 
the register name space is a problem, the use of the XMM registers is recommended, as 
described in the next section.

Assembly/Compiler Coding Rule 38. (M impact, M generality) Use fxch only where 
necessary to increase the effective name space. 

This in turn allows instructions to be reordered to make instructions available to be 
executed in parallel. Out-of-order execution precludes the need for using fxch to 
move instructions for very short distances. 

x87 vs. SIMD Floating-point Trade-offs

There are a number of differences between x87 floating-point code and scalar 
floating-point code using SSE and/or SSE2. These differences drive decisions about 
which registers and accompanying instructions to use:

• When an input operand for a SIMD floating-point instruction contains values that 
are less than the representable range of the data type, a denormal exception occurs, 
which causes significant performance penalty. SIMD floating-point operation has a 
flush-to-zero mode. In flush-to-zero mode, the results will not underflow. 
Therefore subsequent computation will not face the performance penalty of 
handling denormal input operands. For example, in a typical case of 3D 
applications with low lighting levels, using flush-to-zero mode can improve 
performance by as much as 50% on applications with a large number of 
underflows.

• Scalar floating point has lower latencies. This generally does not matter too much 
as long as resource utilization is low.

• Only x87 supports transcendental instructions.

• x87 supports 80-bit precision, double extended floating point. Streaming SIMD 
Extensions support a maximum of 32-bit precision, and Streaming SIMD 
Extensions 2 supports a maximum of 64-bit precision.
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• On the Pentium 4 processor, floating point adds are pipelined for x87 but not for 

scalar floating-point code. Floating point multiplies are not pipelined for either 
case. Thus for applications with a large number of floating-point adds relative to 
the number of multiplies, x87 may be a better choice.

• The scalar floating-point registers may be accessed directly, avoiding fxch and 
top-of-stack restrictions. Furthermore, on the Pentium 4 processor, the 
floating-point register stack may be used simultaneously with the XMM registers. 
The same hardware is used for both kinds of instructions, but the added name 
space may be beneficial.

• The cost of converting from floating point to integer with truncation is 
significantly lower with Streaming SIMD Extensions 2 and Streaming SIMD 
Extensions in the Pentium 4 processor than with either changes to the rounding 
mode or the sequence prescribed in the Example 2-21 above.

Assembly/Compiler Coding Rule 39. (M impact, M generality) Use Streaming SIMD 
Extensions 2 or Streaming SIMD Extensions unless you need an x87 feature. Use x87 
floating-point adds if the ratio of floating-point adds to the number of floating-point 
multiplies is high.

Memory Operands

Double-precision floating-point operands that are eight-byte aligned have better 
performance than operands that are not eight-byte aligned, since they are less likely to 
incur penalties for cache and MOB splits. Floating-point operation on a memory 
operands require that the operand be loaded from memory.  This incurs an additional 
µop, which can have a minor negative impact on front end bandwidth.  Additionally, 
memory operands may cause a data cache miss, causing a penalty.

Floating-Point Stalls

Floating-point instructions have a latency of at least two cycles. But, because of the 
out-of-order nature of Pentium II and the subsequent processors, stalls will not 
necessarily occur on an instruction or µop basis. However, if an instruction has a very 
long latency such as an fdiv, then scheduling can improve the throughput of the 
overall application.
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x87 Floating-point Operations with Integer Operands

For Pentium 4 processor, splitting floating-point operations (fiadd, fisub, fimul, and 
fidiv) that take 16-bit integer operands into two instructions (fild and a 
floating-point operation) is more efficient. However, for floating-point operations with 
32-bit integer operands, using fiadd, fisub, fimul, and fidiv is equally efficient 
compared with using separate instructions.

Assembly/Compiler Coding Rule 40. (M impact, L generality) Try to use 32-bit operands 
rather than 16-bit operands for fild.  However, do not do so at the expense of introducing a 
store forwarding problem by writing the two halves of the 32-bit memory operand separately.

x87 Floating-point Comparison Instructions

On Pentium II and the subsequent processors, the fcomi and fcmov instructions should 
be used when performing floating-point comparisons. Using (fcom, fcomp, fcompp) 
instructions typically requires additional instruction like fstsw. The latter alternative 
causes more µops to be decoded, and should be avoided.

Transcendental Functions

If an application needs to emulate these math functions in software due to performance 
or other reasons (see “Guidelines for Optimizing Floating-point Code”), it may be 
worthwhile to inline some of these math library calls because the call and the 
prologue/epilogue involved with the calls can significantly affect the latency of the 
operations.

Note that transcendental functions are supported only in x87 floating point, not in 
Streaming SIMD Extensions or Streaming SIMD Extensions 2.

Instruction Selection
This section explains which instruction sequences to avoid or what alternative code 
sequences to use when generating optimal assembly code. These optimizations have 
been shown to contribute to the overall performance at the application level on the 
order of 5%, across many applications. Although performance gain for individual 
application will vary by benchmark.
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The prioritized order of recommendations for instruction selection is:

• Choose instructions with shorter latencies and fewer µops.

• Use optimized sequences for clearing and comparing registers.

• Enhance register availability.

• Avoid prefixes, especially more than one prefix.

A compiler may be already doing a good job on instruction selection as it is. In that 
case, user intervention usually is not necessary.

Complex Instructions

Assembly/Compiler Coding Rule 41. (ML impact, M generality) Avoid using complex 
instructions (for example, enter, leave, or loop) that generally have more than four µops 
and require multiple cycles to decode. Use sequences of simple instructions instead.

 Complex instructions may save architectural registers, but incur a penalty of 4 µops to 
set up parameters for the microcode ROM.

Use of the lea Instruction

In many cases an lea instruction or a sequence of lea, add, sub, and shift 
instructions can be used to replace constant multiply instructions. The lea instruction 
can be used sometimes as a three or four operand addition instruction, for example, 

lea ecx, [eax + ebx + 4 + a]

Using the lea instruction in this way can avoid some unnecessary register usage by not 
tying up registers for the operands of some arithmetic instructions. It may also save 
code space.

The lea instruction is not always as fast on the Pentium 4 processor as it is on the 
Pentium II and Pentium III processors. This is primarily due to the fact that the lea 
instruction can produce a shift µop. If the lea instruction uses a shift by a constant 
amount then the latency of the sequence of µops is shorter if adds are used instead of a 
shift, and the lea instruction is replaced with the appropriate sequence of µops. 
However, this increases the total number of µops, leading to a trade-off: 
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Assembly/Compiler Coding Rule 42. (ML impact, M generality) If an lea instruction 
which uses the scaled index is on the critical path, the sequence with the adds may be better, 
but if code density and bandwidth out of the trace cache are the critical factor, then the lea 
instruction should be used. 

Use of the inc and dec Instructions

The inc and dec instructions modify only a subset of the bits in the flag register. This 
creates a dependence on all previous writes of the flag register. This is especially 
problematic when these instructions are on the critical path because they are used to 
change an address for a load on which many other instructions depend. 

Assembly/Compiler Coding Rule 43. (M impact, H generality) inc and dec instructions 
should be replaced with an add or sub instruction, because add and sub overwrite all flags.   

The optimization of implementing Coding Rule 41 benefits Pentium 4 and future 
IA-32 processors based on the Intel NetBurst micro-architecture, although it does not 
help Pentium II processors, and it adds an additional byte per instruction.

Use of the shift and rotate Instructions

The shift and rotate instructions have a longer latency on the Pentium 4 processor 
than on previous processor generations. The latency of a sequence of adds will be 
shorter for left shifts of three or less. Fixed and variable shifts have the same latency. 

Assembly/Compiler Coding Rule 44. (M impact, M generality) If a shift is on a critical 
path, replace it by a sequence of up to three adds. If its latency is not critical, use the shift 
instead because it produces fewer µops.

The rotate by immediate and rotate by register instructions are more expensive than 
a shift. The rotate by 1 instruction has the same latency as a shift.

Assembly/Compiler Coding Rule 45. (ML impact, L generality) Avoid rotate by register 
or rotate by immediate instructions. If possible, replace with a rotate by 1 instruction.
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Integer and Floating-point Multiply

The integer multiply operations, mul and imul, are executed in the floating-point unit 
so these instructions should not be executed in parallel with a floating-point 
instruction. They also incur some extra latency due to being executed on the 
floating-point unit.

A floating-point multiply instruction (fmul) delays for one cycle if the immediately 
preceding cycle executed an fmul. The multiplier can only accept a new pair of 
operands every other cycle.

Assembly/Compiler Coding Rule 46. (M impact, MH generality)  Replace integer 
multiplies by a small constant with two or more add and lea instructions, especially when 
these multiplications is part of a dependence chain.

Integer Divide

Typically, an integer divide is preceded by a cwd or cdq instruction. Depending on the 
operand size, divide instructions use DX:AX or EDX:EAX as the dividend. The cwd or 
cdq instructions sign-extend AX or EAX into DX or EDX, respectively. These instructions 
are denser encoding than a shift and move would be, but they generate the same 
number of µops. If AX or EAX are known to be positive, replace these instructions with 

xor dx, dx

or

xor edx, edx

Assembly/Compiler Coding Rule 47. (ML impact, L generality) Use cdw or cdq instead of 
a shift and a move. Replace these with an xor whenever AX or EAX is known to be positive.

Operand Sizes

The Pentium 4 processor does not incur a penalty for partial register accesses as did the 
Pentium II and Pentium III processors, since every operation on a partial register 
updates the whole register. However, this does mean that there may be false 
dependencies between any references to partial registers.  Example 2-22 demonstrates 
a series of false and real dependencies caused by referencing partial registers.
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Example 2-22 Dependencies Caused by Referencing Partial Registers

1: add ah, bh   

2: add al, 3   ; instruction 2 has a false dependency on 1

3: mov bl, al ; depends on 2, but the dependence is real

4: mov ah, ch ; instruction 4 has a false dependency on 2 

5: sar eax, 16 ; this wipes out the al/ah/ax part, so the

 ; result really doesn’t depend on them programatically,

; but the processor must deal with the real dependency on al/ah/ax 

6: mov al, bl ; instruction 6 has a real dependency on 5 

7: add ah, 13 ; instruction 7 has a false dependency on 6 

8: imul dl ; instruction 8 has a false dependency on 7

; because al is implicitly used

9: mov al, 17 ; instruction 9 has a false dependency on 7 

; and a real dependency on 8

10: imul cx : implicitly uses ax and writes to dx, hence

; a real dependency

If instructions 4 and 6 in Example 2-22 are changed to use a movzx instruction instead 
of a mov, then the dependences of instructions 4 on 2 (and transitively 1 before it), and 
instructions 6 on 5 are broken,  creating two independent chains of computation 
instead of one serial one.  Especially in a tight loop with limited parallelism, this 
optimization can yield several percent performance improvement.

Assembly/Compiler Coding Rule 48. (M impact, MH generality) Break dependences on 
portions of registers between instructions by operating on 32-bit registers instead of partial 
registers.  For moves, this can be accomplished with 32-bit moves or by using movzx. 

On Pentium II processors, the movsx and movzx instructions both take a single µop, 
whether they move from a register or memory. On Pentium 4 processors, the movsx 
takes an additional µop. This is likely to cause less delay than the partial register 
update problem above, but the performance gain may vary. If the additional µop is a 
critical problem, movsx can sometimes be used as alternative. For example, sometimes 
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sign-extended semantics can be maintained by zero-extending operands. For example, 
the C code in the following statements does not need sign extension, nor does it need 
prefixes for operand size overrides:

static short int a, b;

if (a==b) {

   . . .

}

Code for comparing these 16-bit operands might be:

movzw eax, [a]

movzw ebx, [b]

cmp eax, ebx

The circumstances, when this technique can be applicable, tend to be quite common. 
However, this technique would not work if the compare was for greater than, less than, 
greater than or equal, and so on, or if the values in eax or ebx were to be used in 
another operation where sign extension was required.

Assembly/Compiler Coding Rule 49. (M impact, M generality) Try to use zero extension or 
operate on 32-bit operands instead of using moves with sign extension.

The trace cache can be packed more tightly when instructions with operands that can 
only be represented as 32 bits are not adjacent. 

Assembly/Compiler Coding Rule 50. (ML impact, M generality) Avoid placing instructions 
that use 32-bit immediates which cannot be encoded as a sign-extended 16-bit immediate near 
each other. Try to schedule µops that have no immediate immediately before or after µops with 
32-bit immediates.

Address Calculations

Use the addressing modes for computing addresses rather than using the 
general-purpose computation. Internally, memory reference instructions can have four 
operands: 

• relocatable load-time constant 

• immediate constant 
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• base register 

• scaled index register. 

In the segmented model, a segment register may constitute an additional operand in the 
linear address calculation. In many cases, several integer instructions can be 
eliminated by fully using the operands of memory references.

Clearing Registers

Pentium 4 processor provides special support to xor, sub, or pxor operations, 
specifically when executed within the same register, recognizing that clearing a 
register does not depend on the old value of the register. The xorps and xorpd 
instructions do not have this special support, and cannot be used to break dependence 
chains.

Assembly/Compiler Coding Rule 51. (M impact, ML generality) Use xor, sub, or pxor to 
set a register to 0, or to break a false dependence chain resulting from re-use of registers. In 
contexts where the condition codes must be preserved, move 0 into the register instead. This 
requires more code space than using xor and sub, but avoids setting the condition codes.

Compares

Use test when comparing a value in a register with zero. Test essentially ands the 
operands together without writing to a destination register. Test is preferred over and 
because and produces an extra result register. Test is better than cmp ..., 0 because 
the instruction size is smaller.

Use test when comparing the result of a logical and with an immediate constant for 
equality or inequality if the register is eax for cases such as:

if (avar & 8) { }

The test instruction can also be used to detect rollover of modulo a power of 2. For 
example, the C code:

if ( (avar % 16) == 0 ) { }

can be implemented using:

test eax, 0x0F

jnz  AfterIf
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Assembly/Compiler Coding Rule 52. (ML impact, M generality) Use the test instruction 
instead of and or cmp if possible.

Often a produced value must be compared with zero, and then used in a branch. 
Because most Intel architecture instructions set the condition codes as part of their 
execution, the compare instruction may be eliminated. Thus the operation can be tested 
directly by a jcc instruction. The most notable exceptions are mov and lea. In these 
cases, use test.

Assembly/Compiler Coding Rule 53. (ML impact, M generality)  Eliminate unnecessary 
compare with zero instructions by using the appropriate conditional jump instruction when the 
flags are already set by a preceding arithmetic instruction. If necessary, use a test instruction 
instead of a compare. Be certain that any code transformations made do not introduce 
problems with overflow.

Floating Point/SIMD Operands

Beware that in the initial Pentium 4 processor implementation, the latency of MMX or 
SIMD floating point register to register moves is quite long. This may have 
implications for register allocation. However, this characteristic is not inherent to the 
operation, and this latency could change significantly on future implementations.

Moves that write only a portion of a register can introduce unwanted dependences.  
The movsd reg, reg instruction writes only the bottom 64 bits of a register, not all 
128 bits.  This introduces a dependence on the preceding instruction that produces the 
upper 64 bits, even if those bits are not longer wanted.  The dependence inhibits the 
machine’s register renaming, and hence reduces parallelism.  An alternative is to use 
the movapd instruction, which writes all 128 bits.  Even though the latter has a longer 
latency, the µops for movapd use a different execution port, which is more likely to be 
free.  This change can has a several percent impact on performance.  There may be 
exceptional cases where the latency matters more than the dependence or the execution 
port.  

Assembly/Compiler Coding Rule 54. (M impact, ML generality) Avoid introducing 
dependences with partial floating point register writes, e.g. from the movsd xmmreg1, 
xmmreg2 instruction.  Use the movapd xmmreg1, xmmreg2 instruction instead.

The movsd xmmreg, mem, however, writes all 128 bits, and hence breaks a 
dependence.
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The movupd from memory instruction performs two 64-bit loads, but requires 
additional µops to adjust the address and combine the loads into a single register.  This 
same functionality can be obtained using movsd xmmreg1, mem; movsd xmmreg2, 
mem+8; unpcklpd xmmreg1, xmmreg2, which uses fewer µops and can be packed into 
the trace cache more effectively.  The latter alternative has been found to provide 
several percent of performance improvement in some cases.  Its encoding requires 
more instruction bytes, but this is seldom an issue for the Pentium 4 processor.  The 
store version of movupd is complex and slow,  such that the sequence with two movsd 
and a unpckhpd should always be used.

Assembly/Compiler Coding Rule 55. (ML impact, L generality) Instead of using movupd 
xmmreg1, mem  for a unaligned 128-bit load, use movsd xmmreg1, mem; movsd 
xmmreg2, mem+8; unpcklpd xmmreg1, xmmreg2.  If the additional register is not 
available, then use movsd xmmreg1, mem; movhpd xmmreg1, mem+8.

Assembly/Compiler Coding Rule 56. (M impact, ML generality) Instead of using movupd 
mem, xmmreg1 for a store, use movsd mem, xmmreg1; unpckhpd xmmreg1, xmmreg1; 
movsd mem+8, xmmreg1 instead.

Prolog Sequences

Assembly/Compiler Coding Rule 57. (M impact, MH generality) In routines that do not 
need EBP and that do not have called routines that modify ESP, use ESP as the base register to 
free up EBP. This optimization does not apply in the following cases: a routine is called that 
leaves ESP modified upon return, for example, alloca; routines that rely on EBP for 
structured or C++-style exception handling; routines that use setjmp and longjmp; and 
routines that rely on EBP debugging. 

If you are not using the 32-bit flat model, remember that EBP cannot be used as a 
general purpose base register because it references the stack segment.

Code Sequences that Operate on Memory Operands

Careful management of memory operands can improve performance. Instructions of 
the form “OP REG, MEM“can reduce register pressure by taking advantage of hidden 
scratch registers that are not available to the compiler.
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Assembly/Compiler Coding Rule 58. (M impact, ML generality) Instead of explicitly 
loading the memory operand into a register and then operating on it, reduce register pressure 
by using the memory operand directly, if that memory operand is not reused soon.

The recommended strategy is as follows:

1. Initially, operate on register operands and use explicit load and store instructions, 
minimizing the number of memory accesses by merging redundant loads.

2. In a subsequent pass, free up the registers that contain the operands that were in 
memory for other uses by replacing any detected code sequence of the form 
shown in Example 2-23 with OP REG2, MEM1.

Example 2-23 Recombining LOAD/OP Code into REG,MEM Form

LOAD reg1, mem1
... code that does not write to reg1...
OP reg2, reg1
... code that does not use reg1 ...

Using memory as a destination operand may further reduce register pressure at the 
slight risk of making trace cache packing more difficult.  

On the Pentium 4 processor, the sequence of loading a value from memory into a 
register and adding the results in a register to memory is faster than the alternate 
sequence of adding a value from memory to a register and storing the results in a 
register to memory. The first sequence also uses one less µop than the latter.

Assembly/Compiler Coding Rule 59. (ML impact, M generality)  Give preference to adding 
a register to memory (memory is the destination) instead of adding memory to a register. Also, 
give preference to adding a register to memory over loading the memory, adding two registers 
and storing the result.

Instruction Scheduling
Ideally, scheduling or pipelining should be done in a way that optimizes performance 
across all processor generations. This section presents scheduling rules that can 
improve the performance of your code on the Pentium 4 processor.
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Latencies and Resource Constraints

Assembly/Compiler Coding Rule 60. (M impact, MH generality)  Calculate store addresses 
as early as possible to avoid having stores block loads.

Spill Scheduling

The spill scheduling algorithm used by a code generator will be impacted by the 
Pentium 4 processor memory subsystem. A spill scheduling algorithm is an algorithm 
that selects what values to spill to memory when there are too many live values to fit in 
registers. Consider the code in Example 2-24, where it is necessary to spill either A, B, 
or C.

Example 2-24 Spill Scheduling Example Code

LOOP
C := ...
B := ...
A := A + ...

For the Pentium 4 processor, using dependence depth information in spill scheduling is 
even more important than in previous processors. The loop- carried dependence in A 
makes it especially important that A not be spilled. Not only would a store/load be 
placed in the dependence chain, but there would also be a data-not-ready stall of the 
load, costing further cycles.

Assembly/Compiler Coding Rule 61. (H impact, MH generality) For small loops, placing 
loop invariants in memory is better than spilling loop-carried dependencies.

A possibly counter-intuitive result: in such a situation it is better to put loop invariants 
in memory than in registers, since loop invariants never have a load blocked by store 
data that is not ready.

Scheduling Rules for the Pentium 4 Processor Decoder

The Pentium 4 processor has a single decoder that can decode instructions at the 
maximum rate of one instruction per clock. Complex instruction must enlist the help of 
the microcode ROM; see Chapter 1, “Intel® Pentium® 4 and Intel® Xeon™ Processor 
Overview”, for more details.
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Unlike the Pentium II and Pentium III processors, there is no need to schedule for 
decoders with different capabilities.

Vectorization
This section provides a brief summary of optimization issues related to vectorization. 
Chapters 3, 4 and 5 provide greater detail.

Vectorization is a program transformation which allows special hardware to perform 
the same operation of multiple data elements at the same time. Successive processor 
generations have provided vector support through the MMX technology, Streaming 
SIMD Extensions technology and Streaming SIMD Extensions 2. Vectorization is a 
special case of SIMD, a term defined in Flynn’s architecture taxonomy to denote a 
Single Instruction stream capable of operating on Multiple Data elements in parallel. 
The number of elements which can be operated on in parallel range from four 
single-precision floating point data elements in Streaming SIMD Extensions and two 
double-precision floating- point data elements in Streaming SIMD Extensions 2 to 
sixteen byte operations in a 128-bit register in Streaming SIMD Extensions 2. Thus the 
vector length ranges from 2 to 16, depending on the instruction extensions used and on 
the data type.

The Intel C++ Compiler supports vectorization in three ways:

• The compiler may be able to generate SIMD code without intervention from the 
user.

• The user inserts pragmas to help the compiler realize that it can vectorize the code.

• The user may write SIMD code explicitly using intrinsics and C++ classes.

To help enable the compiler to generate SIMD code 

• avoid global pointers 

• avoid global variables

These may be less of a problem if all modules are compiled simultaneously, and 
whole-program optimization is used.

User/Source Coding Rule 16. (H impact, M generality) Use the smallest possible 
floating-point or SIMD data type, to enable more parallelism with the use of a (longer) SIMD 
vector. For example, use single precision instead of double precision where possible.
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User/Source Coding Rule 17. (M impact, ML generality) Arrange the nesting of loops so 
that the innermost nesting level is free of inter-iteration dependencies. Especially avoid the 
case where the store of data in an earlier iteration happens lexically after the load of that data 
in a future iteration, something which is called a lexically backward dependence. 

The integer part of the SIMD instruction set extensions are primarily targeted for 
16-bit operands. Not all of the operators are supported for 32 bits, meaning that some 
source code will not be able to be vectorized at all unless smaller operands are used. 

User/Source Coding Rule 18. (M impact, ML generality) Avoid the use of conditional 
branches inside loops and consider using SSE instructions to eliminate branches. 

User/Source Coding Rule 19. (M impact, ML generality) Keep induction (loop) variables 
expressions simple. 

Miscellaneous
This section explains separate guidelines that do not belong to any category described 
above.

NOPs

Code generators generate a no-operation (NOP) to align instructions. The NOPs are 
recommended for the following operations:

• 1-byte: xchg EAX, EAX

• 2-byte: mov reg, reg

• 3-byte: lea reg, 0 (reg) (8-bit displacement)

• 6-byte: lea reg, 0 (reg) (32-bit displacement)

These are all true NOPs, having no effect on the state of the machine except to advance 
the EIP. Because NOPs require hardware resources to decode and execute, use the least 
number of NOPs to achieve the desired padding. 

The one byte NOP, xchg EAX,EAX, has special hardware support. Although it still 
consumes a µop and its accompanying resources, the dependence upon the old value of 
EAX is removed. Therefore, this µop can be executed at the earliest possible 
opportunity, reducing the number of outstanding instructions. This is the lowest cost 
NOP possible.
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The other NOPs have no special hardware support. Their input and output registers are 
interpreted by the hardware. Therefore, a code generator should arrange to use the 
register containing the oldest value as input, so that the NOP will dispatch and release 
RS resources at the earliest possible opportunity. 

Try to observe the following NOP generation priority:

• Select the smallest number of NOPs and pseudo-NOPs to provide the desired 
padding.

• Select NOPs that are least likely to execute on slower execution unit clusters.

• Select the register arguments of NOPs to reduce dependencies.

Summary of Rules and Suggestions
To summarize the rules and suggestions specified in this chapter, be reminded that 
coding recommendations are ranked in importance according to these two criteria:

• Local impact (referred to earlier as “impact”) – the difference that a 
recommendation makes to performance for a given instance.

• Generality – how frequently such instances occur across all application domains.

Again, understand that this ranking is intentionally very approximate, and can vary 
depending on coding style, application domain, and other factors. Throughout the 
chapter you observed references to these criteria using the high, medium and low 
priorities for each recommendation. In places where there was no priority assigned, the 
local impact or generality has been determined not to be applicable.

The sections that follow summarize the sets of rules and tuning suggestions referenced 
in the manual.

User/Source Coding Rules

User/Source Coding Rule 1. (L impact, L generality) If an indirect branch has two or more 
common taken targets, and at least one of those targets are correlated with branch history 
leading up to the branch, then convert the indirect branch into a tree where one or more 
indirect branches are preceded by conditional branches to those targets. Apply this “peeling” 
procedure to the common target of an indirect branch that correlates to branch history. 2-21
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User/Source Coding Rule 2. (H impact, M generality) Pad data structures defined in the 
source code so that every data element is aligned to a natural operand size address boundary. 
2-34

User/Source Coding Rule 3. (M impact, L generality) Beware of false sharing within a 
cache line  (64 bytes on Pentium 4 and Intel Xeon processors, and 32 bytes on Pentium III 
processors). 2-36

User/Source Coding Rule 4. (H impact, ML generality) Consider using a special memory 
allocation library to avoid aliasing. 2-39

User/Source Coding Rule 5. (M impact, M generality) When padding variable declarations 
to avoid aliasing, the greatest benefit comes from avoiding aliasing on second-level cache 
lines, suggesting an offset of 128 bytes or more. 2-39

User/Source Coding Rule 6. (H impact, H generality)  Optimization techniques such as 
blocking, loop interchange, loop skewing and packing are best done by the compiler. Optimize 
data structures to either fit in one-half of the first-level cache or in the second-level cache, 
and turn on loop optimizations in the compiler to enhance locality for nested loops. 2-42

User/Source Coding Rule 7. (M impact, ML generality) If there is a blend of reads and 
writes on the bus, changing the code to separate these bus transactions into read phases and 
write phases can help performance. 2-43

User/Source Coding Rule 8. (M impact, H generality) Enable the prefetch generation in 
your compile. Note: As the compiler’s prefetch implementation improves, it is expected that its 
prefetch insertion will outperform manual insertion except for code tuning experts, but this is 
not always the case. If the compiler does not support software prefetching, intrinsics or inline 
assembly may be used to manually insert prefetch instructions. 2-44

User/Source Coding Rule 9. (M impact, M generality) Target the Pentium 4 processor and 
enable the compiler’s use of SSE2 instructions with appropriate switches. 2-45

User/Source Coding Rule 10. (H impact, ML generality) Make sure your application stays 
in range to avoid denormal values, underflows. 2-46

User/Source Coding Rule 11. (M impact, ML generality) Do not use double precision unless 
necessary. Set the precision control (PC) field in the x87 FPU control word to “Single 
Precision”. This allows single precision (32-bit) computation to complete faster on some 
operations (for example, divides due to early out). However, be careful of introducing more 
than a total of two values for the floating point control word, or there will be a large 
performance penalty.  See  “Floating-point Modes”. 2-46
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User/Source Coding Rule 12. (H impact, ML generality) Use fast float-to-int routines. If 
coding these routines, use the cvttss2si, cvttsd2si instructions if coding with Streaming 
SIMD Extensions 2. 2-46

User/Source Coding Rule 13. (M impact, ML generality) Break dependence chains where 
possible. 2-46

User/Source Coding Rule 14. (M impact, ML generality) Usually, math libraries take 
advantage of the transcendental instructions (for example, fsin) when evaluating elementary 
functions. If there is no critical need to evaluate the transcendental functions using the 
extended precision of 80 bits, applications should consider alternate, software-based 
approach, such as look-up-table-based algorithm using interpolation techniques. It is possible 
to improve transcendental performance with these techniques by choosing the desired numeric 
precision, the size of the look-up tableland taking advantage of the parallelism of the 
Streaming SIMD Extensions and the Streaming SIMD Extensions 2 instructions. 2-46

User/Source Coding Rule 15. (H impact, ML generality) Denormalized floating-point 
constants should be avoided as much as possible. 2-47

User/Source Coding Rule 16. (H impact, M generality) Use the smallest possible 
floating-point or SIMD data type, to enable more parallelism with the use of a (longer) SIMD 
vector. For example, use single precision instead of double precision where possible. 2-67

User/Source Coding Rule 17. (M impact, ML generality) Arrange the nesting of loops so 
that the innermost nesting level is free of inter-iteration dependencies. Especially avoid the 
case where the store of data in an earlier iteration happens lexically after the load of that data 
in a future iteration, something which is called a lexically backward dependence. 2-68

User/Source Coding Rule 18. (M impact, ML generality) Avoid the use of conditional 
branches inside loops and consider using SSE instructions to eliminate branches. 2-68

User/Source Coding Rule 19. (M impact, ML generality) Keep loop induction variables 
expressions simple. 2-68
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Assembly/Compiler Coding Rules

Assembly/Compiler Coding Rule 1. (MH impact, H generality) Arrange code to make 
basic blocks contiguous to eliminate unnecessary branches. 2-12

Assembly/Compiler Coding Rule 2. (M impact, ML generality) Use the setcc and 
cmov instructions to eliminate unpredictable conditional branches where possible. Do not 
do this for predictable branches. Also, do not use these instructions to eliminate all 
unpredictable conditional branches. Because using these instructions will incur execution 
overhead due to executing both paths of a conditional branch; Use these instructions only 
if the increase in computation time is less than the expected cost of a mispredicted 
branch.. 2-13

Assembly/Compiler Coding Rule 3. (M impact, H generality) Arrange code to be 
consistent with the static branch prediction algorithm: make the fall-through code 
following a conditional branch be the likely target for a branch with a forward target, and 
make the fall-through code following a conditional branch be the unlikely target for a 
branch with a backward target. 2-16 

Assembly/Compiler Coding Rule 4. (L impact, MH generality) Do not use directional 
branch hints if it is possible to position code to be consistent with the static branch 
prediction algorithm. 2-18. 

Assembly/Compiler Coding Rule 5. Use directional branch hints only in the case if the 
probability of the branch being taken in the prescribed direction is greater than 50%. Use 
code positioning to adhere to the static prediction algorithm wherever possible. 2-18

Assembly/Compiler Coding Rule 6. (MH impact, MH generality) Near calls must be 
matched with near returns, and far calls must be matched with far returns. Pushing the 
return address on the stack and jumping to the routine to be called is not recommended 
since it creates a mismatch in calls and returns. 2-19

Assembly/Compiler Coding Rule 7. (MH impact, MH generality)  Selectively inline a 
function where doing so decreases code size, or if the function is small and the call site is 
frequently executed. 2-19

Assembly/Compiler Coding Rule 8. (H impact, M generality) Do not inline a function 
if doing so increases the working set size beyond what will fit in the trace cache. 2-19

Assembly/Compiler Coding Rule 9. (ML impact, ML generality) If there are more 
than 16 nested calls and returns in rapid succession, then consider transforming the 
program, for example, with inline, to reduce the call depth. 2-19
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Assembly/Compiler Coding Rule 10. (ML impact, ML generality)  Favor inlining 
small functions that contain branches with poor prediction rates. If a branch 
misprediction results in a RETURN being prematurely predicted as taken, a performance 
penalty may be incurred. 2-19

Assembly/Compiler Coding Rule 11. (L impact, L generality) If the last statement in  a 
function is a call to another function, consider converting the call to a jump. This will save 
the call/ return overhead as well as an entry in the return stack buffer. 2-19

Assembly/Compiler Coding Rule 12. (M impact, MH generality) If the average 
number of total iterations is less than or equal to 100, use a forward branch to exit the 
loop. 2-19

Assembly/Compiler Coding Rule 13. (M impact, L generality) When indirect branches 
are present, try to put the most likely target of an indirect branch immediately following 
that indirect branch. Alternatively, if indirect branches are common but they cannot be 
predicted by branch prediction hardware, then follow the indirect branch with a UD2 
instruction, which will stop the processor from decoding down the fall-through path. 2-20

Assembly/Compiler Coding Rule 14. (H impact, M generality) Unroll small loops until 
the overhead of the branch and the induction variable accounts, generally, for less than 
about 10% of the execution time of the loop. 2-23

Assembly/Compiler Coding Rule 15. (H impact, M generality) Avoid unrolling loops 
excessively, as this may thrash the TC. 2-23

Assembly/Compiler Coding Rule 16. (M impact, M generality) Unroll loops that are 
frequently executed and that have a predictable number of iterations to reduce the number 
of iterations to 16 or fewer, unless this increases code size so that the working set no 
longer fits in the trace cache.  If the loop body contains more than one conditional branch, 
then unroll so that the number of iterations is 16/(# conditional branches). 2-23

Assembly/Compiler Coding Rule 17. (H impact, H generality) Align data on natural 
operand size address boundaries. 2-25

Assembly/Compiler Coding Rule 18. (H impact, H generality) Promote variables to 
registers where profitable. 2-27

Assembly/Compiler Coding Rule 19. (MH impact, H generality)  Eliminate redundant 
loads. 2-27

Assembly/Compiler Coding Rule 20. (H impact, M generality) Pass parameters in 
registers instead of on the stack where possible. 2-28
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Assembly/Compiler Coding Rule 21. (H impact, M generality) A load that forwards 
from a store must have the same address start point and therefore the same alignment as 
the store data. 2-29

Assembly/Compiler Coding Rule 22. (H impact, M generality) The data of a load 
which is forwarded from a store must be completely contained within the store data. 2-29

Assembly/Compiler Coding Rule 23. (H impact, ML generality) If it is necessary to 
extract a non-aligned portion of stored data, read out the smallest aligned portion that 
completely contains the data and shift/mask the data as necessary. The penalty for not 
doing this is much higher than the cost of the shifts. 2-29

Assembly/Compiler Coding Rule 24. (MH impact, ML generality)  Avoid several 
small loads after large stores to the same area of memory by using a single large read and 
register copies as needed. 2-30

Assembly/Compiler Coding Rule 25. (H impact, M generality) Space out loads from 
the store that forwards data to them. Note that placing intervening instructions between 
the load and store does not guarantee separation in time. 2-32

Assembly/Compiler Coding Rule 26. (ML impact, M generality) If a routine is small, 
space apart the loads and stores that manage registers temporarily stored on the stack by 
re-loading the registers in the same order that they were stored; that is, replace pushes 
and pops with loads and stores, with the stores in the reverse order of pops. 2-33

Assembly/Compiler Coding Rule 27. (H impact, MH generality) Where it is possible 
to do so without incurring other penalties, prioritize the allocation of variables to 
registers, as in register allocation and for parameter passing, so as to minimize the 
likelihood and impact of store- forwarding problems. Try not to store-forward data 
generated from a long latency instruction, e.g. mul, div. Avoid store-forwarding data for 
variables with the shortest store-load distance. Avoid store-forwarding data for variables 
with many and/or long dependence chains, and especially avoid including a store forward 
on a loop-carried dependence chain. 2-33

Assembly/Compiler Coding Rule 28. (H impact, M generality) Try to arrange data 
structures such that they permit sequential access. 2-36

Assembly/Compiler Coding Rule 29. (H impact, M generality) If 64-bit data is ever 
passed as a parameter or allocated on the stack, make sure that the stack is aligned to an 
8-byte boundary. 2-37
2-74



Intel Pentium 4 and Intel Xeon Processor Optimization General Optimization Guidelines 2

Assembly/Compiler Coding Rule 30. (H impact, MH generality) Lay out data or order 
computation to avoid having cache lines that have linear addresses that are a multiple of 
64 KB apart in the same working set. Avoid having more than 4 cache lines that are some 
multiple of 2 KB apart in the same first-level cache working set, and avoid having more 
than 8 cache lines that are some multiple of 32 KB apart in the same second-level cache 
working set. Avoid having a store followed by a non-dependent load with addresses that 
differ by a multiple of 16 KB. 2-39

Assembly/Compiler Coding Rule 31. (M impact, L generality) If (hopefully read-only) 
data must occur on the same page as code, avoid placing it immediately after an indirect 
jump. For example, follow an indirect jump with its mostly likely target, and place the 
data after an unconditional branch. 2-40

Assembly/Compiler Coding Rule 32. (H impact, L generality) Always put code and 
data on separate pages. Avoid self-modifying code wherever possible. If code is to be 
modified, try to do it all at once and make sure the code that performs the modifications 
and the code being modified are  on separate 4 KB pages or on separate aligned 1 KB 
subpages. 2-40

Assembly/Compiler Coding Rule 33. (H impact, L generality) If an inner loop writes 
to more than four arrays, (four distinct cache lines), apply loop fission to break up the 
body of the loop such that only four arrays are being written to in each iteration of each of 
the resulting loops. 2-41

Assembly/Compiler Coding Rule 34. (M impact, H generality) If the body of a 
conditional is not likely to be executed, it should be placed in another part of the program. 
If it is highly unlikely to be executed and code locality is an issue, the body of the 
conditional should be placed on a different code page. 2-45 

Assembly/Compiler Coding Rule 35. (H impact, M generality) Minimize changes to 
bits 8-12 of the floating point control word.  Changing among more than two values (each 
value being a combination of these bits: precision, rounding and infinity control, and the 
rest of bits in FCW) leads to delays that are on the order of the pipeline depth. 2-50

Assembly/Compiler Coding Rule 36. (H impact, L generality) Minimize the number of 
changes to the rounding mode. Do not use changes in the rounding mode to implement the 
floor and ceiling functions if this involves a total of more than two values of the set of 
rounding, precision and infinity bits. 2-52

Assembly/Compiler Coding Rule 37. (H impact, L generality) Minimize the number of 
changes to the precision mode. 2-53
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Assembly/Compiler Coding Rule 38. (M impact, M generality) Use fxch only where 
necessary to increase the effective name space. 2-54

Assembly/Compiler Coding Rule 39. (M impact, M generality) Use Streaming SIMD 
Extensions 2 or Streaming SIMD Extensions unless you need an x87 feature. Use x87 
floating-point adds if the ratio of floating-point adds to the number of floating-point 
multiplies is high. 2-55

Assembly/Compiler Coding Rule 40. (M impact, L generality) Try to use 32-bit 
operands rather than 16-bit operands for fild.  However, do not do so at the expense of 
introducing a store forwarding problem by writing the two halves of the 32-bit memory 
operand separately. 2-56

Assembly/Compiler Coding Rule 41. (ML impact, M generality) Avoid using complex 
instructions (for example, enter, leave, or loop) that generally have more than four 
µops and require multiple cycles to decode. Use sequences of simple instructions instead. 
2-57

Assembly/Compiler Coding Rule 42. (ML impact, M generality) If an lea instruction 
which uses the scaled index is on the critical path, the sequence with the adds may be 
better, but if code density and bandwidth out of the trace cache are the critical factor, then 
the lea instruction should be used. 2-58

Assembly/Compiler Coding Rule 43. (M impact, H generality) inc and dec 
instructions should be replaced with an add or sub instruction, because add and sub 
overwrite all flags. 2-58 

Assembly/Compiler Coding Rule 44. (M impact, M generality) If a shift is on a 
critical path, replace it by a sequence of up to three adds. If its latency is not critical, use 
the shift instead because it produces fewer µops. 2-58

Assembly/Compiler Coding Rule 45. (ML impact, L generality) Avoid rotate by 
register or rotate by immediate instructions. If possible, replace with a rotate by 1 
instruction. 2-58

Assembly/Compiler Coding Rule 46. (M impact, MH generality)  Replace integer 
multiplies by a small constant with two or more add and lea instructions, especially 
when these multiplications is part of a dependence chain. 2-59

Assembly/Compiler Coding Rule 47. (ML impact, L generality) Use cdw or cdq 
instead of a shift and a move. Replace these with an xor whenever AX or EAX is known 
to be positive. 2-59
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Assembly/Compiler Coding Rule 48. (M impact, MH generality) Break dependences 
on portions of registers between instructions by operating on 32-bit registers instead of 
partial registers.  For moves, this can be accomplished with 32-bit moves or by using 
movzx. 2-60

Assembly/Compiler Coding Rule 49. (M impact, M generality) Try to use zero 
extension or operate on 32-bit operands instead of using moves with sign extension. 2-61

Assembly/Compiler Coding Rule 50. (ML impact, M generality) Avoid placing 
instructions that use 32-bit immediates which cannot be encoded as a sign-extended 
16-bit immediate near each other. Try to schedule µops that have no immediate 
immediately before or after µops with 32-bit immediates. 2-61

Assembly/Compiler Coding Rule 51. (M impact, ML generality) Use xor, sub, or 
pxor to set a register to 0, or to break a false dependence chain resulting from re-use of 
registers. In contexts where the condition codes must be preserved, move 0 into the 
register instead. This requires more code space than using xor and sub, but avoids 
setting the condition codes. 2-62

Assembly/Compiler Coding Rule 52. (ML impact, M generality) Use the test 
instruction instead of and or cmp if possible. 2-63

Assembly/Compiler Coding Rule 53. (ML impact, M generality)  Eliminate 
unnecessary compare with zero instructions by using the appropriate conditional jump 
instruction when the flags are already set by a preceding arithmetic instruction. If 
necessary, use a test instruction instead of a compare. Be certain that any code 
transformations made do not introduce problems with overflow. 2-63

Assembly/Compiler Coding Rule 54. (M impact, ML generality) Avoid introducing 
dependences with partial floating point register writes, e.g. from the movsd xmmreg1, 
xmmreg2 instruction.  Use the movapd xmmreg1, xmmreg2 instruction instead. 2-63

Assembly/Compiler Coding Rule 55. (ML impact, L generality) Instead of using 
movupd xmmreg1, mem  for a unaligned 128-bit load, use movsd xmmreg1, mem; 
movsd xmmreg2, mem+8; unpcklpd xmmreg1, xmmreg2.  If the additional register 
is not available, then use movsd xmmreg1, mem; movhpd xmmreg1, mem+8. 2-64

Assembly/Compiler Coding Rule 56. (M impact, ML generality) Instead of using 
movupd mem, xmmreg1 for a store, use movsd mem, xmmreg1; unpckhpd 
xmmreg1, xmmreg1; movsd mem+8, xmmreg1 instead. 2-64
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Assembly/Compiler Coding Rule 57. (M impact, MH generality) In routines that do 
not need EBP and that do not have called routines that modify ESP, use ESP as the base 
register to free up EBP. This optimization does not apply in the following cases: a routine 
is called that leaves ESP modified upon return, for example, alloca; routines that rely on 
EBP for structured or C++-style exception handling; routines that use setjmp and 
longjmp; and routines that rely on EBP debugging. 2-64

Assembly/Compiler Coding Rule 58. (M impact, ML generality) Instead of explicitly 
loading the memory operand into a register and then operating on it, reduce register 
pressure by using the memory operand directly, if that memory operand is not reused 
soon. 2-65

Assembly/Compiler Coding Rule 59. (ML impact, M generality)  Give preference to 
adding a register to memory (memory is the destination) instead of adding memory to a 
register. Also, give preference to adding a register to memory over loading the memory, 
adding two registers and storing the result 2-65

Assembly/Compiler Coding Rule 60. (M impact, MH generality)  Calculate store 
addresses as early as possible to avoid having stores block loads. 2-66

Assembly/Compiler Coding Rule 61. (H impact, MH generality) For small loops, 
placing loop invariants in memory is better than spilling loop-carried dependencies. 2-66

Tuning Suggestions

Tuning Suggestion 1. Rarely, a performance problem may be noted due to executing data 
on a code page as instructions. The only condition where this is very likely to happen is 
following an indirect branch that is not resident in the trace cache. Only if a performance 
problem is clearly due to this problem, try moving the data elsewhere, or inserting an 
illegal opcode or a pause instruction immediately following the indirect branch.  The 
latter two alternative may degrade performance in some circumstances. 2-40

Tuning Suggestion 2. If a load is found to miss frequently, either insert a prefetch before 
it, or, if issue bandwidth is a concern, move the load up to execute earlier. 2-44
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Coding 
for SIMD Architectures
The Intel Pentium 4 processor includes support for Streaming SIMD Extensions 2, 
Streaming SIMD Extensions technology, and MMX technology. The combination of 
these single-instruction, multiple-data (SIMD) technologies will enable the 
development of advanced multimedia, signal processing, and modeling applications. 
To take advantage of the performance opportunities presented by these new 
capabilities, take into consideration the following:

• Ensure that your processor supports MMX technology, Streaming SIMD 
Extensions (SSE), and Streaming SIMD Extensions 2 (SSE2).

• Ensure that your operating system supports MMX technology and SSE (OS 
support for SSE2 is the same as OS support for SSE).

• Employ all of the optimization and scheduling strategies described in this book.

• Use stack and data alignment techniques to keep data properly aligned for efficient 
memory use.

• Utilize the cacheability instructions offered by SSE and SSE2.

This chapter gives an overview of the capabilities that allow you to better understand 
SIMD features and develop applications utilizing SIMD features of MMX technology, 
SSE, and SSE2. 
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Checking for Processor Support of SIMD Technologies

This section shows how to check whether a processor supports MMX technology, 
SSE, or SSE2. Once this check has been made, the appropriate SIMD technology can 
be included in your application in three ways: 

1. Check for the SIMD technology during installation. If the desired SIMD 
technology is available, the appropriate DLLs can be installed. 

2. Check for the SIMD technology during program execution and install the proper 
DLLs at runtime. This is effective for programs that may be executed on different 
machines.

3. Create a “fat” binary that includes multiple versions of routines; version that use 
the SIMD technology and versions that do not. Check for the SIMD technology 
during program execution and run the appropriate versions of the routines. This is 
also effective for programs that may be executed on different machines.

Checking for MMX Technology Support

Before you start coding with MMX technology, check if MMX technology is available 
on your system. Use the cpuid instruction to check the feature flags in the edx register. 
If cpuid returns bit 23 set to 1 in the feature flags, the processor supports MMX 
technology. Use the code segment in Example 3-1 to load the feature flags in edx and 
test the result for the existence of MMX technology.

Example 3-1 Identification of MMX Technology with cpuid

…identify existence of cpuid instruction
… ; 

… ; identify processor
… ;

mov eax, 1 ; request for feature flags
cpuid ; 0Fh, 0A2h cpuid instruction
test edx, 00800000h ; is MMX technology bit (bit

; 23)in feature flags equal to 1
jnz Found
3-2
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For more information on cpuid see, Intel Processor Identification with CPUID 
Instruction, order number 241618.

Checking for Streaming SIMD Extensions Support

Checking for support of Streaming SIMD Extensions (SSE) on your processor is 
similar to doing the same for MMX technology, but you must also check whether your 
operating system (OS) supports SSE. This is because the OS needs to manage saving 
and restoring the new state introduced by SSE for your application to properly 
function.

To check whether your system supports SSE, follow these steps:

1. Check that your processor supports the cpuid instruction and is a Pentium III or 
later processor.

2. Check the feature bits of cpuid for SSE existence.

3. Check for OS support for SSE.

Example 3-2 shows how to find the SSE feature bit (bit 25) in the cpuid feature flags.

Example 3-2 Identification of SSE with cpuid

…identify existence of cpuid instruction

… ; identify processor

mov eax, 1 ; request for feature flags

cpuid ; 0Fh, 0A2h   cpuid instruction

test EDX, 002000000h ; bit 25 in feature flags equal to 1

jnz Found

To find out whether the operating system supports SSE, simply execute a SSE 
instruction and trap for the exception if one occurs. An invalid opcode will be raised by 
the operating system and processor if either is not enabled for SSE. Catching the 
exception in a simple try/except clause (using structured exception handling in C++) 
and checking whether the exception code is an invalid opcode will give you the 
answer. See Example 3-3.
3-3
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Example 3-3 Identification of SSE by the OS

 bool OSSupportCheck() {

_try {

__asm xorps xmm0, xmm0 ;Streaming SIMD Extension

} 

_except(EXCEPTION_EXECUTE_HANDLER) {

if (_exception_code()==STATUS_ILLEGAL_INSTRUCTION)

/* SSE not supported */

return (false);

}

/* SSE are supported by OS */

return (true);

}

Checking for Streaming SIMD Extensions 2 Support

Checking for support of SSE2 on your processor is similar to that of SSE in that you 
must also check whether your operating system (OS) supports SSE. The OS 
requirements for SSE2 Support are the same as the requirements for SSE. To check 
whether your system supports SSE2, follow these steps:

1. Check that your processor has the cpuid instruction and is the Pentium 4 
processor or later.

2. Check the feature bits of cpuid for SSE2 technology existence.

3. Check for OS support for SSE.

Example 3-2 shows how to find the SSE2 feature bit (bit 25) in the cpuid feature flags.
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Example 3-4 Identification of SSE2 with cpuid

…identify existence of cpuid instruction

… ; identify processor

mov eax, 1 ; request for feature flags

cpuid ; 0Fh, 0A2h   cpuid instruction

test EDX, 004000000h ; bit 26 in feature flags equal to 1

jnz Found

SSE2 require the same support from the operating system as SSE. To find out whether 
the operating system supports SSE2, simply execute a SSE2 instruction and trap for 
the exception if one occurs. An invalid opcode will be raised by the operating system 
and processor if either is not enabled for SSE2. Catching the exception in a simple 
try/except clause (using structured exception handling in C++) and checking whether 
the exception code is an invalid opcode will give you the answer. See Example 3-3.

Example 3-5 Identification of SSE2 by the OS

 bool OSSupportCheck() {

_try {

__asm xorpd xmm0, xmm0 ; SSE2} 

_except(EXCEPTION_EXECUTE_HANDLER) {

if _exception_code()==STATUS_ILLEGAL_INSTRUCTION)

/* SSE2not supported */

return (false);

}

/* SSE2 are supported by OS */

return (true);

}
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Considerations for Code Conversion to SIMD Programming

The VTune Performance Enhancement Environment CD provides tools to aid in the 
evaluation and tuning. But before you start implementing them, you need to know the 
answers to the following questions:

1. Will the current code benefit by using MMX technology, Streaming SIMD 
Extensions, or Streaming SIMD Extensions 2?

2. Is this code integer or floating-point?

3. What integer word size or floating-point precision do I need?

4. What coding techniques should I use?

5. What guidelines do I need to follow?

6. How should I arrange and align the datatypes?

Figure 3-1 provides a flowchart for the process of converting code to MMX 
technology, Streaming SIMD Extensions, or Streaming SIMD Extensions 2. 
3-6



Intel Pentium 4 and Intel Xeon Processor Optimization Coding for SIMD Architectures 3

Figure 3-1 Converting to Streaming SIMD Extensions Chart
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To use any of the SIMD technologies optimally, you must evaluate the following 
situations in your code:

• fragments that are computationally intensive

• fragments that are executed often enough to have an impact on performance

• fragments that require integer computations with little data-dependent control flow

• fragments that require floating-point computations

• fragments that require help in using the cache hierarchy efficiently.

Identifying Hot Spots

To optimize performance, you can use the VTune Performance Analyzer to find the 
sections of code that occupy most of the computation time. Such sections are called the 
hotspots. For details on the VTune analyzer, see “Application Performance Tools” in 
Appendix A. The VTune analyzer provides a hotspots view of a specific module to 
help you identify sections in your code that take the most CPU time and that have 
potential performance problems. For more explanation, see section “Sampling” in 
Appendix A, which includes an example of a hotspots report. The hotspots view helps 
you identify sections in your code that take the most CPU time and that have potential 
performance problems.

The VTune analyzer enables you to change the view to show hotspots by memory 
location, functions, classes, or source files. You can double-click on a hotspot and open 
the source or assembly view for the hotspot and see more detailed information about 
the performance of each instruction in the hotspot.

The VTune analyzer offers focused analysis and performance data at all levels of your 
source code and can also provide advice at the assembly language level. The code 
coach analyzes and identifies opportunities for better performance of C/C++, Fortran 
and Java* programs, and suggests specific optimizations. Where appropriate, the 
coach displays pseudo-code to suggest the use of highly optimized intrinsics and 
functions in the Intel® Performance Library Suite. Because VTune analyzer is 
designed specifically for all of the Intel architecture (IA)-based processors, including 
the Pentium 4 processor, it can offer these detailed approaches to working with IA. See 
“Code Optimization Options” in Appendix A for more details and example of a code 
coach advice.
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Determine If Code Benefits by Conversion to SIMD Execution

Identifying code that benefits by using SIMD technologies can be time-consuming and 
difficult. Likely candidates for conversion are applications that are highly computation 
intensive, such as the following:

• speech compression algorithms and filters

• speech recognition algorithms

• video display and capture routines

• rendering routines

• 3D graphics (geometry)

• image and video processing algorithms

• spatial (3D) audio

• physical modeling (graphics, CAD)

• workstation applications

• encryption algorithms

Generally, good candidate code is code that contains small-sized repetitive loops that 
operate on sequential arrays of integers of 8 or 16 bits for MMX technology, 
single-precision 32-bit floating-point data for SSE technology, or double precision 
64-bit floating-point data for SSE2 (integer and floating-point data items should be 
sequential in memory). The repetitiveness of these loops incurs costly application 
processing time. However, these routines have potential for increased performance 
when you convert them to use one of the SIMD technologies.

Once you identify your opportunities for using a SIMD technology, you must evaluate 
what should be done to determine whether the current algorithm or a modified one will 
ensure the best performance.
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Coding Techniques

The SIMD features of SSE2, SSE, and MMX technology require new methods of 
coding algorithms. One of them is vectorization. Vectorization is the process of 
transforming sequentially-executing, or scalar, code into code that can execute in parallel, 
taking advantage of the SIMD architecture parallelism. This section discusses the coding 
techniques available for an application to make use of the SIMD architecture.

To vectorize your code and thus take advantage of the SIMD architecture, do the 
following:

• Determine if the memory accesses have dependencies that would prevent parallel 
execution.

• “Strip-mine” the loop to reduce the iteration count by the length of the SIMD 
operations (for example, four for single-precision floating-point SIMD, eight for 
16-bit integer SIMD on the XMM registers).

• Re-code the loop with the SIMD instructions.

Each of these actions is discussed in detail in the subsequent sections of this chapter. 
These sections also discuss enabling automatic vectorization via the Intel C++ 
Compiler.

Coding Methodologies

Software developers need to compare the performance improvement that can be 
obtained from assembly code versus the cost of those improvements. Programming 
directly in assembly language for a target platform may produce the required 
performance gain, however, assembly code is not portable between processor 
architectures and is expensive to write and maintain.

Performance objectives can be met by taking advantage of the different SIMD 
technologies using high-level languages as well as assembly. The new C/C++ language 
extensions designed specifically for SSE2, SSE, and MMX technology help make this 
possible.

Figure 3-2 illustrates the trade-offs involved in the performance of hand- coded 
assembly versus the ease of programming and portability.
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The examples that follow illustrate the use of coding adjustments to enable the 
algorithm to benefit from the SSE. The same techniques may be used for 
single-precision floating-point, double-precision floating-point, and integer data under 
SSE2, SSE, and MMX technology.

As a basis for the usage model discussed in this section, consider a simple loop shown 
in Example 3-6.

Example 3-6 Simple Four-Iteration Loop

void add(float *a, float *b, float *c)

{

  int i;

  for (i = 0; i < 4; i++) {

    c[i] = a[i] + b[i];

  }

}

Note that the loop runs for only four iterations. This allows a simple replacement of the 
code with Streaming SIMD Extensions.

Figure 3-2 Hand-Coded Assembly and High-Level Compiler Performance Trade-offs
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For the optimal use of the Streaming SIMD Extensions that need data alignment on the 
16-byte boundary, all examples in this chapter assume that the arrays passed to the 
routine, a, b, c, are aligned to 16-byte boundaries by a calling routine. For the methods 
to ensure this alignment, please refer to the application notes for the Pentium 4 
processor available at http://developer.intel.com.

The sections that follow provide details on the coding methodologies: inlined 
assembly, intrinsics, C++ vector classes, and automatic vectorization.

Assembly

Key loops can be coded directly in assembly language using an assembler or by using 
inlined assembly (C-asm) in C/C++ code. The Intel compiler or assembler recognize 
the new instructions and registers, then directly generate the corresponding code. This 
model offers the opportunity for attaining greatest performance, but this performance 
is not portable across the different processor architectures. 

Example 3-7 shows the Streaming SIMD Extensions inlined assembly encoding.

Example 3-7 Streaming SIMD Extensions Using Inlined Assembly Encoding

void add(float *a, float *b, float *c)

{

  __asm {

    mov     eax, a

    mov     edx, b

    mov     ecx, c

    movaps  xmm0, XMMWORD PTR [eax]

    addps   xmm0, XMMWORD PTR [edx]

    movaps  XMMWORD PTR [ecx], xmm0

  }

}
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Intrinsics

Intrinsics provide the access to the ISA functionality using C/C++ style coding instead 
of assembly language. Intel has defined three sets of intrinsic functions that are 
implemented in the Intel® C++ Compiler to support the MMX technology, Streaming 
SIMD Extensions and Streaming SIMD Extensions 2. Four new C data types, 
representing 64-bit and 128-bit objects are used as the operands of these intrinsic 
functions. __m64 is used for MMX integer SIMD, __m128 is used for single-precision 
floating-point SIMD, __m128i is used for Streaming SIMD Extensions 2 integer SIMD 
and __m128d is used for double precision floating-point SIMD. These types enable the 
programmer to choose the implementation of an algorithm directly, while allowing the 
compiler to perform register allocation and instruction scheduling where possible. 
These intrinsics are portable among all Intel architecture-based processors supported 
by a compiler. The use of intrinsics allows you to obtain performance close to the 
levels achievable with assembly. The cost of writing and maintaining programs with 
intrinsics is considerably less. For a detailed description of the intrinsics and their use, 
refer to the Intel C++ Compiler User’s Guide.

Example 3-8 shows the loop from Example 3-4 using intrinsics.

Example 3-8 Simple Four-Iteration Loop Coded with Intrinsics

#include <xmmintrin.h>

void add(float *a, float *b, float *c)

{

 __m128 t0, t1;

  t0 = _mm_load_ps(a);

  t1 = _mm_load_ps(b);

  t0 = _mm_add_ps(t0, t1);

  _mm_store_ps(c, t0);

}
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The intrinsics map one-to-one with actual Streaming SIMD Extensions assembly code. 
The xmmintrin.h header file in which the prototypes for the intrinsics are defined is 
part of the Intel C++ Compiler included with the VTune Performance Enhancement 
Environment CD.

Intrinsics are also defined for the MMX technology ISA. These are based on the __m64 
data type to represent the contents of an mm register. You can specify values in bytes, 
short integers, 32-bit values, or as a 64-bit object. 

The intrinsic data types, however, are not a basic ANSI C data type, and therefore you 
must observe the following usage restrictions:

• Use intrinsic data types only on the left-hand side of an assignment as a return 
value or as a parameter. You cannot use it with other arithmetic expressions (for 
example, “+”, “>>”).

• Use intrinsic data type objects in aggregates, such as unions to access the byte 
elements and structures; the address of an __m64 object may be also used.

• Use intrinsic data type data only with the MMX technology intrinsics described in 
this guide.

For complete details of the hardware instructions, see the Intel Architecture MMX 
Technology Programmer’s Reference Manual. For descriptions of data types, see the 
Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference 
Manual.

Classes

A set of C++ classes has been defined and available in Intel C++ Compiler to provide 
both a higher-level abstraction and more flexibility for programming with MMX 
technology, Streaming SIMD Extensions and Streaming SIMD Extensions 2. These 
classes provide an easy-to-use and flexible interface to the intrinsic functions, allowing 
developers to write more natural C++ code without worrying about which intrinsic or 
assembly language instruction to use for a given operation. Since the intrinsic 
functions underlie the implementation of these C++ classes, the performance of 
applications using this methodology can approach that of one using the intrinsics. 
Further details on the use of these classes can be found in the Intel C++ Class 
Libraries for SIMD Operations User’s Guide, order number 693500.
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Example 3-9 shows the C++ code using a vector class library. The example assumes 
the arrays passed to the routine are already aligned to 16-byte boundaries.

Example 3-9 C++ Code Using the Vector Classes

#include <fvec.h>
void add(float *a, float *b, float *c)
{

F32vec4 *av=(F32vec4 *) a;

F32vec4 *bv=(F32vec4 *) b;

F32vec4 *cv=(F32vec4 *) c;

*cv=*av + *bv;

}

Here, fvec.h is the class definition file and F32vec4 is the class representing an 
array of four floats. The “+” and “=” operators are overloaded so that the actual 
Streaming SIMD Extensions implementation in the previous example is abstracted out, 
or hidden, from the developer. Note how much more this resembles the original code, 
allowing for simpler and faster programming.

Again, the example is assuming the arrays, passed to the routine, are already aligned to 
16-byte boundary.

Automatic Vectorization

The Intel C++ Compiler provides an optimization mechanism by which simple loops, 
such as in Example 3-6 can be automatically vectorized, or converted into Streaming 
SIMD Extensions code. The compiler uses similar techniques to those used by a 
programmer to identify whether a loop is suitable for conversion to SIMD. This 
involves determining whether the following might prevent vectorization:

• the layout of the loop and the data structures used 

• dependencies amongst the data accesses in each iteration and across iterations

Once the compiler has made such a determination, it can generate vectorized code for 
the loop, allowing the application to use the SIMD instructions.
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The caveat to this is that only certain types of loops can be automatically vectorized, 
and in most cases user interaction with the compiler is needed to fully enable this. 

Example 3-10 shows the code for automatic vectorization for the simple four-iteration 
loop (from Example 3-6).

Example 3-10 Automatic Vectorization for a Simple Loop

void add (float *restrict a, 
float *restrict b, 
float *restrict c)

{

int i;

for (i = 0; i < 4; i++) {

c[i] = a[i] + b[i];

}

}

Compile this code using the -Qax and -Qrestrict switches of the Intel C++ Compiler, 
version 4.0 or later.

The restrict qualifier in the argument list is necessary to let the compiler know that 
there are no other aliases to the memory to which the pointers point. In other words, 
the pointer for which it is used, provides the only means of accessing the memory in 
question in the scope in which the pointers live. Without this qualifier, the compiler 
will not vectorize the loop because it cannot ascertain whether the array references in 
the loop overlap, and without this information, generating vectorized code is unsafe.

Refer to the Intel® C++ Compiler User’s Guide, for more details on the use of 
automatic vectorization.

Stack and Data Alignment
To get the most performance out of code written for SIMD technologies data should be 
formatted in memory according to the guidelines described in this section. Assembly 
code with an unaligned accesses is a lot slower than an aligned access.
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Alignment and Contiguity of Data Access Patterns

The new 64-bit packed data types defined by MMX technology, and the 128-bit 
packed data types for Streaming SIMD Extensions and Streaming SIMD Extensions 2 
create more potential for misaligned data accesses. The data access patterns of many 
algorithms are inherently misaligned when using MMX technology and Streaming 
SIMD Extensions.

Using Padding to Align Data

However, when accessing SIMD data using SIMD operations, access to data can be 
improved simply by a change in the declaration. For example, consider a declaration of 
a structure, which represents a point in space plus an attribute.

typedef struct { short x,y,z; char a} Point;

Point pt[N];

Assume we will be performing a number of computations on x, y, z in three of the four 
elements of a SIMD word; see the “Data Structure Layout” section for an example. 
Even if the first element in array pt is aligned, the second element will start 7 bytes 
later and not be aligned (3 shorts at two bytes each plus a single byte = 7 bytes).

By adding the padding variable pad, the structure is now 8 bytes, and if the first 
element is aligned to 8 bytes (64 bits), all following elements will also be aligned. The 
sample declaration follows:

typedef struct { short x,y,z; char a; char pad; } Point;

Point pt[N];

Using Arrays to Make Data Contiguous

In the following code,

for (i=0; i<N; i++) pt[i].y *= scale;

the second dimension y needs to be multiplied by a scaling value. Here the for loop 
accesses each y dimension in the array pt thus disallowing the access to contiguous 
data. This can degrade the performance of the application by increasing cache misses, 
by achieving poor utilization of each cache line that is fetched, and by increasing the 
chance for accesses which span multiple cache lines.
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The following declaration allows you to vectorize the scaling operation and further 
improve the alignment of the data access patterns:

short ptx[N], pty[N], ptz[N];

for (i=0; i<N; i++) pty[i] *= scale;

With the SIMD technology, choice of data organization becomes more important and 
should be made carefully based on the operations that will be performed on the data. In 
some applications, traditional data arrangements may not lead to the maximum 
performance.

A simple example of this is an FIR filter. An FIR filter is effectively a vector dot 
product in the length of the number of coefficient taps. 

Consider the following code:

(data [ j ] *coeff [0] + data [j+1]*coeff [1]+...+data [j+num of 
taps-1]*coeff [num of taps-1]),

If in the code above the filter operation of data element i is the vector dot product that 
begins at data element j, then the filter operation of data element i+1 begins at data 
element j+1.

Assuming you have a 64-bit aligned data vector and a 64-bit aligned coefficients 
vector, the filter operation on the first data element will be fully aligned. For the 
second data element, however, access to the data vector will be misaligned. For an 
example of how to avoid the misalignment problem in the FIR filter, please refer to the 
application notes available at 
http://developer.intel.com/software/idap/processor/ia32/pentiumiii/sse.htm.

Duplication and padding of data structures can be used to avoid the problem of data 
accesses in algorithms which are inherently misaligned. The “Data Structure Layout” 
section discusses further trade-offs for how data structures are organized.

CAUTION.  The duplication and padding technique overcomes the 
misalignment problem, thus avoiding the expensive penalty for 
misaligned data access, at the cost of increasing the data size. When 
developing your code, you should consider this tradeoff and use the 
option which gives the best performance.
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Stack Alignment For 128-bit SIMD Technologies

For best performance, the Streaming SIMD Extensions and Streaming SIMD 
Extensions 2 require their memory operands to be aligned to 16-byte (16B) 
boundaries. Unaligned data can cause significant performance penalties compared to 
aligned data. However, the existing software conventions for IA-32 (stdcall, cdecl, 
fastcall) as implemented in most compilers, do not provide any mechanism for 
ensuring that certain local data and certain parameters are 16-byte aligned. Therefore, 
Intel has defined a new set of IA-32 software conventions for alignment to support the 
new __m128* datatypes (__m128, __m128d, and __m128i) that meet the following 
conditions:

• Functions that use Streaming SIMD Extensions or Streaming SIMD Extensions 2 
data need to provide a 16-byte aligned stack frame.

• The __m128* parameters need to be aligned to 16-byte boundaries, possibly 
creating “holes” (due to padding) in the argument block.

These new conventions presented in this section as implemented by the Intel C++ 
Compiler can be used as a guideline for an assembly language code as well. In many 
cases, this section assumes the use of the __m128* data types, as defined by the Intel 
C++ Compiler, which represents an array of four 32-bit floats.

For more details on the stack alignment for Streaming SIMD Extensions and SSE2, see 
Appendix D, “Stack Alignment”.

Data Alignment for MMX Technology

Many compilers enable alignment of variables using controls. This aligns the 
variables’ bit lengths to the appropriate boundaries. If some of the variables are not 
appropriately aligned as specified, you can align them using the C algorithm shown in 
Example 3-11.
3-19



Intel Pentium 4 and Intel Xeon Processor Optimization Coding for SIMD Architectures 3

Example 3-11 C Algorithm for 64-bit Data Alignment

/* Make newp a pointer to a 64-bit aligned array */

/* of NUM_ELEMENTS 64-bit elements. */

double *p, *newp;

p = (double*)malloc (sizeof(double)*(NUM_ELEMENTS+1));

newp = (p+7) & (~0x7);

The algorithm in Example 3-11 aligns an array of 64-bit elements on a 64-bit 
boundary. The constant of 7 is derived from one less than the number of bytes in a 
64-bit element, or 8-1. Aligning data in this manner avoids the significant performance 
penalties that can occur when an access crosses a cache line boundary.

Another way to improve data alignment is to copy the data into locations that are 
aligned on 64-bit boundaries. When the data is accessed frequently, this can provide a 
significant performance improvement.

Data Alignment for 128-bit data

Data must be 16-byte aligned when loading to or storing from the 128-bit XMM 
registers used by SSE and SSE2 to avoid severe performance penalties at best, and at 
worst, execution faults. Although there are move instructions (and intrinsics) to allow 
unaligned data to be copied into and out of the XMM registers when not using aligned 
data, such operations are much slower than aligned accesses. If, however, the data is 
not 16-byte-aligned and the programmer or the compiler does not detect this and uses 
the aligned instructions, a fault will occur. So, the rule is: keep the data 
16-byte-aligned. Such alignment will also work for MMX technology code, even 
though MMX technology only requires 8-byte alignment. The following discussion 
and examples describe alignment techniques for Pentium 4 processor as implemented 
with the Intel C++ Compiler.
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Compiler-Supported Alignment

The Intel C++ Compiler provides the following methods to ensure that the data is 
aligned.

Alignment by F32vec4 or __m128 Data Types. When compiler detects F32vec4 or 
__m128 data declarations or parameters, it will force alignment of the object to a 
16-byte boundary for both global and local data, as well as parameters. If the 
declaration is within a function, the compiler will also align the function’s stack frame 
to ensure that local data and parameters are 16-byte-aligned. For details on the stack 
frame layout that the compiler generates for both debug and optimized 
(“release”-mode) compilations, please refer to the relevant Intel application notes in 
the Intel Architecture Performance Training Center provided with the SDK.

The __declspec(align(16)) specifications can be placed before data declarations to 
force 16-byte alignment. This is particularly useful for local or global data declarations 
that are assigned to 128-bit data types. The syntax for it is 

__declspec(align(integer-constant))

where the integer-constant is an integral power of two but no greater than 32. For 
example, the following increases the alignment to 16-bytes:

__declspec(align(16)) float buffer[400];

The variable buffer could then be used as if it contained 100 objects of type __m128 
or F32vec4. In the code below, the construction of the F32vec4 object, x, will occur 
with aligned data. 

void foo() {

F32vec4 x = *(__m128 *) buffer;

...

}

Without the declaration of __declspec(align(16)), a fault may occur.
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Alignment by Using a union Structure. Preferably, when feasible, a union can be 
used with 128-bit data types to allow the compiler to align the data structure by default. 
Doing so is preferred to forcing alignment with __declspec(align(16)) because it 
exposes the true program intent to the compiler in that __m128 data is being used. For 
example:

union {

   float f[400];

   __m128 m[100];

} buffer;

The 16-byte alignment is used by default due to the __m128 type in the union; it is not 
necessary to use __declspec(align(16)) to force it.

In C++ (but not in C) it is also possible to force the alignment of a 
class/struct/union type, as in the code that follows:

struct __declspec(align(16)) my_m128
{

  float f[4];
};

But, if the data in such a class is going to be used with the Streaming SIMD 
Extensions or Streaming SIMD Extensions 2, it is preferable to use a union to make 
this explicit. In C++, an anonymous union can be used to make this more convenient:

class my_m128 {

  union {

   __m128 m;

    float f[4];

  };

};

In this example, because the union is anonymous, the names, m and f, can be used as 
immediate member names of my__m128. Note that __declspec(align) has no effect 
when applied to a class, struct, or union member in either C or C++.
3-22



Intel Pentium 4 and Intel Xeon Processor Optimization Coding for SIMD Architectures 3

Alignment by Using __m64 or double Data. In some cases, for better performance, 
the compiler will align routines with __m64 or double data to 16-bytes by default. The 
command-line switch, -Qsfalign16, can be used to limit the compiler to only align in 
routines that contain 128-bit data. The default behavior is to use -Qsfalign8, which 
instructs to align routines with 8- or 16-byte data types to 16-bytes.

For more details, see relevant Intel application notes in the Intel Architecture 
Performance Training Center provided with the SDK and the Intel C++ Compiler 
User’s Guide.

Improving Memory Utilization
Memory performance can be improved by rearranging data and algorithms for SE 2, 
SSE, and MMX technology intrinsics. The methods for improving memory 
performance involve working with the following:

• Data structure layout

• Strip-mining for vectorization and memory utilization

• Loop-blocking

Using the cacheability instructions, prefetch and streaming store, also greatly enhance 
memory utilization. For these instructions, see Chapter 6, “Optimizing Cache Usage 
for Intel Pentium 4 Processors”.

Data Structure Layout

For certain algorithms, like 3D transformations and lighting, there are two basic ways 
of arranging the vertex data. The traditional method is the array of structures (AoS) 
arrangement, with a structure for each vertex (see Example 3-12). However this 
method does not take full advantage of the SIMD technology capabilities.
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Example 3-12 AoS data structure

typedef struct{

float x,y,z;
int a,b,c;
. . .

} Vertex;
Vertex Vertices[NumOfVertices];

The best processing method for code using SIMD technology is to arrange the data in 
an array for each coordinate (see Example 3-13). This data arrangement is called 
structure of arrays (SoA).

Example 3-13 SoA data structure

  typedef struct{

float x[NumOfVertices];

float y[NumOfVertices];

float z[NumOfVertices];

int a[NumOfVertices];

int b[NumOfVertices];

int c[NumOfVertices];

. . . 

 } VerticesList;

  VerticesList Vertices;

There are two options for computing data in AoS format: perform operation on the 
data as it stands in AoS format, or re-arrange it (swizzle it) into SoA format 
dynamically. See Example 3-14 for code samples of each option based on a 
dot-product computation.
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Example 3-14 AoS and SoA Code Samples

; The dot product of an array of vectors (Array) and a

; fixed vector (Fixed) is a common operation in 3D

; lighting operations,

;   where Array = (x0,y0,z0),(x1,y1,z1),...

;     and Fixed = (xF,yF,zF)  

; A dot product is defined as the scalar quantity

;            d0 = x0*xF + y0*yF + z0*zF.

; AoS code

; All values marked DC are “don’t-care.”

; In the AOS model, the vertices are stored in the

; xyz format

movaps  xmm0, Array      ; xmm0 = DC, x0,    y0,    z0

movaps  xmm1, Fixed      ; xmm1 = DC, xF,    yF,    zF

mulps   xmm0, xmm1       ; xmm0 = DC, x0*xF, y0*yF, z0*zF

movhlps xmm1, xmm0       ; xmm1 = DC, DC,    DC,    x0*xF

addps   xmm1, xmm0       ; xmm0 = DC, DC,    DC,   

                         ;                    x0*xF+z0*zF

movaps  xmm2, xmm1

shufps  xmm2, xmm2,55h   ; xmm2 = DC, DC,    DC,    y0*yF

addps   mm2, xmm1        ; xmm1 = DC, DC,    DC, 

                         ;              x0*xF+y0*yF+z0*zF

; SoA code

;

; X = x0,x1,x2,x3

; Y = y0,y1,y2,y3

; Z = z0,z1,z2,z3

continued
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Example 3-14 AoS and SoA Code Samples (continued)

; A = xF,xF,xF,xF

; B = yF,yF,yF,yF

; C = zF,zF,zF,zF

movaps xmm0, X        ; xmm0 = x0,x1,x2,x3

movaps xmm1, Y        ; xmm0 = y0,y1,y2,y3

movaps xmm2, Z        ; xmm0 = z0,z1,z2,z3

mulps  xmm0, A        ; xmm0 = x0*xF, x1*xF, x2*xF, x3*xF

mulps  xmm1, B        ; xmm1 = y0*yF, y1*yF, y2*yF, y3*xF

mulps  xmm2, C        ; xmm2 = z0*zF, z1*zF, z2*zF, z3*zF

addps  xmm0, xmm1

addps  xmm0, xmm2     ; xmm0 = (x0*xF+y0*yF+z0*zF), ...

Performing SIMD operations on the original AoS format can require more calculations 
and some of the operations do not take advantage of all of the SIMD elements 
available. Therefore, this option is generally less efficient.

The recommended way for computing data in AoS format is to swizzle each set of 
elements to SoA format before processing it using SIMD technologies. This swizzling 
can either be done dynamically during program execution or statically when the data 
structures are generated; see Chapters 4 and 5 for specific examples of swizzling code. 
Performing the swizzle dynamically is usually better than using AoS, but is somewhat 
inefficient as there is the overhead of extra instructions during computation. 
Performing the swizzle statically, when the data structures are being laid out, is best as 
there is no runtime overhead.

As mentioned earlier, the SoA arrangement allows more efficient use of the parallelism 
of the SIMD technologies because the data is ready for computation in a more optimal 
vertical manner: multiplying components x0,x1,x2,x3 by xF,xF,xF,xF using 4 
SIMD execution slots to produce 4 unique results. In contrast, computing directly on 
AoS data can lead to horizontal operations that consume SIMD execution slots but 
produce only a single scalar result as shown by the many “don’t-care” (DC) slots in 
Example 3-14.
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Use of the SoA format for data structures can also lead to more efficient use of caches 
and bandwidth. When the elements of the structure are not accessed with equal 
frequency, such as when element x, y, z are accessed ten times more often than the 
other entries, then SoA not only saves memory, but it also prevents fetching 
unnecessary data items a, b, and c.

Example 3-15 Hybrid SoA data structure

NumOfGroups = NumOfVertices/SIMDwidth

  typedef struct{

float x[SIMDwidth];

float y[SIMDwidth];

float z[SIMDwidth];

} VerticesCoordList;

typedef struct{

int a[SIMDwidth];

int b[SIMDwidth];

int c[SIMDwidth];

. . . 

 } VerticesColorList;

  VerticesCoordList VerticesCoord[NumOfGroups];

VerticesColorList VerticesColor[NumOfGroups];

Note that SoA can have the disadvantage of requiring more independent memory 
stream references. A computation that uses arrays x, y, and z in Example 3-13 would 
require three separate data streams. This can require the use of more prefetches, 
additional address generation calculations, as well as having a greater impact on 
DRAM page access efficiency. An alternative, a hybrid SoA approach blends the two 
alternatives (see Example 3-15). In this case, only 2 separate address streams are 
generated and referenced: one which contains xxxx,yyyy,zzzz,zzzz,... and the 
other which contains aaaa,bbbb,cccc,aaaa,dddd,.... This also prevents fetching 
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unnecessary data, assuming the variables x, y, z are always used together; whereas the 
variables a, b, c would also used together, but not at the same time as x, y, z. This 
hybrid SoA approach ensures:

• data is organized to enable more efficient vertical SIMD computation,

• simpler/less address generation than AoS,

• fewer streams, which reduces DRAM page misses,

• use of fewer prefetches, due to fewer streams,

• efficient cache line packing of data elements that are used concurrently.

With the advent of the SIMD technologies, the choice of data organization becomes 
more important and should be carefully based on the operations to be performed on the 
data. This will become increasingly important in the Pentium 4 processor and future 
processors. In some applications, traditional data arrangements may not lead to the 
maximum performance. Application developers are encouraged to explore different 
data arrangements and data segmentation policies for efficient computation. This may 
mean using a combination of AoS, SoA, and Hybrid SoA in a given application. 

Strip Mining

Strip mining, also known as loop sectioning, is a loop transformation technique for 
enabling SIMD-encodings of loops, as well as providing a means of improving 
memory performance. First introduced for vectorizers, this technique consists of the 
generation of code when each vector operation is done for a size less than or equal to 
the maximum vector length on a given vector machine. By fragmenting a large loop 
into smaller segments or strips, this technique transforms the loop structure twofold:

• It increases the temporal and spatial locality in the data cache if the data are 
reusable in different passes of an algorithm.

• It reduces the number of iterations of the loop by a factor of the length of each 
“vector,” or number of operations being performed per SIMD operation. In the 
case of Streaming SIMD Extensions, this vector or strip-length is reduced by 4 
times: four floating-point data items per single Streaming SIMD Extensions 
single-precision floating-point SIMD operation are processed. Consider 
Example 3-16.
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Example 3-16 Pseudo-code Before Strip Mining

typedef struct _VERTEX {

float x, y, z, nx, ny, nz, u, v;

 } Vertex_rec; 

 

main()

 {

Vertex_rec v[Num];

....

for (i=0; i<Num; i++) {

  Transform(v[i]);

}

for (i=0; i<Num; i++) {

  Lighting(v[i]);

}

....

 }

The main loop consists of two functions: transformation and lighting. For each object, 
the main loop calls a transformation routine to update some data, then calls the lighting 
routine to further work on the data. If the size of array v[Num] is larger than the cache, 
then the coordinates for v[i] that were cached during Transform(v[i]) will be 
evicted from the cache by the time we do Lighting(v[i]). This means that v[i] will 
have to be fetched from main memory a second time, reducing performance.
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Example 3-17 Strip Mined Code

main()

{

Vertex_rec v[Num];

....

for (i=0; i < Num; i+=strip_size) {

  for (j=i; j < min(Num, i+strip_size); j++) {

 Transform(v[j]);

  }

  for (j=i; j < min(Num, i+strip_size); j++) {

 Lighting(v[j]); 

  }

}

}

In Example 3-17, the computation has been strip-mined to a size strip_size. The 
value strip_size is chosen such that strip_size elements of array v[Num] fit into 
the cache hierarchy. By doing this, a given element v[i] brought into the cache by 
Transform(v[i]) will still be in the cache when we perform Lighting(v[i]), and 
thus improve performance over the non-strip-mined code.

Loop Blocking

Loop blocking is another useful technique for memory performance optimization. The 
main purpose of loop blocking is also to eliminate as many cache misses as possible. 
This technique transforms the memory domain of a given problem into smaller chunks 
rather than sequentially traversing through the entire memory domain. Each chunk 
should be small enough to fit all the data for a given computation into the cache, 
thereby maximizing data reuse. In fact, one can treat loop blocking as strip mining in 
two or more dimensions. Consider the code in Example 3-16 and access pattern in 
Figure 3-3. The two-dimensional array A is referenced in the j (column) direction and 
then referenced in the i (row) direction (column-major order); whereas array B is 
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referenced in the opposite manner (row-major order). Assume the memory layout is in 
column-major order; therefore, the access strides of array A and B for the code in 
Example 3-18 would be 1 and MAX, respectively.

Example 3-18 Loop Blocking

A. Original loop
float A[MAX, MAX], B[MAX, MAX]

for (i=0; i< MAX; i++) {

for (j=0; j< MAX; j++) {

A[i,j] = A[i,j] + B[j, i];

}
}

B. Transformed Loop after Blocking

float A[MAX, MAX], B[MAX, MAX]; 

for (i=0; i< MAX; i+=block_size) {

for (j=0; j< MAX; j+=block_size) {

for (ii=i; ii<i+block_size; ii++) {

for (jj=j; jj<j+block_size; jj++) {

A[ii,jj] = A[ii,jj] + B[jj, ii];

}
}

}
}

For the first iteration of the inner loop, each access to array B will generate a cache miss. If the 
size of one row of array A, that is, A[2, 0:MAX-1], is large enough, by the time the 
second iteration starts, each access to array B will always generate a cache miss. For 
instance, on the first iteration, the cache line containing B[0, 0:7] will be brought in 
when B[0,0] is referenced because the float type variable is four bytes and each 
cache line is 32 bytes. Due to the limitation of cache capacity, this line will be evicted 
due to conflict misses before the inner loop reaches the end. For the next iteration of 
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the outer loop, another cache miss will be generated while referencing B[0,1]. In this 
manner, a cache miss occurs when each element of array B is referenced, that is, there 
is no data reuse in the cache at all for array B.

This situation can be avoided if the loop is blocked with respect to the cache size. In 
Figure 3-3, a block_size is selected as the loop blocking factor. Suppose that 
block_size is 8, then the blocked chunk of each array will be eight cache lines 
(32 bytes each). In the first iteration of the inner loop, A[0, 0:7] and B[0, 0:7] will 
be brought into the cache. B[0, 0:7] will be completely consumed by the first 
iteration of the outer loop. Consequently, B[0, 0:7] will only experience one cache 
miss after applying loop blocking optimization in lieu of eight misses for the original 
algorithm. As illustrated in Figure 3-3, arrays A and B are blocked into smaller 
rectangular chunks so that the total size of two blocked A and B chunks is smaller than 
the cache size. This allows maximum data reuse.

Figure 3-3 Loop Blocking Access Pattern
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As one can see, all the redundant cache misses can be eliminated by applying this loop 
blocking technique. If MAX is huge, loop blocking can also help reduce the penalty from 
DTLB (data translation look-aside buffer) misses. In addition to improving the 
cache/memory performance, this optimization technique also saves external bus 
bandwidth.

Instruction Selection
The following section gives some guidelines for choosing instructions to complete a 
task.

One barrier to SIMD computation can be the existence of data-dependent branches. 
Conditional moves can be used to eliminate data-dependent branches. Conditional 
moves can be emulated in SIMD computation by using masked compares and logicals, 
as shown in Example 3-19.

Example 3-19 Emulation of Conditional Moves

High-level code:

short A[MAX_ELEMENT], B[MAX_ELEMENT], C[MAX_ELEMENT], D[MAX_ELEMENT], 
E[MAX_ELEMENT];

for (i=0; i<MAX_ELEMENT; i++) {

if (A[i] > B[i]) {

C[i] = D[i];

} else {

C[i] = E[i];

}

}

Assembly code:

xor eax, eax

continued
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Example 3-19 Emulation of Conditional Moves (continued)

top_of_loop:

movq mm0, [A + eax]

pcmpgtw mm0, [B + eax]; Create compare mask

movq mm1, [D + eax]

pand mm1, mm0; Drop elements where A<B

pandn mm0, [E + eax] ; Drop elements where A>B

por mm0, mm1; Crete single word

movq [C + eax], mm0

add eax, 8

cmp eax, MAX_ELEMENT*2

jle top_of_loop

Note that this can be applied to both SIMD integer and SIMD floating-point code.

If there are multiple consumers of an instance of a register, group the consumers 
together as closely as possible. However, the consumers should not be scheduled near 
the producer.

Tuning the Final Application
The best way to tune your application once it is functioning correctly is to use a 
profiler that measures the application while it is running on a system. VTune analyzer 
can help you determine where to make changes in your application to improve 
performance. Using the VTune analyzer can help you with various phases required for 
optimized performance. See “Intel VTune Performance Analyzer” in Appendix A for 
more details on how to use the VTune analyzer. After every effort to optimize, you 
should check the performance gains to see where you are making your major 
optimization gains.
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Optimizing for
SIMD Integer Applications
The SIMD integer instructions provide performance improvements in applications that 
are integer-intensive and can take advantage of the SIMD architecture of Intel 
Pentium II, Pentium III, and Pentium 4 processors.

The guidelines for using these instructions in addition to the guidelines described in 
Chapter 2, will help develop fast and efficient code that scales well across all 
processors with MMX technology, processors that use Streaming SIMD Extensions 
(SSE) SIMD integer instructions, as well as the Pentium 4 processor with the SIMD 
integer instructions in the Streaming SIMD Extensions 2 (SSE2).

For the sake of brevity, the collection of 64-bit and 128-bit SIMD integer instructions 
supported by MMX technology, SSE, and SSE2 shall be referred to as SIMD integer 
instructions.

Unless otherwise noted, the following sequences are written for the 64-bit integer 
registers. Note that they can easily be changed to use the 128-bit SIMD integer form 
available with SSE2 by replacing the references to mm0-mm7 with references to 
xmm0-xmm7.

This chapter contains several simple examples that will help you to get started with 
coding your application. The goal is to provide simple, low-level operations that are 
frequently used. The examples use a minimum number of instructions necessary to 
achieve best performance on the Pentium, Pentium Pro, Pentium II, Pentium III and 
Pentium 4 processors.

Each example includes a short description, sample code, and notes if necessary. These 
examples do not address scheduling as it is assumed the examples will be incorporated 
in longer code sequences.

For planning considerations of using the new SIMD integer instructions, refer to 
“Checking for Streaming SIMD Extensions 2 Support” in Chapter 3.
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General Rules on SIMD Integer Code

The overall rules and suggestions are as follows:

• Do not intermix 64-bit SIMD integer instructions with x87 floating-point 
instructions. See “Using SIMD Integer with x87 Floating-point” section. Note that 
all of the SIMD integer instructions can be intermixed without penalty. 

• When writing SSE2 code that works with both integer and floating-point data, use 
the subset of SIMD convert instructions or load/store instructions to ensure that the 
input operands in XMM registers contain properly defined data type to match the 
instruction. Code sequences containing cross-typed usage will produce the same 
result across different implementations, but will incur a significant performance 
penalty. Using SSE or SSE2 instructions to operate on type-mismatched SIMD 
data in the XMM register is strongly discouraged.

• Use the optimization rules and guidelines described in Chapters 2 and 3 that apply 
both to the Pentium 4 processor in general and to using the SIMD integer 
instructions.

• Incorporate the prefetch instruction whenever possible (for details, refer to  
Chapter 6, “Optimizing Cache Usage for Intel Pentium 4 Processors”).

• Emulate conditional moves by using masked compares and logicals instead of 
using conditional branches.

Using SIMD Integer with x87 Floating-point
All 64-bit SIMD integer instructions use the MMX registers, which share register state 
with the x87 floating-point stack. Because of this sharing, certain rules and 
considerations apply. Instructions which use the MMX registers cannot be freely 
intermixed with x87 floating-point registers. Care must be taken when switching 
between using 64-bit SIMD integer instructions and x87 floating-point instructions 
(see “Using the EMMS Instruction” section below).

The SIMD floating-point operations and 128-bit SIMD integer operations can be 
freely intermixed with either x87 floating-point operations or 64-bit SIMD integer 
operations. The SIMD floating-point operations and 128-bit SIMD integer operations 
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use registers that are unrelated to the x87 FP / MMX registers. The emms instruction is 
not needed to transition to or from SIMD floating-point operations or 128-bit SIMD 
operations.

Using the EMMS Instruction

When generating 64-bit SIMD integer code, keep in mind that the eight MMX 
registers are aliased on the x87 floating-point registers. Switching from MMX 
instructions to x87 floating-point instructions incurs a finite delay, so it is the best to 
minimize switching between these instruction types. But when you need to switch, the 
emms instruction provides an efficient means to clear the x87 stack so that subsequent 
x87 code can operate properly on the x87 stack.

As soon as any instruction makes reference to an MMX register, all valid bits in the 
x87 floating-point tag word are set, which implies that all x87 registers contain valid 
values. In order for software to operate correctly, the x87 floating-point stack should 
be emptied when starting a series of x87 floating-point calculations after operating on 
the MMX registers

Using emms clears all of the valid bits, effectively emptying the x87 floating-point 
stack and making it ready for new x87 floating-point operations. The emms instruction 
ensures a clean transition between using operations on the MMX registers and using 
operations on the x87 floating-point stack. On the Pentium 4 processor, there is a finite 
overhead for using the emms instruction. 

Failure to use the emms instruction (or the _mm_empty() intrinsic) between operations 
on the MMX registers and operations on the x87 floating-point registers may lead to 
unexpected results.

CAUTION.  Failure to reset the tag word for FP instructions after 
using an MMX instruction can result in faulty execution or poor 
performance.
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Guidelines for Using EMMS Instruction

When developing code with both x87 floating-point and 64-bit SIMD integer 
instructions, follow these steps:

1. Always call the emms instruction at the end of 64-bit SIMD integer code when the 
code transitions to x87 floating-point code.

2. Insert the emms instruction at the end of all 64-bit SIMD integer code segments to 
avoid an x87 floating-point stack overflow exception when an x87 floating-point 
instruction is executed.

When writing an application that uses both floating-point and 64-bit SIMD integer 
instructions, use the following guidelines to help you determine when to use emms:

• If next instruction is x87 FP: Use _mm_empty() after a 64-bit SIMD integer 
instruction if the next instruction is an x87 FP instruction; for example, before 
doing calculations on floats, doubles or long doubles.

• Don’t empty when already empty: If the next instruction uses an MMX register, 
_mm_empty() incurs a cost with no benefit.

• Group Instructions: Try to partition regions that use x87 FP instructions from 
those that use 64-bit SIMD integer instructions. This eliminates needing an emms 
instruction within the body of a critical loop.

• Runtime initialization: Use _mm_empty() during runtime initialization of __m64 
and x87 FP data types. This ensures resetting the register between data type 
transitions. See Example 4-1 for coding usage.

Example 4-1 Resetting the Register between __m64 and FP Data Types

Incorrect Usage   Correct Usage

__m64 x = _m_paddd(y, z); __m64 x = _m_paddd(y, z);

float f = init(); float f = (_mm_empty(), init());
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Further, you must be aware that your code generates an MMX instruction, which uses 
the MMX registers with the Intel C++ Compiler, in the following situations:

• when using a 64-bit SIMD integer intrinsic from MMX technology, SSE, or SSE2

• when using a 64-bit SIMD integer instruction from MMX technology, SSE, or 
SSE2 through inline assembly

• when referencing an __m64 data type variable

Additional information on the x87 floating-point programming model can be found in 
the IA-32 Intel® Architecture Software Developer’s Manual, Volume 1. For more 
documentation on emms, visit the http://developer.intel.com web site.

Data Alignment
Make sure that 64-bit SIMD integer data is 8-byte aligned and that 128-bit SIMD 
integer data is 16-byte aligned.  Referencing unaligned 64-bit SIMD integer data can 
incur a performance penalty due to accesses that span 2 cache lines. Referencing 
unaligned 128-bit SIMD integer data will result in an exception unless the movdqu 
(move double-quadword unaligned) instruction is used. Using the movdqu instruction 
on unaligned data can result in lower performance than using 16-byte aligned 
references.

Refer to section “Stack and Data Alignment” in Chapter 3 for more information.

Data Movement Coding Techniques
In general, better performance can be achieved if the data is pre-arranged for SIMD 
computation (see the “Improving Memory Utilization” section of Chapter 3). 
However, this may not always be possible. This section covers techniques for 
gathering and re-arranging data for more efficient SIMD computation.

Unsigned Unpack

The MMX technology provides several instructions that are used to pack and unpack 
data in the MMX registers. The unpack instructions can be used to zero-extend an 
unsigned number. Example 4-2 assumes the source is a packed-word (16-bit) data 
type.
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Example 4-2 Unsigned Unpack Instructions

; Input:  

; MM0 source value
; MM7 0 a local variable can be used
; instead of the register MM7 if
; desired.

; Output: 

; MM0 two zero-extended 32-bit
; doublewords from two low-end
; words

; MM1 two zero-extended 32-bit
; doublewords from two high-end 
; words 

movq MM1, MM0 ; copy source

punpcklwd MM0, MM7 ; unpack the 2 low-end words 
; into two 32-bit doubleword

punpckhwd MM1, MM7 ; unpack the 2 high-end words
; into two 32-bit doublewords

Signed Unpack

Signed numbers should be sign-extended when unpacking the values. This is similar to 
the zero-extend shown above except that the psrad instruction (packed shift right 
arithmetic) is used to effectively sign extend the values. Example 4-3 assumes the 
source is a packed-word (16-bit) data type.
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Example 4-3 Signed Unpack Code

; Input:

; MM0 source value

; Output:

; MM0 two sign-extended 32-bit doublewords 
; from the two low-end words
; MM1 two sign-extended 32-bit doublewords 
; from the two high-end words

; 

movq MM1, MM0 ; copy source

punpcklwd MM0, MM0 ; unpack the 2 low end words of the source
; into the second and fourth words of the
; destination

punpckhwd MM1, MM1 ; unpack the 2 high-end words of the source
; into the second and fourth words of the
; destination

psrad MM0, 16 ; sign-extend the 2 low-end words of the source
; into two 32-bit signed doublewords

psrad MM1, 16 ; sign-extend the 2 high-end words of the
; source into two 32-bit signed doublewords 

Interleaved Pack with Saturation

The pack instructions pack two values into the destination register in a predetermined 
order. Specifically, the packssdw instruction packs two signed doublewords from the 
source operand and two signed doublewords from the destination operand into four 
signed words in the destination register as shown in Figure 4-1.
4-7



Intel Pentium 4 and Intel Xeon Processor Optimization Optimizing for SIMD Integer Applications 4
Figure 4-2 illustrates two values interleaved in the destination register, and 
Example 4-4 shows code that uses the operation. The two signed doublewords are used 
as source operands and the result is interleaved signed words. The pack instructions 
can be performed with or without saturation as needed.

Figure 4-1 PACKSSDW mm, mm/mm64 Instruction Example

Figure 4-2 Interleaved Pack with Saturation

mm/m64 mm

mm

ABCD

A 1B 1C 1D 1

MM/M64 mm

mm

ABCD

A1B1 C1D1
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Example 4-4 Interleaved Pack with Saturation

; Input:

MM0 signed source1 value
; MM1 signed source2 value

; Output:

MM0 the first and third words contain the 
; signed-saturated doublewords from MM0, 
; the second and fourth words contain
; signed-saturated doublewords from MM1 

;

packssdw MM0, MM0 ; pack and sign saturate

packssdw MM1, MM1 ; pack and sign saturate

punpcklwd MM0, MM1 ; interleave the low-end 16-bit 
; values of the operands

The pack instructions always assume that the source operands are signed numbers. The 
result in the destination register is always defined by the pack instruction that performs 
the operation. For example, the packssdw instruction packs each of the two signed 
32-bit values of the two sources into four saturated 16-bit signed values in the 
destination register. The packuswb instruction, on the other hand, packs each of the 
four signed 16-bit values of the two sources into eight saturated eight-bit unsigned 
values in the destination. A complete specification of the MMX instruction set can be 
found in the Intel Architecture MMX Technology Programmer’s Reference Manual, 
order number 243007.

Interleaved Pack without Saturation

Example 4-5 is similar to Example 4-4 except that the resulting words are not 
saturated. In addition, in order to protect against overflow, only the low order 16 bits of 
each doubleword are used in this operation.
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Example 4-5 Interleaved Pack without Saturation

; Input:

; MM0 signed source value
; MM1 signed source value

; Output:

; MM0 the first and third words contain the
; low 16-bits of the doublewords in MM0,
;     the second and fourth words contain the 
; low 16-bits of the doublewords in MM1

pslld MM1, 16 ; shift the 16 LSB from each of the 
; doubleword values to the 16 MSB 
; position

pand MM0, {0,ffff,0,ffff} 
; mask to zero the 16 MSB
; of each doubleword value

por MM0, MM1 ; merge the two operands

Non-Interleaved Unpack

The unpack instructions perform an interleave merge of the data elements of the 
destination and source operands into the destination register. The following example 
merges the two operands into the destination registers without interleaving. For 
example, take two adjacent elements of a packed-word data type in source1 and place 
this value in the low 32 bits of the results. Then take two adjacent elements of a 
packed-word data type in source2 and place this value in the high 32 bits of the 
results. One of the destination registers will have the combination illustrated in 
Figure 4-3.
4-10



Intel Pentium 4 and Intel Xeon Processor Optimization Optimizing for SIMD Integer Applications 4
The other destination register will contain the opposite combination illustrated in 
Figure 4-4. 

Code in the Example 4-6 unpacks two packed-word sources in a non-interleaved way. 
The goal is to use the instruction which unpacks doublewords to a quadword, instead 
of using the instruction which unpacks words to doublewords.

Figure 4-3 Result of Non-Interleaved Unpack Low in MM0

Figure 4-4 Result of Non-Interleaved Unpack High in MM1
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Example 4-6 Unpacking Two Packed-word Sources in a Non-interleaved Way

; Input:

; MM0 packed-word source value
; MM1 packed-word source value

; Output:

; MM0 contains the two low-end words of the
; original sources, non-interleaved 
; MM2 contains the two high end words of the
; original sources, non-interleaved.

movq MM2, MM0 ; copy source1

punpckldq MM0, MM1 ; replace the two high-end words 
; of MMO with two low-end words of 
; MM1; leave the two low-end words
; of MM0 in place

punpckhdq MM2, MM1 ; move two high-end words of MM2
; to the two low-end words of MM2;
; place the two high-end words of
; MM1 in two high-end words of MM2

Extract Word

The pextrw instruction takes the word in the designated MMX register selected by the 
two least significant bits of the immediate value and moves it to the lower half of a 
32-bit integer register, see Figure 4-5 and Example 4-7.
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Example 4-7 pextrw Instruction Code

; Input:

; eax source value

; immediate value:“0”

; Output:

; edx 32-bit integer register containing the

; extracted word in the low-order bits &

; the high-order bits zero-extended

movq mm0, [eax] 

pextrw edx, mm0, 0

Insert Word

The pinsrw instruction loads a word from the lower half of a 32-bit integer register or 
from memory and inserts it in the MMX technology destination register at a position 
defined by the two least significant bits of the immediate constant. Insertion is done in 
such a way that the three other words from the destination register are left untouched, 
see Figure 4-6 and Example 4-8.

 

Figure 4-5 pextrw Instruction
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Example 4-8 pinsrw Instruction Code

; Input:

; edx  pointer to source value

; Output:

; mm0  register with new 16-bit value inserted

;

mov eax, [edx] 

pinsrw mm0, eax, 1

If all of the operands in a register are being replaced by a series of pinsrw instructions, 
it can be useful to clear the content and break the dependence chain by either using the 
pxor instruction or loading the register. See the “Clearing Registers” section in 
Chapter 2.

Figure 4-6 pinsrw Instruction
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Example 4-9 Repeated pinsrw Instruction Code

; Input:

; edx  pointer to structure containing source

; values at offsets: of +0, +10, +13, and +24
; immediate value: “1”

; Output:

; MMX register with new 16-bit value inserted

;

pxor mm0, mm0 ; Breaks dependedncy on previous value of mm0

mov eax, [edx] 

pinsrw mm0, eax, 0

mov eax, [edx+10] 

pinsrw mm0, eax, 1

mov eax, [edx+13] 

pinsrw mm0, eax, 2

mov eax, [edx+24] 

pinsrw mm0, eax, 3

Move Byte Mask to Integer

The pmovmskb instruction returns a bit mask formed from the most significant bits of 
each byte of its source operand. When used with the 64-bit MMX registers, this 
produces an 8-bit mask, zeroing out the upper 24 bits in the destination register. When 
used with the 128-bit XMM registers, it produces a 16-bit mask, zeroing out the upper 
16 bits in the destination register. The 64-bit version is shown in Figure 4-7 and 
Example 4-10.
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Example 4-10 pmovmskb Instruction Code

; Input:

; source value

; Output:

; 32-bit register containing the byte mask in the lower 
; eight bits

;

movq     mm0, [edi] 

pmovmskb eax, mm0

Figure 4-7 pmovmskb Instruction Example
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Packed Shuffle Word for 64-bit Registers

The pshuf instruction (see Figure 4-8, Example 4-11) uses the immediate (imm8) 
operand to select between the four words in either two MMX registers or one MMX 
register and a 64-bit memory location. Bits 1 and 0 of the immediate value encode the 
source for destination word 0 in MMX register ([15-0]), and so on as shown in the 
table:

Bits 7 and 6 encode for word 3 in MMX register ([63-48]). Similarly, the 2-bit 
encoding represents which source word is used, for example, binary encoding of 10 
indicates that source word 2 in MMX register/memory (mm/mem[47-32]) is used, see 
Figure 4-8 and Example 4-11.

Bits Word

1 - 0 0

3 - 2 1

5 - 4 2

7 - 6 3

Figure 4-8 pshuf Instruction Example
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Example 4-11 pshuf Instruction Code

; Input:  

; edi source value

; Output: 

; MM1 MM register containing re-arranged words

movq mm0, [edi] 

pshufw mm1, mm0, 0x1b

Packed Shuffle Word for 128-bit Registers

The pshuflw/pshufhw instruction performs a full shuffle of any source word field 
within the low/high 64 bits to any result word field in the low/high 64 bits, using an 
8-bit immediate operand; the other high/low 64 bits are passed through from the source 
operand.

The pshufd instruction performs a full shuffle of any double-word field within the 
128-bit source to any double-word field in the 128-bit result, using an 8-bit immediate 
operand.

No more than 3 instructions, using pshuflw/pshufhw/pshufd, are required to 
implement some common data shuffling operations. Broadcast, Swap, and Reverse are 
illustrated in Example 4-12, Example 4-13, and Example 4-14, respectively.

Example 4-12 Broadcast using 2 instructions

/* Goal:  Broadcast the value from word 5 to all words */

/* Instruction Result */

| 7| 6| 5| 4| 3| 2| 1| 0|

PSHUFHW (3,2,1,1)| 7| 6| 5| 5| 3| 2| 1| 0|

PSHUFD (2,2,2,2)| 5| 5| 5| 5| 5| 5| 5| 5|
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Example 4-13 Swap using 3 instructions

/* Goal:  Swap the values in word 6 and word 1 */

/* Instruction Result */

| 7| 6| 5| 4| 3| 2| 1| 0|

PSHUFD (3,0,1,2)| 7| 6| 1| 0| 3| 2| 5| 4|

PSHUFHW (3,1,2,0)| 7| 1| 6| 0| 3| 2| 5| 4|

PSHUFD (3,0,1,2)| 7| 1| 5| 4| 3| 2| 6| 0|

Example 4-14 Reverse using 3 instructions

/* Goal:  Reverse the order of the words */

/* Instruction Result */

| 7| 6| 5| 4| 3| 2| 1| 0|

PSHUFLW (0,1,2,3)| 7| 6| 5| 4| 0| 1| 2| 3|

PSHUFHW (0,1,2,3)| 4| 5| 6| 7| 0| 1| 2| 3|

PSHUFD (1,0,3,2)| 0| 1| 2| 3| 4| 5| 6| 7|

Unpacking/interleaving 64-bit Data in 128-bit Registers

The punpcklqdq/punpchqdq instructions interleave the low/high-order 64-bits of the 
source operand and the low/high-order 64-bits of the destination operand and writes 
them to the destination register. The high/low-order 64-bits of the source operands are 
ignored.
4-19



Intel Pentium 4 and Intel Xeon Processor Optimization Optimizing for SIMD Integer Applications 4

Data Movement 

There are two additional instructions to enable data movement from the 64-bit SIMD 
integer registers to the 128-bit SIMD registers. 

The movq2dq instruction moves the 64-bit integer data from an MMX register (source) 
to a 128-bit destination register. The high-order 64 bits of the destination register are 
zeroed-out.

The movdq2q instruction moves the low-order 64-bits of integer data from a 128-bit 
source register to an MMX register (destination). 

Conversion Instructions

New instructions have been added to support 4-wide conversion of single-precision 
data to/from double-word integer data. Also, conversions between double-precision 
data and double-word integer data have been added.

Generating Constants
The SIMD integer instruction sets do not have instructions that will load immediate 
constants to the SIMD registers. The following code segments generate frequently 
used constants in the SIMD register. Of course, you can also put constants as local 
variables in memory, but when doing so be sure to duplicate the values in memory and 
load the values with a movq, movdqa, or movdqu instructions, see Example 4-15.

Example 4-15 Generating Constants

pxor MM0, MM0 ; generate a zero register in MM0

pcmpeq MM1, MM1 ; Generate all 1’s in register MM1,
; which is -1 in each of the packed
; data type fields

pxor MM0, MM0

pcmpeq MM1, MM1

psubb MM0, MM1 [psubw  MM0, MM1] (psubd  MM0, MM1)

continued
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Example 4-15  Generating Constants (continued)

; three instructions above generate 
; the constant 1 in every 
; packed-byte [or packed-word] 
; (or packed-dword) field

pcmpeq MM1, MM1

psrlw MM1, 16-n(psrld  MM1, 32-n)

; two instructions above generate 
; the signed constant 2n–1 in every 
; packed-word (or packed-dword) field

pcmpeq MM1, MM1

psllw MM1, n (pslld MM1, n)

; two instructions above generate 
; the signed constant -2n in every 
; packed-word (or packed-dword) field

Building Blocks
This section describes instructions and algorithms which implement common code 
building blocks efficiently.

NOTE.  Because the SIMD integer instruction sets do not support 
shift instructions for bytes, 2n–1 and -2n are relevant only for 
packed words and packed doublewords.
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Absolute Difference of Unsigned Numbers

Example 4-16 computes the absolute difference of two unsigned numbers. It assumes 
an unsigned packed-byte data type. Here, we make use of the subtract instruction with 
unsigned saturation. This instruction receives UNSIGNED operands and subtracts them 
with UNSIGNED saturation. This support exists only for packed bytes and packed words, 
not for packed doublewords.

Example 4-16 Absolute Difference of Two Unsigned Numbers

; Input:

; MM0 source operand
; MM1 source operand

; Output:

; MM0 absolute difference of the unsigned
;  operands 

movq MM2, MM0 ; make a copy of MM0

psubusb MM0, MM1 ; compute difference one way

psubusb MM1, MM2 ; compute difference the other way

por MM0, MM1 ; OR them together

This example will not work if the operands are signed.

Note that the psadbw instruction may also be used in some situations; see section 
“Packed Sum of Absolute Differences” for details.

Absolute Difference of Signed Numbers

Chapter 4 computes the absolute difference of two signed numbers. 

NOTE.  There is no MMX™ technology subtract instruction that 
receives SIGNED operands and subtracts them with UNSIGNED 
saturation.
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The technique used here is to first sort the corresponding elements of the input 
operands into packed words of the maximum values, and packed words of the 
minimum values. Then the minimum values are subtracted from the maximum values 
to generate the required absolute difference. The key is a fast sorting technique that 
uses the fact that B = xor(A, xor (A,B)) and A = xor(A,0). Thus in a packed data 
type, having some elements being xor(A,B) and some being 0, you could xor such an 
operand with A and receive in some places values of A and in some values of B. The 
following examples assume a packed-word data type, each element being a signed 
value.

Example 4-17 Absolute Difference of Signed Numbers

;Input:

; MM0 signed source operand
; MM1 signed source operand

;Output:

; MM0 absolute difference of the unsigned
;  operands 

movq MM2, MM0 ; make a copy of source1 (A)

pcmpgtw MM0, MM1 ; create mask of

; source1>source2 (A>B)

movq MM4, MM2 ; make another copy of A

pxor MM2, MM1 ; create the intermediate value of
; the swap operation - xor(A,B)

pand MM2, MM0 ; create a mask of 0s and xor(A,B) 
; elements. Where A>B there will 
; be a value xor(A,B) and where 
; A<=B there will be 0.

pxor MM4, MM2 ; minima-xor(A, swap mask)

pxor MM1, MM2 ; maxima-xor(B, swap mask)

psubw MM1, MM4 ; absolute difference = 
; maxima-minima
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Absolute Value

Use Example 4-18 to compute |x|, where x is signed. This example assumes signed 
words to be the operands.

Example 4-18 Computing Absolute Value

; Input:

; MM0 signed source operand

; Output:

; MM1 ABS(MMO) 

pxor MM1, MM1 ; set MM1 to all zeros

psubw MM1, MM0 ; make each MM1 word contain the

   ; negative of each MM0 word

pmaxsw MM1, MM0 ; MM1 will contain only the positive

   ; (larger) values - the absolute value

Clipping to an Arbitrary Range [high, low]

This section explains how to clip a values to a range [high, low]. Specifically, if the 
value is less than low or greater than high, then clip to low or high, respectively. 
This technique uses the packed-add and packed-subtract instructions with saturation 
(signed or unsigned), which means that this technique can only be used on packed-byte 
and packed-word data types.

CAUTION.  The absolute value of the most negative number (that 
is, 8000 hex for 16-bit) cannot be represented using positive 
numbers. This algorithm will return the original value for the 
absolute value (8000 hex).
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The examples in this section use the constants packed_max and packed_min and show 
operations on word values. For simplicity we use the following constants 
(corresponding constants are used in case the operation is done on byte values):

• packed_max equals 0x7fff7fff7fff7fff
• packed_min equals 0x8000800080008000
• packed_low contains the value low in all four words of the packed-words data 

type

• packed_high contains the value high in all four words of the packed-words data 
type

• packed_usmax all values equal 1 
• high_us adds the high value to all data elements (4 words) of packed_min
• low_us adds the low value to all data elements (4 words) of packed_min

Highly Efficient Clipping

For clipping signed words to an arbitrary range, the pmaxsw and pminsw instructions 
may be used. For clipping unsigned bytes to an arbitrary range, the pmaxub and pminub 
instructions may be used. Example 4-19 shows how to clip signed words to an 
arbitrary range; the code for clipping unsigned bytes is similar.

Example 4-19 Clipping to a Signed Range of Words [high, low]

; Input:

; MM0 signed source operands

; Output:

; MM0 signed words clipped to the signed 
; range [high, low] 

pminsw MM0, packed_high

pmaxsw MM0, packed_low
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Example 4-20 Clipping to an Arbitrary Signed Range [high, low]

; Input:

; MM0 signed source operands

; Output:

; MM1 signed operands clipped to the unsigned 
; range [high, low] 

paddw MM0, packed_min ; add with no saturation 

; 0x8000 to convert to unsigned

paddusw MM0, (packed_usmax - high_us)

; in effect this clips to high

psubusw MM0, (packed_usmax - high_us + low_us) 

; in effect this clips to low

paddw MM0, packed_low ; undo the previous two offsets

The code above converts values to unsigned numbers first and then clips them to an 
unsigned range. The last instruction converts the data back to signed data and places 
the data within the signed range. Conversion to unsigned data is required for correct 
results when (high - low) < 0x8000.

If (high - low) >= 0x8000, the algorithm can be simplified as shown in Example 4-21:

Example 4-21 Simplified Clipping to an Arbitrary Signed Range

; Input: MM0 signed source operands

; Output: MM1 signed operands clipped to the unsigned 
;  range [high, low]

paddssw     MM0, (packed_max - packed_high)

; in effect this clips to high

psubssw     MM0, (packed_usmax - packed_high + packed_ow)

; clips to low

paddw       MM0, low ; undo the previous two offsets
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This algorithm saves a cycle when it is known that (high - low) >= 0x8000. The 
three-instruction algorithm does not work when (high - low) < 0x8000, because 
0xffff minus any number < 0x8000 will yield a number greater in magnitude than 
0x8000, which is a negative number. When the second instruction, 
psubssw MM0, (0xffff - high + low), in the three-step algorithm (Example 4-21) 
is executed, a negative number is subtracted. The result of this subtraction causes the 
values in MM0 to be increased instead of decreased, as should be the case, and an 
incorrect answer is generated. 

Clipping to an Arbitrary Unsigned Range [high, low]

The code in Chapter 4 clips an unsigned value to the unsigned range [high, low]. If 
the value is less than low or greater than high, then clip to low or high, respectively. 
This technique uses the packed-add and packed-subtract instructions with unsigned 
saturation, thus this technique can only be used on packed-bytes and packed-words 
data types.

The example illustrates the operation on word values.

Example 4-22 Clipping to an Arbitrary Unsigned Range [high, low]

; Input:

; MM0 unsigned source operands

; Output:

; MM1 unsigned operands clipped to the unsigned 
; range [HIGH, LOW] 

paddusw MM0, 0xffff - high

; in effect this clips to high

psubusw MM0, (0xffff - high + low) 

; in effect this clips to low

paddw MM0, low 

; undo the previous two offsets
4-27



Intel Pentium 4 and Intel Xeon Processor Optimization Optimizing for SIMD Integer Applications 4

Packed Max/Min of Signed Word and Unsigned Byte 

Signed Word

The pmaxsw instruction returns the maximum between the four signed words in either 
two SIMD registers, or one SIMD register and a memory location.

The pminsw instruction returns the minimum between the four signed words in either 
two SIMD registers, or one SIMD register and a memory location.

Unsigned Byte

The pmaxub instruction returns the maximum between the eight unsigned bytes in 
either two SIMD registers, or one SIMD register and a memory location.

The pminub instruction returns the minimum between the eight unsigned bytes in 
either two SIMD registers, or one SIMD register and a memory location.

Packed Multiply High Unsigned

The pmulhuw and pmulhw instruction multiplies the unsigned/signed words in the 
destination operand with the unsigned/signed words in the source operand. The 
high-order 16 bits of the 32-bit intermediate results are written to the destination 
operand.

Packed Sum of Absolute Differences

The psadbw instruction (see Figure 4-9) computes the absolute value of the difference 
of unsigned bytes for either two SIMD registers, or one SIMD register and a memory 
location. These differences are then summed to produce a word result in the lower 
16-bit field, and the upper three words are set to zero.
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The subtraction operation presented above is an absolute difference, that is, 
t = abs(x-y). The byte values are stored in temporary space, all values are summed 
together, and the result is written into the lower word of the destination register.

Packed Average (Byte/Word)

The pavgb and pavgw instructions add the unsigned data elements of the source 
operand to the unsigned data elements of the destination register, along with a carry-in. 
The results of the addition are then each independently shifted to the right by one bit 
position. The high order bits of each element are filled with the carry bits of the 
corresponding sum.

The destination operand is an SIMD register. The source operand can either be an 
SIMD register or a memory operand.

The PAVGB instruction operates on packed unsigned bytes and the PAVGW instruction 
operates on packed unsigned words.

Figure 4-9 PSADBW Instruction Example
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Complex Multiply by a Constant

Complex multiplication is an operation which requires four multiplications and two 
additions. This is exactly how the pmaddwd instruction operates. In order to use this 
instruction, you need to format the data into multiple 16-bit values. The real and 
imaginary components should be 16-bits each. Consider Example 4-23, which 
assumes that the 64-bit MMX registers are being used:

• Let the input data be Dr and Di where Dr is real component of the data and Di is 
imaginary component of the data.

• Format the constant complex coefficients in memory as four 16-bit values [Cr -Ci 
Ci Cr]. Remember to load the values into the MMX register using a movq 
instruction.

• The real component of the complex product is 
Pr = Dr*Cr - Di*Ci 

and the imaginary component of the complex product is Pi = Dr*Ci + Di*Cr.

Example 4-23 Complex Multiply by a Constant

; Input:

; MM0 complex value, Dr, Di
; MM1 constant complex coefficient in the form 
; [Cr -Ci Ci Cr]

; Output:

; MM0 two 32-bit dwords containing [Pr Pi]

; 

punpckldq MM0, MM0 ; makes [Dr Di Dr Di]

pmaddwd MM0, MM1 ; done, the result is

     ; [(Dr*Cr-Di*Ci)(Dr*Ci+Di*Cr)]

Note that the output is a packed doubleword. If needed, a pack instruction can be used 
to convert the result to 16-bit (thereby matching the format of the input).
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Packed 32*32 Multiply

The PMULUDQ instruction performs an unsigned multiply on the lower pair of 
double-word operands within each 64-bit chunk from the two sources; the full 64-bit 
result from each multiplication is returned to the destination register. This instruction is 
added in both a 64-bit and 128-bit version; the latter performs 2 independent 
operations, on the low and high halves of a 128-bit register.

Packed 64-bit Add/Subtract

The PADDQ/PSUBQ instructions add/subtract quad-word operands within each 64-bit 
chunk from the two sources; the 64-bit result from each computation is written to the 
destination register. Like the integer ADD/SUB instruction, PADDQ/PSUBQ can operate on 
either unsigned or signed (two’s complement notation) integer operands. When an 
individual result is too large to be represented in 64-bits, the lower 64-bits of the result 
are written to the destination operand and therefore the result wraps around. These 
instructions are added in both a 64-bit and 128-bit version; the latter performs 2 
independent operations, on the low and high halves of a 128-bit register.

128-bit Shifts

The pslldq/psrldq instructions shift the first operand to the left/right by the amount 
of bytes specified by the immediate operand. The empty low/high-order bytes are 
cleared (set to zero). If the value specified by the immediate operand is greater than 15, 
then the destination is set to all zeros.

Memory Optimizations
You can improve memory accesses using the following techniques:

• Avoiding partial memory accesses

• Increasing the bandwidth of memory fills and video fills

• Prefetching data with Streaming SIMD Extensions (see Chapter 6, “Optimizing 
Cache Usage for Intel Pentium 4 Processors”).
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The MMX registers and XMM registers allow you to move large quantities of data 
without stalling the processor. Instead of loading single array values that are 8, 16, or 
32 bits long, consider loading the values in a single quadword or double quadword, 
then incrementing the structure or array pointer accordingly.

Any data that will be manipulated by SIMD integer instructions should be loaded 
using either:

• the SIMD integer instruction that loads a 64-bit or 128-bit operand (for example, 
movq MM0, m64) 

• the register-memory form of any SIMD integer instruction that operates on a 
quadword or double quadword memory operand (for example, pmaddw MM0, m64).

All SIMD data should be stored using the SIMD integer instruction that stores a 64-bit 
or 128-bit operand (for example, movq m64, MM0)

The goal of these recommendations is twofold. First, the loading and storing of SIMD 
data is more efficient using the larger block sizes. Second, this helps to avoid the 
mixing of 8-, 16-, or 32-bit load and store operations with SIMD integer technology 
load and store operations to the same SIMD data. This, in turn, prevents situations in 
which small loads follow large stores to the same area of memory, or large loads 
follow small stores to the same area of memory. The Pentium II, Pentium III, and 
Pentium 4 processors stall in these situations; see Chapter 2, “General Optimization 
Guidelines” for more details.

Partial Memory Accesses

Consider a case with large load after a series of small stores to the same area of 
memory (beginning at memory address mem). The large load will stall in this case as 
shown in Example 4-24.

Example 4-24 A Large Load after a Series of Small Stores (Penalty)

mov mem, eax     ; store dword to address “mem"

mov mem + 4, ebx ; store dword to address “mem + 4"

       :

       :

movq   mm0, mem ; load qword at address “mem", stalls
4-32



Intel Pentium 4 and Intel Xeon Processor Optimization Optimizing for SIMD Integer Applications 4

The movq must wait for the stores to write memory before it can access all the data it 
requires. This stall can also occur with other data types (for example, when bytes or 
words are stored and then words or doublewords are read from the same area of 
memory). When you change the code sequence as shown in Example 4-25, the 
processor can access the data without delay.

Example 4-25 Accessing Data without Delay

movd mm1, ebx ; build data into a qword first 

; before storing it to memory

movd mm2, eax

psllq mm1, 32

por mm1, mm2

movq mem, mm1 ; store SIMD variable to “mem" as 
; a qword

        :

        :

movq mm0, mem ; load qword SIMD “mem", no stall

Let us now consider a case with a series of small loads after a large store to the same 
area of memory (beginning at memory address mem) as shown in Example 4-26.   Most 
of the small loads will stall because they are not aligned with the store; see “Store 
Forwarding” in Chapter 2 for more details.

Example 4-26 A Series of Small Loads after a Large Store

movq mem, mm0   ; store qword to address “mem"

        :

        :

mov bx, mem + 2 ; load word at “mem + 2" stalls

mov cx, mem + 4 ; load word at “mem + 4" stalls
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The word loads must wait for the quadword store to write to memory before they can 
access the data they require. This stall can also occur with other data types (for 
example, when doublewords or words are stored and then words or bytes are read from 
the same area of memory). When you change the code sequence as shown in 
Example 4-27, the processor can access the data without delay.

Example 4-27 Eliminating Delay for a Series of Small Loads after a Large Store

movq mem, mm0 ; store qword to address “mem"

        :

        :

movq mm1, mem ; load qword at address “mem"

movd eax, mm1 ; transfer “mem + 2" to eax from 

; MMX register, not memory 

psrlq mm1, 32

shr eax, 16

movd ebx, mm1 ; transfer “mem + 4" to bx from 

; MMX register, not memory 

and ebx, 0ffffh

These transformations, in general, increase the number of instructions required to 
perform the desired operation. For Pentium II, Pentium III, and Pentium 4 processors, 
the benefit of avoiding forwarding problems outweighs the performance penalty due to 
the increased number of instructions, making the transformations worthwhile.

Increasing Bandwidth of Memory Fills and Video Fills

It is beneficial to understand how memory is accessed and filled. A 
memory-to-memory fill (for example a memory-to-video fill) is defined as a 64-byte 
(cache line) load from memory which is immediately stored back to memory (such as a 
video frame buffer). The following are guidelines for obtaining higher bandwidth and 
shorter latencies for sequential memory fills (video fills). These recommendations are 
relevant for all Intel architecture processors with MMX technology and refer to cases 
in which the loads and stores do not hit in the first- or second-level cache.
4-34



Intel Pentium 4 and Intel Xeon Processor Optimization Optimizing for SIMD Integer Applications 4

Increasing Memory Bandwidth Using the MOVDQ Instruction

Loading any size data operand will cause an entire cache line to be loaded into the 
cache hierarchy. Thus any size load looks more or less the same from a memory 
bandwidth perspective. However, using many smaller loads consumes more 
microarchitectural resources than fewer larger stores. Consuming too many of these 
resources can cause the processor to stall and reduce the bandwidth that the processor 
can request of the memory subsystem.

Using movdq to store the data back to UC memory (or WC memory in some cases) 
instead of using 32-bit stores (for example, movd) will reduce by three-quarters the 
number of stores per memory fill cycle. As a result, using the movdq instruction in 
memory fill cycles can achieve significantly higher effective bandwidth than using the 
movd instruction.

Increasing Memory Bandwidth by Loading and Storing to and from 
the Same DRAM Page

DRAM is divided into pages, which are not the same as operating system (OS) pages. 
The size of a DRAM page is a function of the total size of the DRAM and the 
organization of the DRAM. Page sizes of several Kilobytes are common. Like OS 
pages, DRAM pages are constructed of sequential addresses. Sequential memory 
accesses to the same DRAM page have shorter latencies than sequential accesses to 
different DRAM pages. In many systems the latency for a page miss (that is, an access 
to a different page instead of the page previously accessed) can be twice as large as the 
latency of a memory page hit (access to the same page as the previous access). 
Therefore, if the loads and stores of the memory fill cycle are to the same DRAM page, 
a significant increase in the bandwidth of the memory fill cycles can be achieved.

Increasing UC and WC Store Bandwidth by Using Aligned Stores

Using aligned stores to fill UC or WC memory will yield higher bandwidth than using 
unaligned stores. If a UC store or some WC stores cross a cache line boundary, a single 
store will result in two transaction on the bus, reducing the efficiency of the bus 
transactions. By aligning the stores to the size of the stores, you eliminate the 
possibility of crossing a cache line boundary, and the stores will not be split into 
separate transactions.
4-35



Intel Pentium 4 and Intel Xeon Processor Optimization Optimizing for SIMD Integer Applications 4

Converting from 64-bit to 128-bit SIMD Integer

The SSE2 define a superset of 128-bit integer instructions currently available in MMX 
technology; the operation of the extended instructions remains the same and simply 
operate on data that is twice as wide. This simplifies porting of current 64-bit integer 
applications. However, there are few additional considerations:

• Computation instructions which use a memory operand that may not be aligned to 
a 16-byte boundary must be replaced with an unaligned 128-bit load (movdqu) 
followed by the same computation operation that uses instead register operands. 
Use of 128-bit integer computation instructions with memory operands that are not 
16-byte aligned will result in a General Protection fault. The unaligned 128-bit 
load and store is not as efficient as the corresponding aligned versions; this can 
reduce the performance gains when using the 128-bit SIMD integer extensions. 
The general guidelines on the alignment of memory operands are:

— The greatest performance gains can be achieved when all memory streams are 
16-byte aligned.

— Reasonable performance gains are possible if roughly half of all memory 
streams are 16-byte aligned, and the other half are not.

— Little or no performance gain may result if all memory streams are not aligned 
to 16-bytes; in this case, use of the 64-bit SIMD integer instructions may be 
preferable.

• Loop counters need to be updated because each 128-bit integer instruction operates 
on twice the amount of data as the 64-bit integer counterpart.

• Extension of the pshufw instruction (shuffle word across 64-bit integer operand) 
across a full 128-bit operand is emulated by a combination of the following 
instructions: pshufhw, pshuflw, pshufd.

• Use of the 64-bit shift by bit instructions (psrlq, psllq) are extended to 128 bits 
in these ways: 

— use of psrlq and psllq, along with masking logic operations

— code sequence is rewritten to use the psrldq and pslldq instructions (shift 
double quad-word operand by bytes).
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Optimizing for SIMD
Floating-point Applications
This chapter discusses general rules of optimizing for the single-instruction, 
multiple-data (SIMD) floating-point instructions available in Streaming SIMD 
Extensions (SSE) and Streaming SIMD Extensions 2 (SSE2). This chapter also 
provides examples that illustrate the optimization techniques for single-precision and 
double-precision SIMD floating-point applications.

General Rules for SIMD Floating-point Code
The rules and suggestions listed in this section help optimize floating-point code 
containing SIMD floating-point instructions. Generally, it is important to understand 
and balance port utilization to create efficient SIMD floating-point code. The basic 
rules and suggestions include the following:

• Follow all guidelines in Chapter 2 and Chapter 3.

• Exceptions: mask exceptions to achieve higher performance. When exceptions are 
unmasked, software performance is slower.

• Utilize the flush-to-zero mode for higher performance to avoid the penalty of 
dealing with denormals and underflows.

• Incorporate the prefetch instruction whenever possible (for details, refer to  
Chapter 6, “Optimizing Cache Usage for Intel Pentium 4 Processors”).

• Use MMX technology instructions and registers if the computations can be done in 
SIMD integer for shuffling data. 

• Use MMX technology instructions and registers or for copying data that is not 
used later in SIMD floating-point computations.
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• Use the reciprocal instructions followed by iteration for increased accuracy. These 

instructions yield reduced accuracy but execute much faster. Note the following:

— If reduced accuracy is acceptable, use them with no iteration. 

— If near full accuracy is needed, use a Newton-Raphson iteration. 

— If full accuracy is needed, then use divide and square root which provide more 
accuracy, but slow down performance.

Planning Considerations
Whether adapting an existing application or creating a new one, using SIMD 
floating-point instructions to achieve optimum performance gain requires 
programmers to consider several issues. In general, when choosing candidates for 
optimization, look for code segments that are computationally intensive and 
floating-point intensive. Also consider efficient use of the cache architecture. 

The sections that follow answer the questions that should be raised before 
implementation:

• Which part of the code benefits from SIMD floating-point instructions?

• Is the current algorithm the most appropriate for SIMD floating-point instructions?

• Is the code floating-point intensive?

• Do either single-precision floating-point or double-precision floating- point 
computations provide enough range and precision?

• Is the data arranged for efficient utilization of the SIMD floating-point registers?

• Is this application targeted for processors without SIMD floating-point 
instructions?

For more details, see the section on “Considerations for Code Conversion to SIMD 
Programming” in Chapter 3.

Detecting SIMD Floating-point Support
Applications must be able to determine if SSE are available. Please refer the section 
“Checking for Processor Support of SIMD Technologies” in Chapter 3 for the 
techniques to determine whether the processor and operating system support SSE.
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Using SIMD Floating-point with x87 Floating-point

Because the XMM registers used for SIMD floating-point computations are separate 
registers and are not mapped onto the existing x87 floating-point stack, SIMD 
floating-point code can be mixed with either x87 floating-point or 64-bit SIMD integer 
code.

Scalar Floating-point Code
There are SIMD floating-point instructions that operate only on the least-significant 
operand in the SIMD register. These instructions are known as scalar instructions. 
They allow the XMM registers to be used for general-purpose floating-point 
computations.

In terms of performance, scalar floating-point code can be equivalent to or exceed x87 
floating-point code, and has the following advantages:

• SIMD floating-point code uses a flat register model, whereas x87 floating-point 
code uses a stack model. Using scalar floating-point code eliminates the need to 
use fxch instructions, which has some performance limit on the Intel Pentium 4 
processor.

• Mixing with MMX technology code without penalty.

• Flush-to-zero mode.

• Shorter latencies than x87 floating-point.

When using scalar floating-point instructions, it is not necessary to ensure that the data 
appears in vector form. However, all of the optimizations regarding alignment, 
scheduling, instruction selection, and other optimizations covered in Chapters 2 and 3 
should be observed.

Data Alignment
SIMD floating-point data is 16-byte aligned. Referencing unaligned 128-bit SIMD 
floating-point data will result in an exception unless the movups or movupd (move 
unaligned packed single or unaligned packed double) instruction is used. The 
unaligned instructions used on aligned or unaligned data will also suffer a performance 
penalty relative to aligned accesses.
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Refer to section “Stack and Data Alignment” in Chapter 3 for more information.

Data Arrangement

Because the SSE and SSE2 incorporate a SIMD architecture, arranging the data to 
fully use the SIMD registers produces optimum performance. This implies contiguous 
data for processing, which leads to fewer cache misses and can potentially quadruple 
the data throughput when using SSE, or twice the throughput when using SSE2. These 
performance gains can occur because four data element can be loaded with 128-bit 
load instructions into XMM registers using SSE (movaps – move aligned packed single 
precision). Similarly, two data element can loaded with 128-bit load instructions into 
XMM registers using SSE2 (movapd – move aligned packed double precision).

Refer to the “Stack and Data Alignment” in Chapter 3 for data arrangement 
recommendations. Duplicating and padding techniques overcome the misalignment 
problem that can occur in some data structures and arrangements. This increases the 
data space but avoids the expensive penalty for misaligned data access.

For some applications, the traditional data arrangement requires some changes to fully 
utilize the SIMD registers and parallel techniques. Traditionally, the data layout has 
been an array of structures (AoS). To fully utilize the SIMD registers, a new data 
layout has been proposed—a structure of arrays (SoA) resulting in more optimized 
performance.

Vertical versus Horizontal Computation

Traditionally, the AoS data structure is used in 3D geometry computations. SIMD 
technology can be applied to AoS data structure using a horizontal computation 
technique. This means that the x, y, z, and w components of a single vertex structure 
(that is, of a single vector simultaneously referred to as an xyz data representation, see 
the diagram below) are computed in parallel, and the array is updated one vertex at a 
time.

X Y Z W
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To optimally utilize the SIMD registers, the data structure can be organized in the SoA 
format. The SoA data structure enables a vertical computation technique, and is 
recommended over horizontal computation, for the following reasons:

• When computing on a single vector (xyz), it is common to use only a subset of the 
vector components; for example, in 3D graphics the W component is sometimes 
ignored. This means that for single-vector operations, 1 of 4 computation slots is 
not being utilized. This typically results in a 25% reduction of peak efficiency.

• It may become difficult to hide long latency operations. For instance, another 
common function in 3D graphics is normalization, which requires the computation 
of a reciprocal square root (that is, 1/sqrt). Both the division and square root are 
long latency operations. With vertical computation (SoA), each of the 4 
computation slots in a SIMD operation is producing a unique result, so the net 
latency per slot is L/4 where L is the overall latency of the operation. However, for 
horizontal computation, the 4 computation slots each produce the same result, 
hence to produce 4 separate results requires a net latency per slot of L.

To utilize all 4 computation slots, the vertex data can be reorganized to allow 
computation on each component of 4 separate vertices, that is, processing multiple 
vectors simultaneously. This can also be referred to as an SoA form of representing 
vertices data shown in Table 5-1.

Organizing data in this manner yields a unique result for each computational slot for 
each arithmetic operation. 

Vertical computation takes advantage of the inherent parallelism in 3D geometry 
processing of vertices. It assigns the computation of four vertices to the four compute 
slots of the Pentium III processor, thereby eliminating the disadvantages of the 
horizontal approach described earlier. The dot product operation implements the SoA 
representation of vertices data. A schematic representation of dot product operation is 
shown in Figure 5-1.

Table 5-1 SoA Form of Representing Vertices Data

Vx array X1 X2 X3 X4 ..... Xn

Vy array Y1 Y2 Y3 Y4 ..... Yn

Vz array Z1 Z2 Z3 Y4 ..... Zn

Vw array W1 W2 W3 W4 ..... Wn
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Figure 5-1 shows how 1 result would be computed for 7 instructions if the data were 
organized as AoS: 4 results would require 28 instructions.

Example 5-1 Pseudocode for Horizontal (xyz, AoS) Computation

mulps ; x*x’, y*y’, z*z’

movaps ; reg->reg move, since next steps overwrite

shufps ; get b,a,d,c from a,b,c,d

addps ; get a+b,a+b,c+d,c+d

movaps ; reg->reg move

shufps ; get c+d,c+d,a+b,a+b from prior addps

addps ; get a+b+c+d,a+b+c+d,a+b+c+d,a+b+c+d

Figure 5-1 Dot Product Operation

X1 X2 X3 X4

x Fx Fx Fx Fx

+ Y1 Y2 Y3 Y4

x Fy Fy Fy Fy

+ Z1 Z2 Z3 Z4

x Fz Fz Fz Fz

+ W1 W2 W3 W4

x Fw Fw Fw Fw

= R1 R2 R3 R4
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Now consider the case when the data is organized as SoA. Example 5-2 demonstrates 
how 4 results are computed for 5 instructions.

Example 5-2 Pseudocode for Vertical (xxxx, yyyy, zzzz, SoA) Computation

mulps ; x*x’ for all 4 x-components of 4 vertices

mulps ; y*y’ for all 4 y-components of 4 vertices

mulps ; z*z’ for all 4 z-components of 4 vertices

addps ; x*x’ + y*y’

addps ; x*x’+y*y’+z*z’

For the most efficient use of the four component-wide registers, reorganizing the data 
into the SoA format yields increased throughput and hence much better performance 
for the instructions used.

As can be seen from this simple example, vertical computation yielded 100% use of 
the available SIMD registers and produced 4 results. (The results may vary based on 
the application.) If the data structures must be in a format that is not “friendly” to 
vertical computation, it can be rearranged “on the fly” to achieve full utilization of the 
SIMD registers. This operation is referred to as “swizzling” operation and the reverse 
operation is referred to as “deswizzling.”

Data Swizzling

Swizzling data from one format to another is required in many algorithms. An example 
of this is AoS format, where the vertices come as xyz adjacent coordinates. 
Rearranging them into SoA format, xxxx, yyyy, zzzz, allows more efficient SIMD 
computations. For efficient data shuffling and swizzling use the following instructions:

• movlps, movhps load/store and move data on half sections of the registers
• shufps, unpackhps, and unpacklps unpack data

To gather data from 4 different memory locations on the fly, follow steps:

1. Identify the first half of the 128-bit memory location. 
2. Group the different halves together using the movlps and movhps to form an xyxy 

layout in two registers. 

3. From the 4 attached halves, get the xxxx by using one shuffle, the yyyy by using 
another shuffle. 
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The zzzz is derived the same way but only requires one shuffle.

Example 5-3 illustrates the swizzle function.

Example 5-3 Swizzling Data

typedef struct _VERTEX_AOS {

    float x, y, z, color;

} Vertex_aos;   // AoS structure declaration

typedef struct _VERTEX_SOA {

    float x[4], float y[4], float z[4];

    float color[4];

} Vertex_soa;   // SoA structure declaration

void swizzle_asm (Vertex_aos *in, Vertex_soa *out)

{

// in mem: x1y1z1w1-x2y2z2w2-x3y3z3w3-x4y4z4w4-

// SWIZZLE XYZW --> XXXX

  asm {

mov  ecx, in      // get structure addresses

mov  edx, out

 y1 x1

movhps xmm7, [ecx+16]  // xmm7 = y2 x2 y1 x1

movlps xmm0, [ecx+32]  // xmm0 = -- -- y3 x3

movhps xmm0, [ecx+48]  // xmm0 = y4 x4 y3 x3

movaps xmm6, xmm7      // xmm6 = y1 x1 y1 x1

shufps xmm7, xmm0, 0x88 // xmm7 = x1 x2 x3 x4 => X

shufps xmm6, xmm0, 0xDD // xmm6 = y1 y2 y3 y4 => Y

movlps xmm2, [ecx+8]   // xmm2 = -- -- w1 z1

movhps xmm2, [ecx+24]  // xmm2 = w2 z2 u1 z1

movlps xmm1, [ecx+40]  // xmm1 = -- -- s3 z3

movhps xmm1, [ecx+56]  // xmm1 = w4 z4 w3 z3

continued
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Example 5-3 Swizzling Data (continued)

movaps xmm0, xmm2 // xmm0 = w1 z1 w1 z1

shufps xmm2, xmm1, 0x88 // xmm2 = z1 z2 z3 z4 => Z

movlps xmm7, [ecx] // xmm7 = -- --shufps xmm0, xmm1,
 // 0xDD xmm6 = w1 w2 w3 w4 => W

movaps [edx], xmm7 // store X

movaps [edx+16], xmm6 // store Y

movaps [edx+32], xmm2 // store Z

movaps [edx+48], xmm0 // store W

// SWIZZLE XYZ -> XXX

   }

}

Example 5-4 shows the same data -swizzling algorithm encoded using the Intel® C++ 
Compiler’s intrinsics for SSE.

Example 5-4 Swizzling Data Using Intrinsics

//Intrinsics version of data swizzle

void swizzle_intrin (Vertex_aos *in, Vertex_soa *out, int stride)

{

  __m128 x, y, z, w;

  __m128 tmp;

  x = _mm_loadl_pi(x,(__m64 *)(in));

  x = _mm_loadh_pi(x,(__m64 *)(stride + (char *)(in)));

  y = _mm_loadl_pi(y,(__m64 *)(2*stride+(char *)(in)));

  y = _mm_loadh_pi(y,(__m64 *)(3*stride+(char *)(in)));

  tmp = _mm_shuffle_ps( x, y, _MM_SHUFFLE( 2, 0, 2, 0));

  y = _mm_shuffle_ps( x, y, _MM_SHUFFLE( 3, 1, 3, 1));

  x = tmp;

continued
5-9



Intel Pentium 4 and Intel Xeon Processor Optimization Optimizing for SIMD Floating-point Applications 5

Example 5-4   Swizzling Data Using Intrinsics (continued)

 z = _mm_loadl_pi(z,(__m64 *)(8 + (char *)(in)));

  z = _mm_loadh_pi(z,(__m64 *)(stride+8+(char *)(in)));

  w = _mm_loadl_pi(w,(__m64 *)(2*stride+8+(char*)(in)));

  w = _mm_loadh_pi(w,(__m64 *)(3*stride+8+(char*)(in)));

  tmp = _mm_shuffle_ps( z, w, _MM_SHUFFLE( 2, 0, 2, 0));

  w = _mm_shuffle_ps( z, w, _MM_SHUFFLE( 3, 1, 3, 1));

  z = tmp;

  _mm_store_ps(&out->x[0], x);

  _mm_store_ps(&out->y[0], y);

  _mm_store_ps(&out->z[0], z);

  _mm_store_ps(&out->w[0], w);

}

 

Although the generated result of all zeros does not depend on the specific data 
contained in the source operand (that is, XOR of a register with itself always produces 
all zeros), the instruction cannot execute until the instruction that generates xmm0 has 
completed. In the worst case, this creates a dependence chain that links successive 
iterations of the loop, even if those iterations are otherwise independent. The 
performance impact can be significant depending on how many other independent 
intra-loop computations are performed. Note that on the Pentium 4 processor, the 
SIMD integer pxor instructions, if used with the same register, do break the 
dependence chain, eliminating false dependencies when clearing registers.

CAUTION.  Avoid creating a dependence chain from previous 
computations because the movhps/movlps instructions bypass one 
part of the register. The same issue can occur with the use of an 
exclusive-OR function within an inner loop in order to clear a 
register:
  xorps xmm0, xmm0  ; All 0’s written to xmm0
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The same situation can occur for the above movhps/movlps/shufps sequence. Since 
each movhps/movlps instruction bypasses part of the destination register, the 
instruction cannot execute until the prior instruction that generates this register has 
completed. As with the xorps example, in the worst case this dependence can prevent 
successive loop iterations from executing in parallel.

A solution is to include a 128-bit load (that is, from a dummy local variable, such as 
tmp in Example 5-4) to each register to be used with a movhps/movlps instruction. This 
action effectively breaks the dependence by performing an independent load from a 
memory or cached location.

Data Deswizzling

In the deswizzle operation, we want to arrange the SoA format back into AoS format 
so the xxxx, yyyy, zzzz are rearranged and stored in memory as xyz. To do this we can 
use the unpcklps/unpckhps instructions to regenerate the xyxy layout and then store 
each half (xy) into its corresponding memory location using movlps/movhps followed 
by another movlps/movhps to store the z component.

Example 5-5 illustrates the deswizzle function:

Example 5-5 Deswizzling Single-Precision SIMD Data

void deswizzle_asm(Vertex_soa *in, Vertex_aos *out)

{

  __asm {

mov      ecx, in        // load structure addresses

mov      edx, out

movaps   xmm7, [ecx]    // load x1 x2 x3 x4 => xmm7

movaps   xmm6, [ecx+16] // load y1 y2 y3 y4 => xmm6

movaps   xmm5, [ecx+32] // load z1 z2 z3 z4 => xmm5

movaps   xmm4, [ecx+48] // load w1 w2 w3 w4 => xmm4

continued
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Example 5-5 Deswizzling Single-Precision SIMD Data (continued)

// START THE DESWIZZLING HERE

movaps   xmm0, xmm7 // xmm0= x1 x2 x3 x4

unpcklps xmm7, xmm6 // xmm7= x1 y1 x2 y2

movlps   [edx], xmm7 // v1 = x1 y1 -- --

movhps   [edx+16], xmm7 // v2 = x2 y2 -- --

unpckhps xmm0, xmm6 // xmm0= x3 y3 x4 y4

movlps   [edx+32], xmm0 // v3 = x3 y3 -- --

movhps   [edx+48], xmm0 // v4 = x4 y4 -- --

movaps   xmm0, xmm5 // xmm0= z1 z2 z3 z4

unpcklps xmm5, xmm4 // xmm5= z1 w1 z2 w2

unpckhps xmm0, xmm4 // xmm0= z3 w3 z4 w4

movlps   [edx+8], xmm5 // v1 = x1 y1 z1 w1

movhps   [edx+24], xmm5 // v2 = x2 y2 z2 w2

movlps   [edx+40], xmm0 // v3 = x3 y3 z3 w3

movhps   [edx+56], xmm0 // v4 = x4 y4 z4 w4

// DESWIZZLING ENDS HERE

    }

}

You may have to swizzle data in the registers, but not in memory. This occurs when 
two different functions need to process the data in different layout. In lighting, for 
example, data comes as rrrr gggg bbbb aaaa, and you must deswizzle them into rgba 
before converting into integers. In this case you use the movlhps/movhlps instructions 
to do the first part of the deswizzle followed by shuffle instructions, see Example 5-6 
and Example 5-7.
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Example 5-6 Deswizzling Data Using the movlhps and shuffle Instructions

void deswizzle_rgb(Vertex_soa *in, Vertex_aos *out)

{

//---deswizzle rgb--- 

// assume: xmm1=rrrr, xmm2=gggg, xmm3=bbbb, xmm4=aaaa

__asm {

      mov    ecx, in // load structure addresses

      mov    edx, out

      movaps xmm1, [ecx] // load r1 r2 r3 r4 => xmm1

      movaps xmm2, [ecx+16] // load g1 g2 g3 g4 => xmm2

      movaps xmm3, [ecx+32] // load b1 b2 b3 b4 => xmm3

      movaps xmm4, [ecx+48] // load a1 a2 a3 a4 => xmm4

// Start deswizzling here

   movaps xmm7, xmm4 // xmm7= a1 a2 a3 a4

      movhlps xmm7, xmm3 // xmm7= b3 b4 a3 a4

  movaps xmm6, xmm2 // xmm6= g1 g2 g3 g4

      movlhps xmm3, xmm4 // xmm3= b1 b2 a1 a2

      movhlps xmm2, xmm1 // xmm2= r3 r4 g3 g4

      movlhps xmm1, xmm6 // xmm1= r1 r2 g1 g2

      movaps xmm6, xmm2 // xmm6= r3 r4 g3 g4 

      movaps xmm5, xmm1 // xmm5= r1 r2 g1 g2

      shufps xmm2, xmm7, 0xDD // xmm2= r4 g4 b4 a4

      shufps xmm1, xmm3, 0x88 // xmm4= r1 g1 b1 a1

      shufps xmm5, xmm3, 0x88 // xmm5= r2 g2 b2 a2

      shufps xmm6, xmm7, 0xDD // xmm6= r3 g3 b3 a3

      movaps [edx], xmm4 // v1 = r1 g1 b1 a1

      movaps [edx+16], xmm5 // v2 = r2 g2 b2 a2

      movaps [edx+32], xmm6 // v3 = r3 g3 b3 a3

      

continued
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Example 5-6 Deswizzling Data Using the movlhps and shuffle Instructions (continued)

movaps [edx+48], xmm2 // v4 = r4 g4 b4 a4

// DESWIZZLING ENDS HERE

     }

}

Example 5-7 Deswizzling Data 64-bit Integer SIMD Data

void mmx_deswizzle(IVertex_soa *in, IVertex_aos *out)

{

  __asm {

    mov   ebx, in

    mov   edx, out

movq  mm0, [ebx] // mm0= u1 u2 

    movq  mm1, [ebx+16] // mm1= v1 v2

    movq  mm2, mm0 // mm2= u1 u2

    punpckhdq  mm0, mm1 // mm0= u1 v1

    punpckldq  mm2, mm1 // mm0= u2 v2

    movq [edx], mm2 // store u1 v1

movq [edx+8], mm0 // store u2 v2

    movq mm4, [ebx+8] // mm0= u3 u4  

    movq mm5, [ebx+24] // mm1= v3 v4  

    movq mm6, mm4 // mm2= u3 u4

    punpckhdq mm4, mm5 // mm0= u3 v3

    punpckldq mm6, mm5 // mm0= u4 v4

    movq [edx+16], mm6 // store u3v3

    movq [edx+24], mm4 // store u4v4

      }

}
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Using MMX Technology Code for Copy or Shuffling Functions

If there are some parts in the code that are mainly copying, shuffling, or doing logical 
manipulations that do not require use of SSE code, consider performing these actions 
with MMX technology code. For example, if texture data is stored in memory as SoA 
(uuuu, vvvv) and they need only to be deswizzled into AoS layout (uv) for the graphic 
cards to process, you can use either the SSE or MMX technology code. Using the 
MMX instructions allow you to conserve XMM registers for other computational 
tasks.

Example 5-8 illustrates how to use MMX technology code for copying or shuffling.

Example 5-8 Using MMX Technology Code for Copying or Shuffling

movq mm0, [Uarray+ebx] ; mm0= u1 u2 

movq mm1, [Varray+ebx] ; mm1= v1 v2

movq mm2, mm0 ; mm2= u1 u2

punpckhdq mm0, mm1 ; mm0= u1 v1

punpckldq mm2, mm1 ; mm2= u2 v2

movq [Coords+edx], mm0 ; store u1 v1

movq [Coords+8+edx], mm2 ; store u2 v2

movq mm4, [Uarray+8+ebx] ; mm4= u3 u4

movq mm5, [Varray+8+ebx] ; mm5= v3 v4  

movq mm6, mm4 ; mm6= u3 u4

punpckhdq mm4, mm5 ; mm4= u3 v3

punpckldq mm6, mm5 ; mm6= u4 v4

movq [Coords+16+edx], mm4 ; store u3 v3

movq [Coords+24+edx], mm6 ; store u4 v4

Horizontal ADD

Although vertical computations use the SIMD performance better than horizontal 
computations do, in some cases, the code must use a horizontal operation. The 
movlhps/movhlps and shuffle can be used to sum data horizontally. For example, 
starting with four 128-bit registers, to sum up each register horizontally while having 
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the final results in one register, use the movlhps/movhlps instructions to align the 
upper and lower parts of each register. This allows you to use a vertical add. With the 
resulting partial horizontal summation, full summation follows easily. Figure 5-2 
schematically presents horizontal add using movhlps/movlhps, while Example 5-9 and 
Example 5-10 provide the code for this operation.

Figure 5-2 Horizontal Add Using movhlps/movlhps

A1 A2 A3 A4

xmm0

B1 B2 B3 B4

xmm1

C1 C2 C3 C4

xmm2

D1 D2 D3 D4

xmm3

A1 A2 B1 B2

MOVLHPS

A3 A4 B3 B4

MOVHLPS

C1 C2 D1 D2

MOVLHPS

C3 C4 D3 D4

MOVHLPS

A1+A3 A2+A4 B1+B3 B2+B4

ADDPS

C1+C3 C2+C4 D1+D3 D2+D4

ADDPS

A1+A3 B1+B3 C1+C3 D1+D3

SHUFPS

A2+A4 B2+B4 C2+C4 D2+D4

SHUFPS

A1+A2+A3+A4

ADDPS

B1+B2+B3+B4 C1+C2+C3+C4 D1+D2+D3+D4
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Example 5-9 Horizontal Add Using movhlps/movlhps

void horiz_add(Vertex_soa *in, float *out) {

  __asm {

mov      ecx, in // load structure addresses

mov      edx, out

movaps   xmm0, [ecx] // load A1 A2 A3 A4 => xmm0

movaps   xmm1, [ecx+16] // load B1 B2 B3 B4 => xmm1

movaps   xmm2, [ecx+32] // load C1 C2 C3 C4 => xmm2

movaps   xmm3, [ecx+48] // load D1 D2 D3 D4 => xmm3

 // START HORIZONTAL ADD        

movaps  xmm5, xmm0 // xmm5= A1,A2,A3,A4

movlhps xmm5, xmm1 // xmm5= A1,A2,B1,B2

movhlps xmm1, xmm0 // xmm1= A3,A4,B3,B4

addps   xmm5, xmm1 // xmm5= A1+A3,A2+A4,B1+B3,B2+B4

movaps  xmm4, xmm2

movlhps xmm2, xmm3 // xmm2= C1,C2,D1,D2

movhlps xmm3, xmm4 // xmm3= C3,C4,D3,D4

addps   xmm3, xmm2 // xmm3= C1+C3,C2+C4,D1+D3,D2+D4

movaps  xmm6, xmm3 // xmm6= C1+C3,C2+C4,D1+D3,D2+D4

shufps  xmm3, xmm5, 0xDD

//xmm6=A1+A3,B1+B3,C1+C3,D1+D3

shufps xmm5, xmm6, 0x88

// xmm5= A2+A4,B2+B4,C2+C4,D2+D4

addps  xmm6, xmm5 // xmm6= D,C,B,A

 // END HORIZONTAL ADD        

    movaps [edx], xmm6

  }

}
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Example 5-10 Horizontal Add Using Intrinsics with movhlps/movlhps

void horiz_add_intrin(Vertex_soa *in, float *out)

{

  __m128 v1, v2, v3, v4;

  __m128 tmm0,tmm1,tmm2,tmm3,tmm4,tmm5,tmm6; 
 // Temporary variables

  tmm0 = _mm_load_ps(in->x);  // tmm0 = A1 A2 A3 A4

  tmm1 = _mm_load_ps(in->y);  // tmm1 = B1 B2 B3 B4

  tmm2 = _mm_load_ps(in->z);  // tmm2 = C1 C2 C3 C4

  tmm3 = _mm_load_ps(in->w);  // tmm3 = D1 D2 D3 D4

  tmm5 = tmm0;  // tmm0 = A1 A2 A3 A4

  tmm5 = _mm_movelh_ps(tmm5, tmm1); // tmm5 = A1 A2 B1 B2

  tmm1 = _mm_movehl_ps(tmm1, tmm0); // tmm1 = A3 A4 B3 B4

  tmm5 = _mm_add_ps(tmm5, tmm1);  // tmm5 = A1+A3 A2+A4 B1+B3 B2+B4

  tmm4 = tmm2;

  tmm2 = _mm_movelh_ps(tmm2, tmm3); // tmm2 = C1 C2 D1 D2

  tmm3 = _mm_movehl_ps(tmm3, tmm4); // tmm3 = C3 C4 D3 D4

  tmm3 = _mm_add_ps(tmm3, tmm2);  // tmm3 = C1+C3 C2+C4 D1+D3 D2+D4

  tmm6 = tmm3;  // tmm6 = C1+C3 C2+C4 D1+D3 D2+D4

  tmm6 = _mm_shuffle_ps(tmm3, tmm5, 0xDD); 
 // tmm6 = A1+A3 B1+B3 C1+C3 D1+D3

  tmm5 = _mm_shuffle_ps(tmm5, tmm6, 0x88);
 // tmm5 = A2+A4 B2+B4 C2+C4 D2+D4

  tmm6 = _mm_add_ps(tmm6, tmm5);
 // tmm6 = A1+A2+A3+A4 B1+B2+B3+B4
 // C1+C2+C3+C4 D1+D2+D3+D4

   _mm_store_ps(out, tmm6);

}
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Use of cvttps2pi/cvttss2si Instructions

The cvttps2pi and cvttss2si instructions encode the truncate/chop rounding mode 
implicitly in the instruction, thereby taking precedence over the rounding mode 
specified in the MXCSR register. This behavior can eliminate the need to change the 
rounding mode from round-nearest, to truncate/chop, and then back to round-nearest to 
resume computation. Frequent changes to the MXCSR register should be avoided since 
there is a penalty associated with writing this register; typically, through the use of the 
cvttps2pi and cvttss2si instructions, the rounding control in MXCSR can be always 
be set to round-nearest.

Flush-to-Zero Mode
Activating the flush-to-zero mode has the following effects during underflow 
situations:

• Precision and underflow exception flags are set to 1

• Zero result is returned

The IEEE mandated response to underflow is to deliver the denormalized result (that 
is, gradual underflow); consequently, the flush-to-zero mode is not compatible with 
IEEE Standard 754. It is provided to improve performance for applications where 
underflow is common and where the generation of a denormalized result is not 
necessary. Underflow for flush-to-zero mode occurs when the exponent for a 
computed result falls in the denormal range, regardless of whether a loss of accuracy 
has occurred.

Unmasking the underflow exception takes precedence over flush-to-zero mode. For a 
SSE instruction that generates an underflow condition an exception handler is invoked. 
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Optimizing Cache Usage 
for Intel Pentium 4 
Processors
Over the past decade, processor speed has increased more than ten times, while 
memory access speed has increased only twice. This disparity makes it important to 
tune applications so that a majority of the data accesses are fulfilled in the processor 
caches. The performance of most applications can be considerably improved if the data 
they require can be fetched from the processor caches rather than from main memory.

Standard techniques to bring data into the processor before it is needed involves 
additional programming which can be difficult to implement and may require special 
steps to prevent performance degradation. The Streaming SIMD Extensions addressed 
these issues by providing the various prefetch instructions. The Intel Pentium 4 
processor extends prefetching support via an automatic hardware data prefetch, a new 
mechanism for data prefetching based on current data access patterns that does not 
require programmer intervention.

Streaming SIMD Extensions also introduced the various non-temporal store 
instructions. Streaming SIMD Extensions 2 extend this support to the new data types, 
and also introduces non-temporal store support for the 32-bit integer registers.

This chapter focuses on two major subjects:

• Prefetch and Cacheability Instructions: discussion about the instructions that allow 
you to affect data caching in an application.

• Memory Optimization Using Prefetch and Cacheability Instructions: discussion 
and examples of various techniques for implementing memory optimizations using 
these instructions.
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General Prefetch Coding Guidelines
The following guidelines will help you optimize the usage of prefetches in your code 
(specific details will be discussed in subsequent sections):

• Use a current-generation compiler, such as the Intel C++ Compiler that supports 
C++ language-level features for the Streaming SIMD Extensions. The Streaming 
SIMD Extensions and MMX technology instructions provide intrinsics that allow 
you to optimize cache utilization. The examples of such Intel compiler intrinsics 
are _mm_prefetch, _mm_stream and _mm_load, _mm_sfence. For more details on 
these intrinsics, refer to the Intel C++ Compiler User’s Guide, doc. number 
718195.

• Facilitate compiler optimization: 

— Minimize use of global variables and pointers.

— Minimize use of complex control flow. 

— Use the const modifier, avoid register modifier. 

— Choose data types carefully (see below) and avoid type casting.

• Optimize prefetch scheduling distance –

— Far ahead enough to allow interim computation to overlap memory access 
time.

— Near enough that the prefetched data is not replaced from the data cache.

• Use prefetch concatenation:

— Arrange prefetches to avoid unnecessary prefetches at the end of an inner loop 
and to prefetch the first few iterations of the inner loop inside the next outer 
loop.

NOTE.  In a number of cases presented in this chapter, the 
prefetching and cache utilization are Pentium 4 processor 
platform-specific and may change for the future processors.
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• Minimize the number of prefetches:

— Prefetch instructions are not completely free in terms of bus cycles, machine 
cycles and resources. Excessive usage of prefetches can adversely impact 
application performance. 

• Interleave prefetch with computation instructions:

— For best performance, prefetch instructions must be interspersed with other 
computational instructions in the instruction sequence rather than clustered 
together. 

• Use cache blocking techniques (for example, strip mining):

— Improve cache hit rate by using cache blocking techniques such as 
strip-mining (one dimensional arrays) or loop blocking (two dimensional 
arrays)

• Balance single-pass versus multi-pass execution:

— An algorithm can use single- or multi-pass execution defined as follows: 
single-pass, or unlayered execution passes a single data element through an 
entire computation pipeline. Multi-pass, or layered execution performs a 
single stage of the pipeline on a batch of data elements before passing the 
entire batch on to the next stage.

— General guideline: if your algorithm is single pass, use prefetchnta; if your 
algorithm is multi-pass use prefetcht0.

• Resolve memory bank conflict issues:

— Minimize memory bank conflicts by applying array grouping to group 
contiguously used data together or allocating data within 4 KB memory pages. 

• Resolve cache management issues:

— Minimize disturbance of temporal data held within the processor’s caches by 
using streaming store instructions, as appropriate

Prefetch and Cacheability Instructions
The prefetch instruction, inserted by the programmers or compilers, accesses a 
minimum of one cache line of data (128 bytes on the Pentium 4 processor) prior to that 
data actually being needed. This hides the latency for data access in the time required 
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to process data already resident in the cache. Many algorithms can provide information 
in advance about the data that is to be required soon. In cases where the memory 
accesses are in long, regular data patterns, the automatic hardware prefetcher can hide 
memory access latency without the need for software prefetches.

The cacheability control instructions allow you to control data caching strategy in 
order to increase cache efficiency and minimize cache pollution.

Data reference patterns can be classified as follows:

Temporal data will be used again soon

Spatial data will be used in adjacent locations, for example, same cache line

Non-temporal data which is referenced once and not reused in the immediate 
future; for example, some multimedia data types, such as the vertex 
buffer in a 3D graphics application.

These data characteristics are used in the discussions that follow.

Prefetch
This section discusses the mechanics of the software prefetch instructions and the 
automatic hardware prefetcher.

Software Data Prefetch

The prefetch instruction can hide the latency of data access in performance-critical 
sections of application code by allowing data to be fetched in advance of its actual 
usage. The prefetch instructions do not change the user-visible semantics of a 
program, although they may affect the program’s performance. The prefetch 
instructions merely provide a hint to the hardware and generally will not generate 
exceptions or faults.

The prefetch instructions load either non-temporal data or temporal data in the 
specified cache level. This data access type and the cache level are specified as a hint. 
Depending on the implementation, the instruction fetches 32 or more aligned bytes, 
including the specified address byte, into the instruction-specified cache levels.
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The prefetch instruction is implementation-specific; applications need to be tuned to 
each implementation to maximize performance.

The prefetch instructions merely provide a hint to the hardware, and they will not 
generate exceptions or faults except for a few special cases (see the “Prefetch and Load 
Instructions” section). However, excessive use of prefetch instructions may waste 
memory bandwidth and result in performance penalty due to resource constraints.

Nevertheless, the prefetch instructions can lessen the overhead of memory transactions 
by preventing cache pollution and by using the caches and memory efficiently. This is 
particularly important for applications that share critical system resources, such as the 
memory bus. See an example in the “Video Encoder” section.

The prefetch instructions are mainly designed to improve application performance by 
hiding memory latency in the background. If segments of an application access data in 
a predictable manner, for example, using arrays with known strides, then they are good 
candidates for using prefetch to improve performance.

Use the prefetch instructions in:

• predictable memory access patterns

• time-consuming innermost loops

• locations where the execution pipeline may stall if data is not available.

Hardware Data Prefetch

The Pentium 4 processor implements an automatic data prefetcher which monitors 
application data access patterns and prefetches data automatically. This behavior is 
automatic and does not require programmer’s intervention.

Characteristics of the hardware data prefetcher are:

• Attempts to stay 256 bytes ahead of current data access locations

• Follows only one stream per 4K page (load or store)

NOTE.  Using the prefetch instructions is recommended only if 
data does not fit in cache.
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• Can prefetch up to 8 simultaneous independent streams from eight different 4K 

regions

• Does not prefetch across 4K boundary; note that this is independent of paging 
modes

• Fetches data into second/third-level cache

• Does not prefetch UC or WC memory types

• Follows load and store streams. Issues Read For Ownership (RFO) transactions for 
store streams and Data Reads for load streams.

The Prefetch Instructions – Pentium 4 Processor Implementation

Streaming SIMD Extensions include four flavors of prefetch instructions, one 
non-temporal, and three temporal. They correspond to two types of operations, 
temporal and non-temporal. 

The non-temporal instruction is

prefetchnta Fetch the data into the second-level cache, minimizing cache 
pollution. 

The temporal instructions are

prefetcht0 Fetch the data into all cache levels, that is, to the second-level cache 
for the Pentium 4 processor. 

prefetcht1 Identical to prefetcht0

prefetcht2 Identical to prefetcht0

NOTE.  At the time of prefetch, if the data is already found in a 
cache level that is closer to the processor than the cache level 
specified by the instruction, no data movement occurs.
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Table 6-1 lists the prefetch implementation differences between the Pentium III and 
Pentium 4 processors. 

Prefetch and Load Instructions

The Pentium 4 processor has a decoupled execution and memory architecture that 
allows instructions to be executed independently with memory accesses if there are no 
data and resource dependencies. Programs or compilers can use dummy load 
instructions to imitate prefetch functionality, but preloading is not completely 
equivalent to prefetch instructions. Prefetch instructions provide a greater performance 
than preloading.

Currently, the prefetch instruction provides a greater performance gain than 
preloading because it:

• has no destination register, it only updates cache lines.

• does not stall the normal instruction retirement.

• does not affect the functional behavior of the program.

• has no cache line split accesses.

• does not cause exceptions except when LOCK prefix is used; the LOCK prefix is not a 
valid prefix for use with the prefetch instructions and should not be used.

• does not complete its own execution if that would cause a fault.

Table 6-1 Prefetch Implementation: Pentium III and Pentium 4 Processors

Prefetch Type Pentium III processor Pentium 4 processor

Prefetch NTA Fetch 32 bytes

Fetch into 1st- level cache

Do not fetch into 2nd-level cache

Fetch 128 bytes

Do not fetch into 1st-level cache

Fetch into 1 way of 2nd-level cache

PrefetchT0 Fetch 32 bytes

Fetch into 1st- level cache

Fetch into 2nd- level cache

Fetch 128 bytes

Do not fetch into 1st-level cache

Fetch into 2nd- level cache 

PrefetchT1, 
PrefetchT2

Fetch 32 bytes

Fetch into 2nd- level cache only

Do not fetch into 1st-level cache

Fetch 128 bytes

Do not fetch into 1st-level cache

Fetch into 2nd- level cache only
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The current advantages of the prefetch over preloading instructions are 
processor-specific. The nature and extent of the advantages may change in the future.

In addition there are a few cases where a prefetch instruction will not perform the data 
prefetch if:

• the prefetch causes a DTLB (Data Translation Lookaside Buffer) miss.

• an access to the specified address causes a fault/exception.

• the memory subsystem runs out of request buffers between the first-level cache and 
the second-level cache.

• the prefetch targets an uncacheable memory region, for example, USWC and 
UC.

• a LOCK prefix is used. This causes an invalid opcode exception.

Cacheability Control
This section covers the mechanics of the cacheability control instructions.

The Non-temporal Store Instructions

This section describes the behavior of streaming stores and reiterates some of the 
information presented in the previous section. In Streaming SIMD Extensions, the 
movntps, movntpd, movntq, movntdq, movnti, maskmovq and maskmovdqu 
instructions are streaming, non-temporal stores. With regard to memory characteristics 
and ordering, they are similar mostly to the Write-Combining (WC) memory type:

• Write combining – successive writes to the same cache line are combined

• Write collapsing – successive writes to the same byte(s) result in only the last write 
being visible

• Weakly ordered – no ordering is preserved between WC stores, or between WC stores 
and other loads or stores

• Uncacheable and not write-allocating – stored data is written around the cache and 
will not generate a read-for-ownership bus request for the corresponding cache 
line.
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Fencing 

Because streaming stores are weakly ordered, a fencing operation is required to ensure 
that the stored data is flushed from the processor to memory. Failure to use an 
appropriate fence may result in data being “trapped” within the processor and will 
prevent visibility of this data by other processors or system agents. WC stores require 
software to ensure coherence of data by performing the fencing operation; see “The 
fence Instructions” section for more information.

Streaming Non-temporal Stores

Streaming stores can improve performance in the following ways:

• Increase store bandwidth since they do not require read-for-ownership bus requests

• Reduce disturbance of frequently used cached (temporal) data, since they write 
around the processor caches

Streaming stores allow cross-aliasing of memory types for a given memory region. For 
instance, a region may be mapped as write-back (WB) via the page attribute tables (PAT) 
or memory type range registers (MTRRs) and yet is written using a streaming store.

Memory Type and Non-temporal Stores

The memory type can take precedence over the non-temporal hint, leading to the 
following considerations:

• If the programmer specifies a non-temporal store to strongly-ordered uncacheable 
memory, for example, the Uncacheable (UC) or Write-Protect (WP) memory 
types, then the store behaves like an uncacheable store; the non-temporal hint is 
ignored and the memory type for the region is retained.

• If the programmer specifies the weakly-ordered uncacheable memory type of 
Write-Combining (WC), then the non-temporal store and the region have the same 
semantics, and there is no conflict.
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• If the programmer specifies a non-temporal store to cacheable memory, for 

example, Write-Back (WB) or Write-Through (WT) memory types, two cases may 
result:

1. If the data is present in the cache hierarchy, the instruction will ensure 
consistency. A particular processor may choose different ways to implement 
this. The following approaches are probable: (a) updating data in-place in the 
cache hierarchy while preserving the memory type semantics assigned to that 
region, or (b) evicting the data from the caches and writing the new 
non-temporal data to memory (with WC semantics). Pentium III processor 
implements a combination of both approaches. 

If the streaming store hits a line that is present in the first-level cache, the store 
data will be combined in place within the first-level cache. If the streaming 
store hits a line present in the second-level, the line and stored data will be 
flushed from the second-level to system memory. Note that the approaches, 
separate or combined, can be different for future processors. Pentium 4 
processor implements the latter policy, of evicting the data from all processor 
caches.

2. If the data is not present in the cache hierarchy, and the destination region is 
mapped as WB or WT, the transaction will be weakly ordered, and is subject to 
all WC memory semantics. The non-temporal store will not write-allocate. 
Different implementations may choose to collapse and combine these stores.

Write-Combining

Generally, WC semantics require software to ensure coherence, with respect to other 
processors and other system agents (such as graphics cards). Appropriate use of 
synchronization and a fencing operation (see “The fence Instructions” later in this 
chapter) must be performed for producer-consumer usage models. Fencing ensures 
that all system agents have global visibility of the stored data; for instance, failure to 
fence may result in a written cache line staying within a processor, and the line would 
not be visible to other agents. 

For processors which implement non-temporal stores by updating data in-place that 
already resides in the cache hierarchy, the destination region should also be mapped as 
WC. Otherwise if mapped as WB or WT, there is a potential for speculative processor reads 
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to bring the data into the caches; in this case, non-temporal stores would then update in 
place, and data would not be flushed from the processor by a subsequent fencing 
operation.

The memory type visible on the bus in the presence of memory type aliasing is 
implementation-specific. As one possible example, the memory type written to the bus 
may reflect the memory type for the first store to this line, as seen in program order; 
other alternatives are possible. This behavior should be considered reserved, and 
dependence on the behavior of any particular implementation risks future 
incompatibility.

Streaming Store Usage Models

The two primary usage domains for streaming store are coherent requests and 
non-coherent requests.

Coherent Requests

Coherent requests are normal loads and stores to system memory, which may also hit 
cache lines present in another processor in a multi-processor environment. With 
coherent requests, a streaming store can be used in the same way as a regular store that 
has been mapped with a WC memory type (PAT or MTRR). An sfence instruction must be 
used within a producer-consumer usage model in order to ensure coherency and 
visibility of data between processors. 

Within a single-processor system, the CPU can also re-read the same memory location 
and be assured of coherence (that is, a single, consistent view of this memory 
location): the same is true for a multi-processor (MP) system, assuming an accepted 
MP software producer-consumer synchronization policy is employed.

Non-coherent requests

Non-coherent requests arise from an I/O device, such as an AGP graphics card, that 
reads or writes system memory using non-coherent requests, which are not reflected on 
the processor bus and thus will not query the processor’s caches. An sfence 
instruction must be used within a producer-consumer usage model in order to ensure 
coherency and visibility of data between processors. In this case, if the processor is 
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writing data to the I/O device, a streaming store can be used with a processor with any 
behavior of approach (a), page 6-10, above, only if the region has also been mapped 
with a WC memory type (PAT, MTRR).

In case the region is not mapped as WC, the streaming might update in-place in the 
cache and a subsequent sfence would not result in the data being written to system 
memory. Explicitly mapping the region as WC in this case ensures that any data read 
from this region will not be placed in the processor’s caches. A read of this memory 
location by a non-coherent I/O device would return incorrect/out-of-date results. For a 
processor which solely implements approach (b), page 6-10, above, a streaming store 
can be used in this non-coherent domain without requiring the memory region to also 
be mapped as WB, since any cached data will be flushed to memory by the streaming 
store.

Streaming Store Instruction Descriptions

The movntq/movntdq (non-temporal store of packed integer in an MMX technology or 
Streaming SIMD Extensions register) instructions store data from a register to 
memory. The instruction is implicitly weakly-ordered, does no write-allocate, and so 
minimizes cache pollution.

The movntps (non-temporal store of packed single precision floating point) instruction 
is similar to movntq. It stores data from a Streaming SIMD Extensions register to 
memory in 16-byte granularity. Unlike movntq, the memory address must be aligned to 
a 16-byte boundary or a general protection exception will occur. The instruction is 
implicitly weakly-ordered, does not write-allocate, and thus minimizes cache 
pollution.

The maskmovq/maskmovdqu (non-temporal byte mask store of packed integer in an 
MMX technology or Streaming SIMD Extensions register) instructions store data from 
a register to the location specified by the edi register. The most significant bit in each 

CAUTION.  Failure to map the region as WC may allow the line to 
be speculatively read into the processor caches, that is, via the 
wrong path of a mispredicted branch.
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byte of the second mask register is used to selectively write the data of the first register 
on a per-byte basis. The instruction is implicitly weakly-ordered (that is, successive 
stores may not write memory in original program-order), does not write-allocate, and 
thus minimizes cache pollution.

The fence Instructions

The following fence instructions are available: sfence, lfence, and mfence.

The sfence Instruction

The sfence (store fence) instruction makes it possible for every store instruction 
that precedes the sfence instruction in program order to be globally visible before any 
store instruction that follows the sfence. The sfence instruction provides an 
efficient way of ensuring ordering between routines that produce weakly-ordered 
results.

The use of weakly-ordered memory types can be important under certain data sharing 
relationships, such as a producer-consumer relationship. Using weakly-ordered 
memory can make assembling the data more efficient, but care must be taken to ensure 
that the consumer obtains the data that the producer intended to see. Some common 
usage models may be affected in this way by weakly-ordered stores. Examples are: 

• library functions, which use weakly-ordered memory to write results

• compiler-generated code, which also benefits from writing weakly-ordered results

• hand-crafted code

The degree to which a consumer of data knows that the data is weakly-ordered can 
vary for these cases. As a result, the sfence instruction should be used to ensure 
ordering between routines that produce weakly-ordered data and routines that consume 
this data. The sfence instruction provides a performance-efficient way by ensuring the 
ordering when every store instruction that precedes the store fence instruction in 
program order is globally visible before any store instruction which follows the 
fence.
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The lfence Instruction

The lfence (load fence) instruction makes it possible for every load instruction that 
precedes the lfence instruction in program order to be globally visible before any 
load instruction that follows the lfence. The lfence instruction provides a means of 
segregating certain load instructions from other loads.

The mfence Instruction

The mfence (memory fence) instruction makes it possible for every load and store 
instruction that precedes the mfence instruction in program order to be globally visible 
before any other load or store instruction that follows the mfence. The mfence 
instruction provides a means of segregating certain memory instructions from other 
memory references.

Note that the use of a lfence and sfence is not equivalent to the use of a mfence 
since the load and store fences are not ordered with respect to each other. In other 
words, the load fence can be executed before prior stores, and the store fence can be 
executed before prior loads. The mfence instruction should be used whenever the 
cache line flush instruction (clflush) is used to ensure that speculative memory 
references generated by the processor do not interfere with the flush; see “The clflush 
Instruction” for more information. 

The clflush Instruction

The cache line associated with the linear address specified by the value of byte address 
is invalidated from all levels of the processor cache hierarchy (data and instruction). 
The invalidation is broadcast throughout the coherence domain. If, at any level of the 
cache hierarchy, the line is inconsistent with memory (dirty) it is written to memory 
before invalidation. Other characteristics include:

• The data size affected is the cache coherency size, which is 64 bytes on Pentium 4 
processor.

• The memory attribute of the page containing the affected line has no effect on the 
behavior of this instruction.

• The clflush instruction can be used at all privilege levels and is subject to all 
permission checking and faults associated with a byte load.
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clflush is an unordered operation with respect to other memory traffic including 
other clflush instructions. Software should use a mfence, memory fence for cases 
where ordering is a concern. 

As an example, consider a video usage model, wherein a video capture device is using 
non-coherent AGP accesses to write a capture stream directly to system memory. Since 
these non-coherent writes are not broadcast on the processor bus, they will not flush 
any copies of the same locations that reside in the processor caches. As a result, before 
the processor re-reads the capture buffer, it should use clflush to ensure that any stale 
copies of the capture buffer are flushed from the processor caches. Due to speculative 
reads that may be generated by the processor, it is important to observe appropriate 
fencing, using mfence. Example 6-1 illustrates the pseudo-code for the recommended 
usage of cflush:

Example 6-1 Pseudo-code for Using cflush

while (!buffer_ready} {}

mfence

for(i=0;i<num_cachelines;i+=cacheline_size) { 

clflush (char *)((unsigned int)buffer + i) 

}

mfence

prefnta buffer[0];

VAR = buffer[0]; 
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Memory Optimization Using Prefetch

The Pentium 4 processor has two mechanisms for data prefetch: software-controlled 
prefetch and an automatic hardware prefetch.

Software-controlled Prefetch

The software-controlled prefetch is enabled using the four prefetch instructions 
introduced with Streaming SIMD Extensions instructions. These instructions are hints 
to bring a cache line of data in to various levels and modes in the cache hierarchy. The 
software-controlled prefetch is not intended for prefetching code. Using it can incur 
significant penalties on a multiprocessor system when code is shared.

Software prefetching has the following characteristics:

• Can handle irregular access patterns, which do not trigger the hardware prefetcher.

• Can use less bus bandwidth than hardware prefetching; see below.

• Software prefetches must be added to new code, and do not benefit existing 
applications.

Hardware Prefetch

The automatic hardware prefetch, can bring lines into the unified first-level cache 
based on prior data misses. The automatic hardware prefetcher will attempt to prefetch 
two cache lines ahead of the prefetch stream. This feature is introduced with the 
Pentium 4 processor.

There are different strengths and weaknesses to software and hardware prefetching of 
the Pentium 4 processor. The characteristics of the hardware prefetching are as follows 
(compare with the software prefetching features listed above):

• Works with existing applications.

• Requires regular access patterns.

• Start-up penalty before hardware prefetcher triggers and extra fetches after array 
finishes. For short arrays this overhead can reduce effectiveness of the hardware 
prefetcher.
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— The hardware prefetcher requires a couple misses before it starts operating.

— Hardware prefetching will generate a request for data beyond the end of an 
array, which will not be utilized. This behavior wastes bus bandwidth. In 
addition this behavior results in a start-up penalty when fetching the beginning 
of the next array; this occurs because the wasted prefetch should have been 
used instead to hide the latency for the initial data in the next array. Software 
prefetching can recognize and handle these cases.

• Will not prefetch across a 4K page boundary; i.e., the program would have to 
initiate demand loads for the new page before the hardware prefetcher will start 
prefetching from the new page.

Example of Latency Hiding with S/W Prefetch Instruction

Achieving the highest level of memory optimization using prefetch instructions 
requires an understanding of the micro-architecture and system architecture of a given 
machine. This section translates the key architectural implications into several simple 
guidelines for programmers to use.

Figure 6-1 and Figure 6-2 show two scenarios of a simplified 3D geometry pipeline as 
an example. A 3D-geometry pipeline typically fetches one vertex record at a time and 
then performs transformation and lighting functions on it. Both figures show two 
separate pipelines, an execution pipeline, and a memory pipeline (front-side bus). 

Since the Pentium 4 processor, similarly to the Pentium II and Pentium III processors, 
completely decouples the functionality of execution and memory access, these two 
pipelines can function concurrently. Figure 6-1 shows “bubbles” in both the execution 
and memory pipelines. When loads are issued for accessing vertex data, the execution 
units sit idle and wait until data is returned. On the other hand, the memory bus sits idle 
while the execution units are processing vertices. This scenario severely decreases the 
advantage of having a decoupled architecture.
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The performance loss caused by poor utilization of resources can be completely 
eliminated by correctly scheduling the prefetch instructions appropriately. As shown in 
Figure 6-2, prefetch instructions are issued two vertex iterations ahead. This assumes 
that only one vertex gets processed in one iteration and a new data cache line is needed 
for each iteration. As a result, when iteration n, vertex Vn, is being processed, the 
requested data is already brought into cache. In the meantime, the front-side bus is 
transferring the data needed for iteration n+1, vertex Vn+1. Because there is no 
dependence between Vn+1 data and the execution of Vn, the latency for data access of 

Figure 6-1 Memory Access Latency and Execution Without Prefetch

Figure 6-2 Memory Access Latency and Execution With Prefetch
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Vn+1 can be entirely hidden behind the execution of Vn. Under such circumstances, no 
“bubbles” are present in the pipelines and thus the best possible performance can be 
achieved.

Prefetching is useful for inner loops that have heavy computations, or are close to the 
boundary between being compute-bound and memory-bandwidth-bound. 

The prefetch is probably not very useful for loops which are predominately memory 
bandwidth-bound. 

When data is already located in the first level cache, prefetching can be useless and 
could even slow down the performance because the extra µops either back up waiting 
for outstanding memory accesses or may be dropped altogether. This behavior is 
platform-specific and may change in the future.

Prefetching Usage Checklist

The following checklist covers issues that need to be addressed and/or resolved to use 
the prefetch instruction properly:

• Determine prefetch scheduling distance

• Use prefetch concatenation

• Minimize the number of prefetches

• Mix prefetch with computation instructions

• Use cache blocking techniques (for example, strip mining)

• Balance single-pass versus multi-pass execution

• Resolve memory bank conflict issues

• Resolve cache management issues

The subsequent sections discuss all the above items.

Prefetch Scheduling Distance

Determining the ideal prefetch placement in the code depends on many architectural 
parameters, including the amount of memory to be prefetched, cache lookup latency, 
system memory latency, and estimate of computation cycle. The ideal distance for 
prefetching data is processor- and platform- dependent. If the distance is too short, the 
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prefetch will not hide any portion of the latency of the fetch behind computation. If the 
prefetch is too far ahead, the prefetched data may be flushed out of the cache by the 
time it is actually required.

Since prefetch distance is not a well-defined metric, for this discussion, we define a 
new term, prefetch scheduling distance (PSD), which is represented by the number of 
iterations. For large loops, prefetch scheduling distance can be set to 1, that is, 
schedule prefetch instructions one iteration ahead. For small loop bodies, that is, loop 
iterations with little computation, the prefetch scheduling distance must be more than 
one iteration.

A simplified equation to compute PSD is deduced from the mathematical model. For a 
simplified equation, complete mathematical model, and methodology of prefetch 
distance determination, refer to Appendix E, “Mathematics of Prefetch Scheduling 
Distance”. 

Example 6-2 illustrates the use of a prefetch within the loop body. The prefetch 
scheduling distance is set to 3, esi is effectively the pointer to a line, edx is the address 
of the data being referenced and xmm1-xmm4 are the data used in computation. 
Example 6-2 uses two independent cache lines of data per iteration. The PSD would 
need to be increased/decreased if more/less than two cache lines are used per iteration.

Example 6-2 Prefetch Scheduling Distance 

top_loop:

prefetchnta [edx + esi + 128*3]

prefetchnta [edx*4 + esi + 128*3]

. . . . .

movaps xmm1, [edx + esi]

movaps xmm2, [edx*4 + esi]

movaps xmm3, [edx + esi + 16]

movaps xmm4, [edx*4 + esi + 16]

. . . . .

. . . . .

add esi, 128

cmp esi, ecx

jl top_loop
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Prefetch Concatenation

Maximum performance can be achieved when execution pipeline is at maximum 
throughput, without incurring any memory latency penalties. This can be achieved by 
prefetching data to be used in successive iterations in a loop. De-pipelining memory 
generates bubbles in the execution pipeline. To explain this performance issue, a 3D 
geometry pipeline that processes 3D vertices in strip format is used as an example. A 
strip contains a list of vertices whose predefined vertex order forms contiguous 
triangles. It can be easily observed that the memory pipe is de-pipelined on the strip 
boundary due to ineffective prefetch arrangement. The execution pipeline is stalled for 
the first two iterations for each strip. As a result, the average latency for completing an 
iteration will be 165(FIX) clocks. (See Appendix E, “Mathematics of Prefetch 
Scheduling Distance”, for a detailed memory pipeline description.)

This memory de-pipelining creates inefficiency in both the memory pipeline and 
execution pipeline. This de-pipelining effect can be removed by applying a technique 
called prefetch concatenation. With this technique, the memory access and execution 
can be fully pipelined and fully utilized.

For nested loops, memory de-pipelining could occur during the interval between the 
last iteration of an inner loop and the next iteration of its associated outer loop. 
Without paying special attention to prefetch insertion, the loads from the first iteration 
of an inner loop can miss the cache and stall the execution pipeline waiting for data 
returned, thus degrading the performance.

In the code of Example 6-3, the cache line containing a[ii][0] is not prefetched at all 
and always misses the cache. This assumes that no array a[][] footprint resides in the 
cache. The penalty of memory de-pipelining stalls can be amortized across the inner 
loop iterations. However, it may become very harmful when the inner loop is short. In 
addition, the last prefetch in the last PSD iterations are wasted and consume machine 
resources. Prefetch concatenation is introduced here in order to eliminate the 
performance issue of memory de-pipelining.
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Example 6-3 Using Prefetch Concatenation

for (ii = 0; ii < 100; ii++) {

   for (jj = 0; jj < 32; jj+=8) {

          prefetch a[ii][jj+8]

          computation a[ii][jj]

   }

}

Prefetch concatenation can bridge the execution pipeline bubbles between the 
boundary of an inner loop and its associated outer loop. Simply by unrolling the last 
iteration out of the inner loop and specifying the effective prefetch address for data 
used in the following iteration, the performance loss of memory de-pipelining can be 
completely removed. Example 6-4 gives the rewritten code.

Example 6-4 Concatenation and Unrolling the Last Iteration of Inner Loop

for (ii = 0; ii < 100; ii++) {

   for (jj = 0; jj < 24; jj+=8) { /* N-1 iterations */

          prefetch a[ii][jj+8]

          computation a[ii][jj]

   }

   prefetch a[ii+1][0]

   computation a[ii][jj]/* Last iteration */

}

This code segment for data prefetching is improved and only the first iteration of the 
outer loop suffers any memory access latency penalty, assuming the computation time 
is larger than the memory latency. Inserting a prefetch of the first data element needed 
prior to entering the nested loop computation would eliminate or reduce the start-up 
penalty for the very first iteration of the outer loop. This uncomplicated high-level 
code optimization can improve memory performance significantly.
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Minimize Number of Prefetches

Prefetch instructions are not completely free in terms of bus cycles, machine cycles 
and resources, even though they require minimal clocks and memory bandwidth.

Excessive prefetching may lead to performance penalties because issue penalties in the 
front-end of the machine and/or resource contention in the memory sub-system. This 
effect may be severe in cases where the target loops are small and/or cases where the 
target loop is issue-bound

One approach to solve the excessive prefetching issue is to unroll and/or 
software-pipeline the loops to reduce the number of prefetches required. Figure 6-3 
presents a code example which implements prefetch and unrolls the loop to remove the 
redundant prefetch instructions whose prefetch addresses hit the previously issued 
prefetch instructions. In this particular example, unrolling the original loop once saves 
six prefetch instructions and nine instructions for conditional jumps in every other 
iteration.

Figure 6-3 Prefetch and Loop Unrolling

top_loop:
prefetchnta [edx+esi+32]
prefetchnta [edx*4+esi+32]
. . . . .
movaps xmm1, [edx+esi]
movaps xmm2, [edx*4+esi]
. . . . .
add esi, 16
cmp esi, ecx
jl top_loop

top_loop:
prefetchnta [edx+esi+128]
prefetchnta [edx*4+esi+128]
. . . . .
movaps xmm1, [edx+esi]
movaps xmm2, [edx*4+esi]
. . . . .
movaps xmm1, [edx+esi+16]
movaps xmm2, [edx*4+esi+16]
. . . . .
movaps xmm1, [edx+esi+96]
movaps xmm2, [edx*4+esi+96]
. . . . .
. . . . .
add esi, 128
cmp esi, ecx
jl top_loop

unrolle
d ite

ratio
n
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Figure 6-4 demonstrates the effectiveness of software prefetches in latency hiding. The 
X axis indicates the number of computation clocks per loop (each iteration is 
independent). The Y axis indicates the execution time measured in clocks per loop. 
The secondary Y axis indicates the percentage of bus bandwidth utilization. The tests 
vary by the following parameters:

1. The number of load/store streams. Each load and store stream accesses one 
128-byte cache line each, per iteration.

2. The amount of computation per loop. This is varied by increasing the number of 
dependent arithmetic operations executed.

3. The number of the software prefetches per loop. (for example, one every 16 bytes, 
32 bytes, 64 bytes, 128 bytes). 

As expected, the leftmost portion of each of the graphs in  shows that when there is not 
enough computation to overlap the latency of memory access, prefetch does not help 
and that the execution is essentially memory-bound. The graphs also illustrate that 
redundant prefetches do not increase performance.
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Figure 6-4 Memory Access Latency and Execution With Prefetch
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Mix Prefetch with Computation Instructions

It may seem convenient to cluster all of the prefetch instructions at the beginning of a 
loop body or before a loop, but this can lead to severe performance degradation. In 
order to achieve best possible performance, prefetch instructions must be interspersed 
with other computational instructions in the instruction sequence rather than clustered 
together. If possible, they should also be placed apart from loads. This improves the 
instruction level parallelism and reduces the potential instruction resource stalls. In 
addition, this mixing reduces the pressure on the memory access resources and in turn 
reduces the possibility of the prefetch retiring without fetching data.

Example 6-5 illustrates distributing prefetch instructions. A simple and useful heuristic 
of prefetch spreading for a Pentium 4 processor is to insert a prefetch instruction every 
20 to 25 clocks. Rearranging prefetch instructions could yield a noticeable speedup for 
the code which stresses the cache resource.
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Example 6-5 Spread Prefetch Instructions

NOTE.  To avoid instruction execution stalls due to the 
over-utilization of the resource, prefetch instructions must be 
interspersed with computational instructions.

top_loop:
  prefetchnta [ebx+128]
  prefetchnta [ebx+1128]
  prefetchnta [ebx+2128]
  prefetchnta [ebx+3128]
  . . . .
  . . . .
  prefetchnta [ebx+17128]
  prefetchnta [ebx+18128]
  prefetchnta [ebx+19128]
  prefetchnta [ebx+20128]
  movps xmm1, [ebx]
  addps xmm2, [ebx+3000]
  mulps xmm3, [ebx+4000]
  addps xmm1, [ebx+1000]
  addps xmm2, [ebx+3016]
  mulps xmm1, [ebx+2000]
  mulps xmm1, xmm2
  . . . . . . . .
  . . . .  . .
  . . . . .
  add ebx, 128
  cmp ebx, ecx
  jl top_loop

top_loop:
  prefetchnta [ebx+128]
  movps xmm1, [ebx]
  addps xmm2, [ebx+3000]
  mulps xmm3, [ebx+4000]
  prefetchnta [ebx+1128]
  addps xmm1, [ebx+1000]
  addps xmm2, [ebx+3016]
  prefetchnta [ebx+2128]
  mulps xmm1, [ebx+2000]
  mulps xmm1, xmm2
  prefetchnta [ebx+3128]
  . . . . . . .
  . . .
  prefetchnta [ebx+18128]
  . . . . . .
  prefetchnta [ebx+19128]
  . . . . . .
  . . . .
  prefetchnta [ebx+20128]
  add ebx, 128
  cmp ebx, ecx
  jl top_loop

spr
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 pre
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Prefetch and Cache Blocking Techniques

Cache blocking techniques, such as strip-mining, are used to improve temporal 
locality, and thereby cache hit rate. Strip-mining is a one-dimensional temporal locality 
optimization for memory. When two-dimensional arrays are used in programs, loop 
blocking technique (similar to strip-mining but in two dimensions) can be applied for a 
better memory performance.

If an application uses a large data set that can be reused across multiple passes of a 
loop, it will benefit from strip mining: data sets larger than the cache will be processed 
in groups small enough to fit into cache. This allows temporal data to reside in the 
cache longer, reducing bus traffic.

Data set size and temporal locality (data characteristics) fundamentally affect how 
prefetch instructions are applied to strip-mined code. Figure 6-5 shows two simplified 
scenarios for temporally-adjacent data and temporally-non-adjacent data.
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In the temporally-adjacent scenario, subsequent passes use the same data and find it 
already in second-level cache. Prefetch issues aside, this is the preferred situation. In 
the temporally non-adjacent scenario, data used in pass m is displaced by pass (m+1), 
requiring data re-fetch into the first level cache and perhaps the second level cache if a 
later pass reuses the data. If both data sets fit into the second-level cache, load 
operations in passes 3 and 4 become less expensive.

Figure 6-5 Cache Blocking – Temporally Adjacent and Non-adjacent Passes
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Figure 6-6 shows how prefetch instructions and strip-mining can be applied to increase 
performance in both of these scenarios.

For Pentium 4 processors, the left scenario shows a graphical implementation of using 
prefetchnta to prefetch data into selected ways of the second-level cache only (SM1 
denotes strip mine one way of second-level), minimizing second-level cache pollution. 
Use prefetchnta if the data is only touched once during the entire execution pass in 
order to minimize cache pollution in the higher level caches. This provides instant 
availability, assuming the prefetch was issued far ahead enough, when the read access 
is issued.

Figure 6-6 Examples of Prefetch and Strip-mining for Temporally Adjacent and Non-Adjacent 
Passes Loops
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In scenario to the right, in Figure 6-6, keeping the data in one way of the second-level 
cache does not improve cache locality. Therefore, use prefetcht0 to prefetch the data. 
This hides the latency of the memory references in passes 1 and 2, and keeps a copy of 
the data in second-level cache, which reduces memory traffic and latencies for passes 3 
and 4. To further reduce the latency, it might be worth considering extra prefetchnta 
instructions prior to the memory references in passes 3 and 4.

In Example 6-6, consider the data access patterns of a 3D geometry engine first 
without strip-mining and then incorporating strip-mining. Note that 4-wide SIMD 
instructions of Pentium III processor can process 4 vertices per every iteration.

Example 6-6 Data Access of a 3D Geometry Engine without Strip-mining

while (nvtx < MAX_NUM_VTX) {

  prefetchnta vertexi data // v =[x,y,z,nx,ny,nz,tu,tv]

  prefetchnta vertexi+1 data

  prefetchnta vertexi+2 data 

  prefetchnta vertexi+3 data

  TRANSFORMATION code // use only x,y,z,tu,tv of a vertex

  nvtx+=4

}  

while (nvtx < MAX_NUM_VTX) {  

  prefetchnta vertexi data // v =[x,y,z,nx,ny,nz,tu,tv]

      // x,y,z fetched again

  prefetchnta vertexi+1 data

  prefetchnta vertexi+2 data 

  prefetchnta vertexi+3 data 

  compute the light vectors // use only x,y,z  

  LOCAL LIGHTING code // use only nx,ny,nz 

  nvtx+=4

}
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Without strip-mining, all the x,y,z coordinates for the four vertices must be re-fetched 
from memory in the second pass, that is, the lighting loop. This causes 
under-utilization of cache lines fetched during transformation loop as well as 
bandwidth wasted in the lighting loop. 

Now consider the code in Example 6-7 where strip-mining has been incorporated into 
the loops.

Example 6-7 Data Access of a 3D Geometry Engine with Strip-mining

while (nstrip < NUM_STRIP) {

/* Strip-mine the loop to fit data into one way of the second-level 
   cache */

  while (nvtx < MAX_NUM_VTX_PER_STRIP) {

    prefetchnta vertexi data // v=[x,y,z,nx,ny,nz,tu,tv]

    prefetchnta vertexi+1 data

    prefetchnta vertexi+2 data 

    prefetchnta vertexi+3 data 

    TRANSFORMATION code

         nvtx+=4

}  

while (nvtx < MAX_NUM_VTX_PER_STRIP) {  

    /* x y z coordinates are in the second-level cache, no prefetch is 
   required */

    compute the light vectors    

    POINT LIGHTING code

    nvtx+=4

  }  

}

With strip-mining, all the vertex data can be kept in the cache (for example, one way of 
second-level cache) during the strip-mined transformation loop and reused in the 
lighting loop. Keeping data in the cache reduces both bus traffic and the number of 
prefetches used.
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Figure 6-7 summarizes the steps of the basic usage model that incorporates prefetch 
with strip-mining. The steps are:

• Do strip-mining: partition loops so that the dataset fits into second-level cache. 

• Use prefetchnta if the data is only used once or the dataset fits into 32K (one 
way of second-level cache). Use prefetcht0 if the dataset exceeds 32K. 

The above steps are platform-specific and provide an implementation example. The 
variables NUM_STRIP and MAX_NUM_VX_PER_STRIP can be heuristically determined for 
peak performance for specific application on a specific platform.

Single-pass versus Multi-pass Execution

An algorithm can use single- or multi-pass execution defined as follows:

• Single-pass, or unlayered execution passes a single data element through an entire 
computation pipeline.

• Multi-pass, or layered execution performs a single stage of the pipeline on a batch 
of data elements, before passing the batch on to the next stage. 

A characteristic feature of both single-pass and multi-pass execution is that a specific 
trade-off exists depending on an algorithm’s implementation and use of a single-pass 
or multiple-pass execution, see Figure 6-8. 

Figure 6-7 Incorporating Prefetch into Strip-mining Code
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Multi-pass execution is often easier to use when implementing a general purpose API, 
where the choice of code paths that can be taken depends on the specific combination 
of features selected by the application (for example, for 3D graphics, this might 
include the type of vertex primitives used and the number and type of light sources). 

With such a broad range of permutations possible, a single-pass approach would be 
complicated, in terms of code size and validation. In such cases, each possible 
permutation would require a separate code sequence. For example, an object with 
features A, B, C, D can have a subset of features enabled, say, A, B, D. This stage 
would use one code path; another combination of enabled features would have a 
different code path. It makes more sense to perform each pipeline stage as a separate 
pass, with conditional clauses to select different features that are implemented within 
each stage. By using strip-mining, the number of vertices processed by each stage (for 
example, the batch size) can be selected to ensure that the batch stays within the 
processor caches through all passes. An intermediate cached buffer is used to pass the 
batch of vertices from one stage or pass to the next one.

Single-pass execution can be better suited to applications which limit the number of 
features that may be used at a given time. A single-pass approach can reduce the 
amount of data copying that can occur with a multi-pass engine, see Figure 6-8.
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The choice of single-pass or multi-pass can have a number of performance 
implications. For instance, in a multi-pass pipeline, stages that are limited by 
bandwidth (either input or output) will reflect more of this performance limitation in 
overall execution time. In contrast, for a single-pass approach, bandwidth-limitations 

Figure 6-8 Single-Pass Vs. Multi-Pass 3D Geometry Engines
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can be distributed/amortized across other computation-intensive stages. Also, the 
choice of which prefetch hints to use are also impacted by whether a single-pass or 
multi-pass approach is used (see “Prefetch and Cacheability Instructions”).

Memory Optimization using Non-Temporal Stores
The non-temporal stores can also be used to manage data retention in the cache. Uses 
for the non-temporal stores include:

• To combine many writes without disturbing the cache hierarchy

• To manage which data structures remain in the cache and which are transient.

Detailed implementations of these usage models are covered in the following sections.

Non-temporal Stores and Software Write-Combining

Use non-temporal stores in the cases when the data to be stored is:

• write-once (non-temporal)

• too large and thus cause cache thrashing. 

Non-temporal stores do not invoke a cache line allocation, which means they are not 
write-allocate. As a result, caches are not polluted and no dirty writeback is generated 
to compete with useful data bandwidth. Without using non-temporal stores, bus 
bandwidth will suffer when caches start to be thrashed because of dirty writebacks.

In Streaming SIMD Extensions implementation, when non-temporal stores are written 
into writeback or write-combining memory regions, these stores are weakly-ordered 
and will be combined internally inside the processor’s write-combining buffer and be 
written out to memory as a line burst transaction. To achieve the best possible 
performance, it is recommended to align data along the cache line boundary and write 
them consecutively in a cache line size while using non-temporal stores. If the 
consecutive writes are prohibitive due to programming constraints, then software 
write-combining (SWWC) buffers can be used to enable line burst transaction.

You can declare small SWWC buffers (a cache line for each buffer) in your application to 
enable explicit write-combining operations. Instead of writing to non-temporal 
memory space immediately, the program writes data into SWWC buffers and combines 
them inside these buffers. The program only writes a SWWC buffer out using 
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non-temporal stores when the buffer is filled up, that is, a cache line (128 bytes for the 
Pentium 4 processor). Although the SWWC method requires explicit instructions for 
performing temporary writes and reads, this ensures that the transaction on the 
front-side bus causes line transaction rather than several partial transactions. 
Application performance gains considerably from implementing this technique. These 
SWWC buffers can be maintained in the second-level and re-used throughout the 
program.

Cache Management

The streaming instructions (prefetch and stores) can be used to manage data and 
minimize disturbance of temporal data held within the processor’s caches.

In addition, the Pentium 4 processor takes advantage of the Intel C ++ Compiler that 
supports C ++ language-level features for the Streaming SIMD Extensions. The 
Streaming SIMD Extensions and MMX technology instructions provide intrinsics that 
allow you to optimize cache utilization. The examples of such Intel compiler intrinsics 
are _mm_prefetch, _mm_stream, _mm_load, _mm_sfence. For more details on these 
intrinsics, refer to the Intel C ++ Compiler User’s Guide, order number 718195.

The following examples of using prefetching instructions in the operation of video 
encoder and decoder as well as in simple 8-byte memory copy, illustrate performance 
gain from using the prefetching instructions for efficient cache management.

Video Encoder

In a video encoder example, some of the data used during the encoding process is kept 
in the processor’s second-level cache, to minimize the number of reference streams 
that must be re-read from system memory. To ensure that other writes do not disturb 
the data in the second-level cache, streaming stores (movntq) are used to write around 
all processor caches.

The prefetching cache management implemented for the video encoder reduces the 
memory traffic. The second-level cache pollution reduction is ensured by preventing 
single-use video frame data from entering the second-level cache. Using a 
non-temporal prefetch (prefetchnta) instruction brings data into only one way of the 
second-level cache, thus reducing pollution of the second-level cache. If the data 
brought directly to second-level cache is not re-used, then there is a performance gain 
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from the non-temporal prefetch over a temporal prefetch. The encoder uses 
non-temporal prefetches to avoid pollution of the second-level cache, increasing the 
number of second-level cache hits and decreasing the number of polluting write-backs 
to memory. The performance gain results from the more efficient use of the 
second-level cache, not only from the prefetch itself.

Video Decoder

In the video decoder example, completed frame data is written to local memory of the 
graphics card, which is mapped to WC (Write-combining) memory type. A copy of 
reference data is stored to the WB memory at a later time by the processor in order to 
generate future data. The assumption is that the size of the reference data is too large to 
fit in the processor’s caches. A streaming store is used to write the data around the 
cache, to avoid displaying other temporal data held in the caches. Later, the processor 
re-reads the data using prefetchnta, which ensures maximum bandwidth, yet 
minimizes disturbance of other cached temporal data by using the non-temporal (NTA) 
version of prefetch.

Conclusions from Video Encoder and Decoder Implementation

These two examples indicate that by using an appropriate combination of 
non-temporal prefetches and non-temporal stores, an application can be designed to 
lessen the overhead of memory transactions by preventing second-level cache 
pollution, keeping useful data in the second-level cache and reducing costly write-back 
transactions. Even if an application does not gain performance significantly from 
having data ready from prefetches, it can improve from more efficient use of the 
second-level cache and memory. Such design reduces the encoder’s demand for such 
critical resource as the memory bus. This makes the system more balanced, resulting in 
higher performance.

Using Prefetch and Streaming-store for a Simple Memory Copy

Consider a memory copy task to transfer a large array of 8-byte data elements from 
one memory location to another. Example 6-8 presents the basic algorithm of the 
simple memory copy. This task can be sped up greatly using prefetch and streaming 
store instructions. The techniques are discussed in the following paragraph and a code 
example is shown in Example 6-9.
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Example 6-8 Basic Algorithm of a Simple Memory Copy

#define N 512000

double a[N], b[N];

for (i = 0; i < N; i++) {

b[i] = a[i];

}

The memory copy algorithm can be optimized using the Streaming SIMD Extensions 
and these considerations:

• alignment of data

• proper layout of pages in memory 

• cache size

• interaction of the transaction lookaside buffer (TLB) with memory accesses

• combining prefetch and streaming-store instructions. 

The guidelines discussed in this chapter come into play in this simple example. TLB 
priming is required for the Pentium 4 processor just as it is for the Pentium III 
processor, since software prefetch instructions will not initiate page table walks on 
either processor.

TLB Priming

The TLB is a fast memory buffer that is used to improve performance of the translation 
of a virtual memory address to a physical memory address by providing fast access to 
page table entries. If memory pages are accessed and the page table entry is not 
resident in the TLB, a TLB miss results and the page table must be read from memory. 

The TLB miss results in a performance degradation since another memory access must 
be performed (assuming that the translation is not already present in the processor 
caches) to update the TLB. The TLB can be preloaded with the page table entry for the 
next desired page by accessing (or touching) an address in that page. This is similar to 
prefetch, but instead of a data cache line the page table entry is being loaded in 
advance of its use. This helps to ensure that the page table entry is resident in the TLB 
and that the prefetch happens as requested subsequently.
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Optimizing the 8-byte Memory Copy

Example 6-9 presents the copy algorithm that uses second level cache. The algorithm 
performs the following steps:

1. uses blocking technique to transfer 8-byte data from memory into second-level 
cache using the _mm_prefetch intrinsic, 128 bytes at a time to fill a block. The 
size of a block should be less than one half of the size of the second-level cache, 
but large enough to amortize the cost of the loop.

2. loads the data into an xmm register using the _mm_load_ps intrinsic.

3. transfers the 8-byte data to a different memory location via the _mm_stream 
intrinsics, bypassing the cache. For this operation, it is important to ensure that the 
page table entry prefetched for the memory is preloaded in the TLB.

Example 6-9 An Optimized 8-byte Memory Copy

#define PAGESIZE 4096;

#define NUMPERPAGE 512 // # of elements to fit a page

 

double a[N], b[N], temp;

for (kk=0; kk<N; kk+=NUMPERPAGE) {

temp = a[kk+NUMPERPAGE];  // TLB priming

// use block size = page size,

// prefetch entire block, one cache line per loop

for (j=kk+16; j<kk+NUMPERPAGE; j+=16) {

   _mm_prefetch((char*)&a[j], _MM_HINT_NTA);

    }

// copy 128 byte per loop

for (j=kk; j<kk+NUMPERPAGE; j+=16) {

       _mm_stream_ps((float*)&b[j],

 _mm_load_ps((float*)&a[j]));

_mm_stream_ps((float*)&b[j+2],

  _mm_load_ps((float*)&a[j+2]));

continued
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Example 6-9 An Optimized 8-byte Memory Copy (continued)

_mm_stream_ps((float*)&b[j+4],

  _mm_load_ps((float*)&a[j+4]));

_mm_stream_ps((float*)&b[j+6],

  _mm_load_ps((float*)&a[j+6]));

_mm_stream_ps((float*)&b[j+8],

  _mm_load_ps((float*)&a[j+8]));

_mm_stream_ps((float*)&b[j+10],

  _mm_load_ps((float*)&a[j+10]));

_mm_stream_ps((float*)&b[j+12],

  _mm_load_ps((float*)&a[j+12]));

_mm_stream_ps((float*)&b[j+14],

  _mm_load_ps((float*)&a[j+14]));

}   // finished copying one block

} // finished copying N elements

_mm_sfence();

In Example 6-9, eight _mm_load_ps and _mm_stream_ps intrinsics are used so that all 
of the data prefetched (a 128-byte cache line) is written back. The prefetch and 
streaming-stores are executed in separate loops to minimize the number of transitions 
between reading and writing data. This significantly improves the bandwidth of the 
memory accesses.

The instruction, temp = a[kk+CACHESIZE], is used to ensure the page table entry for 
array, and a is entered in the TLB prior to prefetching. This is essentially a prefetch 
itself, as a cache line is filled from that memory location with this instruction. Hence, 
the prefetching starts from kk+4 in this loop.

This example assumes that the destination of the copy is not temporally adjacent to the 
code. If the copied data is destined to be reused in the near future, then the streaming 
store instructions should be replaced with regular 128 bit stores(_mm_store_ps). This 
is required because the implementation of streaming stores on Pentium 4 processor 
writes data directly to memory, maintaining cache coherency.
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Multiprocessor and 
Hyper-Threading 
Technology
This chapter describes software optimization techniques for multithreaded applications 
running on multiprocessor (MP) systems. The multiprocessor systems covered here 
include traditional systems using discrete microprocessors1 and those using IA-32 
processors with Hyper-Threading Technology2.

Hyper-Threading Technology is discussed in Chapter 1. An IA-32 processor with 
Hyper-Threading Technology appears to software as multiple logical processors in one 
physical processor package. The amount of performance gains using two discrete 
processors is greater than using two logical processors in the same physical processor 
package. Nevertheless, there are many similarities in the performance characteristics 
between Hyper-Threading Technology and traditional MP systems. The programming 
models and optimization techniques for multi-threaded applications to take advantage 
of Hyper-Threading Technology and traditional MP system are also similar. 

This chapter covers

• Performance characteristics and usage models,

• Programming models for multithreaded applications,

• Software optimization techniques in five specific areas.

1. Each processor is contained in a separate physical package. 
2. The presence of Hyper-Threading Technology in IA-32 processors can be detected by reading the CPUID 

feature flag bit 28 as well as the number of logical processors per package. A return value of 1 in bit 28 and 
two logical processors per package indicates that Hyper-Threading Technology is present in the processor. 
The application must also check how many logical processors are provided under the operating system by 
making the appropriate operating system calls.   See the application notes “Intel Processor Identification and 
the CPUID Instruction” and “Detecting Support for Hyper-Threading Technology Enabled Processors” for 
more information.
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Performance and Usage Models

The performance gains of using multiple processors or Hyper-Threading Technology 
are greatly affected by usage model and the amount of parallelism in the control flow 
of the workload. Two common usage models are: 

• Multithreaded applications, 

• Multitasking using single-threaded applications. 

Multithreading

When an application employs multi-threading to exploit task-level parallelism in a 
workload, the control flow of the multi-threaded software can be divided into two 
parts: parallel tasks and sequential tasks. 

Amdahl’s law describes an application’s performance gain to the degree of parallelism 
in the control flow. It is a useful guide for selecting the code modules, functions, or 
instruction sequences that are most likely to realize the most gains from transforming 
sequential tasks and control flows into parallel code to take advantage MP systems and 
Hyper-Threading Technology. 

Figure 7-1 illustrates how performance gains can be realized for any workload 
according to Amdahl’s law. The bar in Figure 7-1 represents an individual task unit or 
the collective workload of an entire application. In general, the speed-up of running 
multiple threads on an MP systems with N physical processors, over single-threaded 
execution, can be expressed as

where P is the fraction of workload that can be parallelized, and O represents the 
overhead of multithreading and may vary between different operating systems. The 
performance gain is the inverse of the relative response, in this case.

RelativeResponse
Tsequential

Tparallel
-------------------------------= 1 P–

P
N
---- O+ + 

 =
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When optimizing application performance in a multithreaded environment, control 
flow parallelism is likely to have the largest impact on performance scaling with 
respect to the number of physical processors and to the number of logical processor per 
physical processor. 

If the control flow of a multi-threaded application contains a workload in which only 
50% can be executed in parallel, the maximum performance gain using two physical 
processors is only 33%, compared to using a single processor. Using four processors 
can deliver no more than a 60% speed-up over a single processor! Thus, it is critical to 
maximize the portion of control flow that can take advantage of parallelism. Improper 
implementation of thread synchronization can significantly increase the proportion of 
serial control flow and further reduce the application’s performance scaling. 

In addition to maximizing the parallelism of control flows, multithreaded applications 
should ensure each thread has good frequency scaling. one common causes of poor 
performance scaling includes excessive cache misses. In a multithreaded execution 
environment, excessive cache misses can occur from 

• Aliased stack accesses by different threads in the same process, 

• Thread contentions resulting in cache line evictions, 

• False-sharing of cache lines between different processors. 

Figure 7-1 Amdahl’s Law and MP Speed-up
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Code-tuning techniques to address each of these situations and many other important 
areas are described in subsequent sections in this chapter. 

Multitasking Environment

Hyper-Threading Technology can exploit task-level parallelism when a workload 
consists of several single-threaded applications and these applications are scheduled to 
run concurrently under an MP-aware operating system. In this environment, 
Hyper-Threading Technology can deliver higher throughput for the workload, 
although it does not increase the performance of an application (in terms of time of 
completion of each application). 

Popular operating systems (e.g., Microsoft Windows* XP Professional and Linux* 
using kernel 2.4.14 and later versions) include optimizations for Hyper-Threading 
Technology. The optimization in the OS kernel can manage task scheduling and the 
balancing of shared execution resources within each physical processor to maximize 
the throughput of multiple tasks.

Because each application runs independently under a multi-tasking environment, 
thread synchronization issues are less likely to limit the scaling of throughput. This is 
because the control flow of the multi-tasking workload is likely to be 100% parallel3, 
if no inter-processor communication is taking place nor constrained by the system bus. 

With a multi-tasking workload, bus activities or the access pattern of caches are likely 
to affect the scaling of the throughput with respect to the number of physical 
processors and the number of logical processors per physical processor. Running two 
copies of the same application or same suite of applications in a lock step manner can 
expose an artifact in performance measuring methodology, because the access pattern 
to the 1st level data cache can lead to excessive cache misses and produce performance 
result that are askew. 

3. A software tool that attempts to measure the throughput of a multi-tasking workload is likely to introduce 
additional control flows that are not parallel. For example, see Example 7-2 for coding pitfalls using spin-wait 
loop. Thus, thread synchronization issues must be considered as an integral part of its performance measuring 
methodology.
7-4



Intel Pentium 4 and Intel Xeon Processor Optimization Multiprocessor and Hyper-Threading Technology 7

This anomaly in the usage model can be fixed in one of several ways: (a) include a 
per-instance offset at the start-up of an application, (b) introduce heterogeneity in the 
workload by using different datasets with each instance of the application, (c) 
randomize the sequence of start-up of applications within an suite when running two 
copies of the same suite.

Programming Models and Multithreading
Parallelism is the most important concept in designing a multithreaded application and 
realizing optimal performance scaling with multiple processors. An optimized 
multithreaded application is characterized by large degrees of parallelism or minimal 
dependencies in the following areas: 

• Workload

• Thread interaction

• Hardware utilization.

The key to maximizing workload parallelism is to identify multiple tasks that have 
minimal inter-dependencies within an application and to create separate threads for 
parallel execution of those tasks.

Concurrent execution of independent threads is the essence of deploying a 
multithreaded application on a multiprocessing system. Managing the interaction 
between threads to minimize the cost of thread synchronization is also critical to 
achieving optimal performance scaling with multiple processors. 

Efficient use of hardware resources between concurrent threads requires optimization 
techniques in specific areas to prevent contentions of hardware resources. Coding 
techniques for optimizing thread synchronization and managing other hardware 
resources are discussed in subsequent sections. Parallel programming models are 
discussed next.

Parallel Programming Models

Two common programming models for transforming independent task requirements 
into application threads are: 

• Domain decomposition 
• Functional decomposition. 
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Domain Decomposition

Frequently, a large compute-intensive task uses data sets that can be divided into a 
number of smaller subsets with a large degree of independence between the 
computational tasks associated with each subset. One example is the computation of a 
discrete cosine transformation (DCT) on two-dimensional data: dividing the 
two-dimensional data into several subsets and creating separate threads to compute the 
transform on each subset of data. Another example is in matrix multiplication, where 
two threads can be created to handle the multiplication of half of matrix with the 
multiplier matrix.

Domain Decomposition is a programming model based on creating identical or similar 
threads to process smaller pieces of data independently. This model can easily take 
advantage of duplicated execution resources present in a traditional multiprocessor 
system. It can also take advantage of shared execution resources between two logical 
processors in Hyper-Threading Technology. This is because a data domain thread 
typically consumes only a fraction of the available on-chip execution resources. The 
section “Key Practices of Execution Resource Optimization” discusses additional 
guidelines that can help data domain threads use shared execution resources 
cooperatively and avoid the pitfalls creating contentions of hardware resources 
between two threads.

Functional Decomposition

Applications usually process a wide variety of tasks with diverse functions, and many 
unrelated data sets. For example, a video codec needs several different processing 
functions including DCT, motion estimation, and color conversion. Other example of 
functionally independent workloads would be sorting balances, merging mails, and 
computing financial projections. Using a functional threading model, an application 
can program separate threads to do motion estimation, color conversion, and other 
functional tasks. 

Functional decomposition is likely to achieve a more flexible thread-level parallelism 
that is less dependent on the duplication of hardware resources in an MP system. For 
example, a thread executing a sorting algorithm and a thread executing a matrix 
multiplication routine are less likely to require the same execution unit at the same 
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time. Therefore, functional decomposition model can take advantage of traditional 
multiprocessor systems as well as multiprocessor systems using IA-32 processor with 
Hyper-Threading Technology.

Tools for Creating Multithreaded Applications

Programming directly to a multithreading application programming interface (API) is 
not the only method for creating multithreaded applications. New tools such as the 
Intel® Compiler, and the Intel® KAP/Pro Toolset have become available with 
capabilities that make the challenge of creating multithreaded application much easier.

Two features available in the latest Intel Compilers are:

• Generating multithreaded code using OpenMP* directives4

• Generating multithreaded code automatically from unmodified high-level code5.

Programming with OpenMP Directives. OpenMP provides a standardized, 
non-proprietary, portable set of Fortran and C++ compiler directives supporting shared 
memory parallelism in applications. OpenMP supports directive-based processing, 
which uses special preprocessors or modified compilers to interpret the parallelism 
expressed in Fortran comments or C/C++ pragmas. This makes it easier to convert 
serial applications into parallel applications. The benefits of directive-based processing 
include:

• The original source is compiled unmodified.

• It is possible to make incremental code changes, which preserves the algorithms of 
the original code and enables rapid debugging.

• Incremental code changes help programmers maintain serial consistency. When 
the code is run on one processor, it gives the same result as the unmodified source 
code.

Automatic Parallelization of Code. While OpenMP directives allow programmers to 
transform serial applications into parallel applications quickly, the programmer must 
explicitly identify specific portions of the application code that contain parallelism and 
add the appropriate compiler directives. Intel Compiler 6.0 supports a new 

4. Intel Compiler 5.0 and later supports OpenMP directives. Visit http://developer.intel.com/software/products 
for details.

5. Intel Compiler 6.0 supports auto-parallelization.
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(-Qparallel) option, which can automatically identify certain loop structures that 
contain parallelism. During program compilation, the compiler automatically attempts 
to decompose the parallelism into threads for parallel processing. No other 
intervention or effort by the programmer is needed.

Supporting Development Tools: The Intel® Threading Tools include the Intel® 
Thread Checker and Thread Profiler.  

Intel® Thread Checker

The Intel Thread Checker locates programming errors in threaded applications. Use 
the Intel Thread Checker to find threading errors and reduce the amount of time you 
spend debugging your threaded application. 

The Intel Thread Checker product is an Intel VTune Performance Analyzer plug-in 
data collector that executes your program and automatically locates threading errors. 
As your program runs, the Intel Thread Checker monitors memory accesses and other 
events and automatically detects situations which could cause unpredictable 
threading-related results. The Intel Thread Checker detects thread deadlocks, stalls, 
data race conditions and more.

Thread Profiler

The thread profiler is a plug-in data collector for the Intel VTune Performance 
Analyzer. Use it to analyze threading performance and identify parallel performance 
bottlenecks. The thread profiler graphically illustrates what each OpenMP* thread is 
doing at various levels of detail using a hierarchical summary. Mountains of data are 
collapsed into relevant summaries, sorted to identify parallel regions or loops that 
require attention. Its intuitive, and color-coded displays make it easy to assess your 
application’s performance.

Optimization Guidelines
This section summarizes the optimization guidelines for tuning multithreaded 
applications. The optimization guidelines covers five specific areas (arranged in order 
of importance):

• Thread synchronization,

• Bus utilization,
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• Memory optimization,

• Front end optimization,

• Execution resource optimization.

The key practices associated with each area are listed in this section. The guidelines for 
each area are discussed in greater details in separate sections following this section. 

Most of the coding recommendations improve performance scaling with the number of 
physical processors and scaling due to Hyper-Threading Technology. Techniques that 
apply to only one or the other are specifically noted.

Key Practices of Thread Synchronization

Key practices for minimizing the cost of thread synchronization are summarized below 
(see “Thread Synchronization” for more details):

• Insert the PAUSE instruction in fast spin loops and keep the number of loop 
repetitions to a minimum to improve overall system performance. 

• Replace a spin lock that may be acquired by multiple threads with pipelined locks 
such that no more than two threads have write accesses to one lock. If only one 
thread needs to write to a variable shared by two threads, there is no need to 
acquire a lock.

• Use a thread-blocking API in a long idle loop to free up the processor.

• Prevent “false-sharing” of per-thread-data between two threads.

• Place each synchronization variable alone, separated by 128 byte or in a separate 
cache line.

Key Practices of System Bus Optimization

Managing bus traffic can significantly impact the overall performance of 
multithreaded software and MP systems. Key practices of system bus optimization for 
achieving high data throughput and quick response are (see  “System Bus 
Optimization” for more details):

• Improve data and code locality to conserve bus command bandwidth.
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• Avoid excessive use of software prefetch instructions and allow the automatic 

hardware prefetcher to work. Excessive use of software prefetches can 
significantly and unnecessarily increase bus utilization if used inappropriately.

• Consider using overlapping multiple back-to-back memory reads to improve 
effective cache miss latencies.

• Use full write transactions to achieve higher data throughput.

Key Practices of Memory Optimization

Key practices for optimizing memory operations are summarized below (see “Memory 
Optimization” for more details):

• Use cache blocking to improve locality of data access. Target one quarter to one 
half of the cache size when targeting IA-32 processors with Hyper-Threading 
Technology.

• Minimize the sharing of data between threads that execute on different physical 
processors sharing a common bus.

• Minimize data access patterns that are offset by multiples of 64-KB in each thread.

• Adjust the private stack of each thread in an applica tion so the spacing between 
these stacks is not offset by multiples of 64 KB or 1 MB to prevent unnecessary 
cache line evictions, when targeting IA-32 processors with Hyper-Threading 
Technology.

• Add a per-instance stack offset when two instances of the same application are 
executing in lock steps to avoid memory accesses that are offset by multiples of 
64 KB or 1 MB, when targeting IA-32 processors with Hyper-Threading 
Technology.
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Key Practices of Front-end Optimization

Key practices for front-end optimization are (see “Front-end Optimization” for more 
details):

• Avoid Excessive Loop Unrolling to ensure the Trace cache is operating efficiently.

• Optimize code size to improve locality of Trace cache and increase delivered trace 
length.

Key Practices of Execution Resource Optimization

Each physical processor has dedicated execution resources, and the logical processors 
in each physical processor that supports Hyper-Threading Technology share on-chip 
execution resources. Key practices for execution resource optimization include (see  
“Execution Resource Optimization” for more details):

• Optimize each thread to achieve optimal frequency scaling first.

• Optimize multithreaded applications to achieve optimal scaling with respect to the 
number of physical processors.

• Use on-chip execution resources cooperatively if two threads are sharing the 
execution resources in the same physical processor package.

• For each processor with Hyper-Threading Technology, consider adding 
functionally uncorrelated threads to increase the hardware resource utilization of 
each physical processor package.

Generality and Performance Impact

The next five sections covers each optimization technique in detail. Typically, a given 
application only needs to apply a few optimization techniques in selected areas to 
combine multiple scaling factors (frequency, number of physical processors, and 
Hyper-Threading Technology). The coding recommendations discussed in each 
section are ranked by importance in terms of estimated local impact and generality. 
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These rankings are subjective and approximate. They can vary depending on coding 
style, application and threading domain, and other factors. The purpose of including 
high, medium and low impact ranking with each recommendation is to provide a 
relative indicator to the degree of performance gain that can be expected when a 
recommendation is implemented. It is not possible to predict the frequency of 
occurrence of a code instance in applications, so an impact ranking cannot be directly 
correlated to application-level performance gain. The ranking on generality is also 
subjective and approximate. Coding recommendations that do not impact all three 
scaling factors are typically categorized as medium or lower.

Thread Synchronization
Applications with multiple threads use synchronization techniques in order to ensure 
correct operation. However, thread synchronizations that are improperly implemented 
can significantly reduce performance in either systems using discrete processors or 
those using processors with Hyper-Threading Technology. 

There are several coding techniques and operating system (OS) calls that are 
frequently used for thread synchronization, for example, spin-wait loops, spin-locks, 
critical sections, to name a few. Choosing the optimal OS calls for the circumstance 
and implementing synchronization code with parallelism in mind are critical in 
minimizing the cost of handling thread synchronization.

Synchronization for Short Periods

The frequency and duration that a thread needs to synchronize with other threads 
depends on the characteristics of an application. When a synchronization loop needs 
very fast response, an application may use a spin-wait loop.

Conversely, when a worker thread is expected to remain busy for an extended period 
(for example, longer than the OS time quanta for task switching) a different coding 
technique is needed to implement the synchronization between the worker threads and 
the control thread. Techniques to improve spin-wait loop is discussed next. 
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A spin-wait loop is typically used when one thread needs to wait for a short amount of 
time for another thread to reach a point of synchronization. The basic structure of a 
spin-wait loop consists of a loop that compares a synchronization variable with some 
pre-defined value, as shown in Example 7-1(a).

On a modern microprocessor with a superscalar speculative execution engine, a loop 
like this results in the issue of multiple simultaneous read requests from the spinning 
thread. These requests often execute out-of-order and each read request is allocated 
with additional buffer resource. 

On detection of a write by another worker thread to any load that is in progress, the 
processor must guarantee that no violations of memory order can occur. To maintain 
the proper order of outstanding memory operations, the processor suffers a severe 
penalty, affecting both threads. This performance penalty also occurs on the Pentium 
Pro processor, the Pentium II processor and the Pentium III processor. However, the 
penalty in these processors is small compared with the penalty on the Pentium 4 
processor and Intel Xeon processor where the performance penalty of exiting this loop 
is about 25 times more severe. On a processor with Hyper-Threading Technology, 
spin-wait loops can consume a significant portion of the execution bandwidth of the 
processor. One logical processor executing a spin-wait loop could severely impact the 
performance of the other logical processor doing useful work.

Example 7-1 Spin-wait Loop and PAUSE Instructions 

(a) An un-optimized spin-wait loop experiences performance penalty when exiting the 
loop. It consumes execution resources without contributing computational work.
do { 

// this loop can run faster than the speed of memory access, 

// other worker threads cannot finish modifying sync_var until
// outstanding loads from the spinning loops are resolved.

} while( sync_var != constant_value) 

continued
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Example 7-1 Spin-wait Loop and PAUSE Instructions  (continued)

(b) Inserting the PAUSE instruction in a fast spin-wait loop prevents 
performance-penalty to the spinning thread and the worker thread 

do {  

_asm   pause 

// ensure this loop is de-pipelined, i.e. preventing more than one 
// load request to sync_var to be outstanding, 

// avoiding performance penalty when the worker thread updates 
// sync_var and the spinning thread exiting the loop

} 

while( sync_var != constant_value) 

(c) A spin-wait loop using a “test, test-and-set” technique to determine the availability 
of the synchronization variable. This technique is recommended when writing 
spin-wait loops to run on IA-32 architecture processors.
Spin_Lock:

CMP lockvar, 0 ; Check if lock is free

JE  Get_lock

PAUSE ; Short delay

JMP Spin_Lock

Get_Lock:

MOV EAX, 1

XCHG EAX, lockvar ; Try to get lock

CMP EAX, 0 ; Test if successful

JNE Spin_Lock

Critical_Section:

<critical section code>

MOV lockvar, 0 ; Release lock

User/Source Coding Rule 20. (M impact, H generality) Insert the PAUSE instruction in fast 
spin loops and keep the number of loop repetitions to a minimum to improve overall system 
performance.  
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It is important to include the PAUSE instruction in the body of any spin-wait loops to 
prevent the performance penalties due to the exit condition from the spin-wait loop. On 
IA-32 processors that use the Intel NetBurst microarchitecture core, this penalty of 
exiting from a spin-wait loop can be avoided by inserting a PAUSE instruction in the 
loop.

In spite of the name, the PAUSE instruction actually improves performance by 
introducing a slight delay in the loop effectively causing the memory read requests to 
be issued at a rate that allows immediate detection of any store to the synchronization 
variable, thereby preventing the occurrence of a long delay due to memory order 
violation. 

One example of inserting the PAUSE instruction into a simplified spin-wait loop is 
shown in Example 7-1(b). The PAUSE instruction is compatible with all IA-32 
processors. On IA-32 processors prior to Intel NetBurst microarchitecture, the PAUSE 
instruction is essentially a NOP instruction. Additional examples of optimizing 
spin-wait loops using the PAUSE instruction are available in Application Note AP-949 
“Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor.”

Inserting the PAUSE instruction has the added benefit of significantly reducing the 
power consumed during the spin-wait because fewer system resources are used.

Optimization with Spin-Locks

Spin-locks are typically used when several threads needs to modify a synchronization 
variable, and the synchronization variable must be protected by a lock to prevent 
un-intentional overwrites. When a lock is released, several threads may compete to 
acquire this lock all at once. These thread contentions can significantly reduce 
performance scaling with respect to frequency, number of discrete processors, and 
Hyper-Threading Technology.

To reduce the performance penalties of thread contentions, an effective approach is to 
reduce the likelihood of many threads competing to acquire the same lock and apply a 
software pipelining technique to handle data that must be shared between multiple 
threads. 
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Instead of allowing multiple threads to compete for a given lock, no more than two 
threads should have write access to a given lock. If an application must use spin-locks, 
then it should also include the PAUSE instruction in the wait loop. Example 7-1 (c) 
shows an example of the “test, test-and-set” technique for determining the availability 
of the lock in a spin-wait loop. 

User/Source Coding Rule 21. (M impact, L generality) Replace a spin lock that may be 
acquired by multiple threads with pipelined locks such that no more than two threads have 
write accesses to one lock. If only one thread needs to write to a variable shared by two 
threads, there is no need to use a lock,  

Synchronization for Longer Periods

For a spin-wait loop not expected to be released very quickly, it is highly 
recommended that an application should follow two guidelines:

• Keep the duration of the spin-wait loop to a minimum number of repetitions.

• Applications should use an OS service to block the waiting thread; this can release 
the processor so that other runnable threads can make use of the processor or 
available execution resources.

On processors supporting Hyper-Threading Technology, an operating system should 
use the HLT instruction if one logical processor is active and the other is not.  HLT will 
allow an idle logical processor to transition to a halted state; this allows the other 
logical processor to use all the hardware resources in the physical processor package. 
An operating system that does not use this optimization would execute on the idle 
logical processor a sequence of instructions that repeatedly checks for work to do.  
This so-called “idle loop” in the OS, can consume significant execution resources that 
could otherwise be used to make faster progress on the other active logical processor.

If an application thread must remain idle for a long time, the application should use a 
thread blocking API or other methods to release the idle processor. The techniques 
discussed here apply to traditional MP system, but they will have even higher impact 
to IA-32 processors that support Hyper-Threading Technology. Because any kind of 
spin-wait loop will consume a significant amount of execution resources that the 
second logical processor in a physical processor can use. 
7-16



Intel Pentium 4 and Intel Xeon Processor Optimization Multiprocessor and Hyper-Threading Technology 7

Typically, an operating system provides timing services, e.g. Sleep(dwMilliseconds)6, 
so that a lock variable is only checked periodically. This avoids the frequent checking 
of a synchronization variable.

Another technique to synchronize between several worker threads and a control loop is 
to use a thread-blocking API provided by the OS. Using a thread-blocking API allows 
the control thread to use less processor cycles for spinning and waiting. This gives the 
OS more time quanta to schedule the worker threads on available processors.  
Furthermore, using a thread-blocking API also benefits from the system idle loop 
optimization that OS implements using the HLT instruction. 

User/Source Coding Rule 22. (H impact, M generality) Use a thread-blocking API in a long 
idle loop to free up the processor. 

Although using a spin-wait loop in a traditional MP system may be less of an issue, 
when the number of runnable threads is less than the number of processors in the 
system. If the number of threads in an application is expected to be greater than the 
number of processors in a system (either one processor or multiple processors), it is 
important to use a thread-blocking API to free up processor resources. A multithreaded 
application adopting one control thread to synchronize with multiple worker threads 
may consider keeping the number of worker threads to match the number of processors 
in a system, and use thread-blocking APIs in the control thread.

Avoid Coding Pitfalls in Thread Synchronization

Synchronization between multiple threads must be designed and implemented with 
forethought and great care to achieve good performance scaling with respect to the 
number of discrete processors and the number of logical processor per physical 
processor. No single coding technique or OS call that is the universal solution to every 
thread synchronization situation. 

The pseudo-code example below Example 7-2 (a) illustrates a polling loop 
implementation of a control thread. If there is only one runnable worker thread, an 
attempt to call a timing service API, such as Sleep(0), may be ineffective in 
minimizing the cost of thread synchronization. Because the control thread still behaves 

6. The Sleep() API is not thread-blocking, because it does not guarantee the processor will be released. 
Example 7-2 (a) shows an example of using Sleep(0), which does not always realize the processor to another 
thread.
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like a fast spinning loop, the only runnable worker thread must share execution 
resources with the spin-wait loop if both are running on the same physical processor 
that supports Hyper-Threading Technology. If there are more than one runnable worker 
threads, then calling a thread blocking API, such as Sleep(0), could still release the 
processor running the spin-wait loop, allowing the processor to be used by another 
worker thread instead of the spinning loop.

Example 7-2 Coding Pitfall using Spin Wait Loop 

(a) A spin-wait loop attempts to release the processor incorrectly. It experiences a 
performance penalty if the only worker thread and the control thread runs on the same 
physical processor package.
// Only one worker thread is running, 

// the control loop waits for the worker thread to complete

ResumeWorkThread(thread_handle);

While (!task_not_done ) { 

 Sleep(0)   //  Returns immediately back to spin loop

 … 

}

(b) A polling loop frees up the processor correctly.
// Let a worker thread run and wait for completion

ResumeWorkThread(thread_handle);

While (!task_not_done ) { 

 Sleep(FIVE_MILISEC)   

//  This processor is released for some duration, the processor can be

//  used by other threads

 … 

}

A control thread waiting for the completion of worker threads can usually implement 
thread synchronization using a thread-blocking API or a timing service, if the worker 
threads require significant time to complete.  Example 7-2 (b) shows an example that 
reduces the overhead of the control thread in its thread synchronization.  
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In general, OS function calls should be used sparingly and with care when 
synchronizing threads. When using OS-supported thread synchronization objects 
(critical section, mutex, or semaphore), preference should be given to the OS service 
that has the least synchronization overhead, such as a critical section.

Prevent False-Sharing of Data

When two threads must share data, it is important to avoid what is commonly called 
false sharing. False sharing applies to data used by one thread that happens to reside on 
the same cache line as different data used by another thread.  

An example of false sharing is when thread-private data and a thread synchronization 
variable are located within the line size boundary (64 bytes for write, 128 bytes for 
read). When one thread modifies the synchronization variable, the “dirty” cache line 
must be written out to memory and updated to each physical processor sharing the bus. 
Subsequently, data is fetched into each target processor 128 bytes at a time, causing 
previously cached data to be evicted from its cache on each target processor. 
False-sharing incurs a performance penalty, when two threads run on different physical 
processors or on two logical processors in the physical processor package. In the first 
case, the performance penalty is due to cache evictions to maintain cache coherency. In 
the latter case, performance penalty is due to memory order machine clear conditions. 

User/Source Coding Rule 23. (H impact, M generality) Beware of false sharing within a 
cache line (64 bytes on Intel Pentium 4 and Intel Xeon processors, and 32 bytes on Pentium III 
processors). 

When a common block of parameters is passed from a parent thread to several worker 
threads, it is desirable for each work thread to create a private copy of frequently 
accessed data in the parameter block.

Placement of Shared Synchronization Variable

Because bus reads typically fetches 128 bytes into a cache, the optimal spacing to 
minimize eviction of cached data is 128 bytes. To prevent the false-sharing of thread 
private data in an application, synchronization variables and system objects (such as a 
critical section) should be allocated to reside alone in a 128-byte region and aligned to 
a 128-byte boundary. Example 7-3 shows an example to minimize the bus traffic 
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required to maintain cache coherency in MP systems. This technique is also applicable 
to MP systems using IA-32 processors with Hyper-Threading Technology or without 
Hyper-Threading Technology.

User/Source Coding Rule 24. (M impact, ML generality) Place each synchronization 
variable alone, separated by 128 bytes or in a separate cache line. 

User/Source Coding Rule 25. (H impact, L generality) Do not place any spin lock variable 
to span a cache line boundary, that is, 64 bytes on Intel Pentium 4 and Intel Xeon processors, 
and 32 bytes on Pentium III processors. 

Example 7-3 Placement of Synchronization and RegularVariables  

int regVar;

int padding[32];

int SynVar[32*NUM_SYNC_VARS];

int AnotherVar;

System Bus Optimization
The system bus supports a maximum data rate of 3.2 Gigabytes per second (GB/S) at 
400 MHz, or 4.2 GB/s at 533 MHz. The bus has a line size of 64 bytes and can fetch 
two lines such that 128 bytes of data can be fetched from memory for a bus read 
transaction. The high data rate is achieved only when bus transactions use the full 
capacity of each line. While read and prefetch transactions across the bus are 
conducted at 64-byte line size or 128 bytes at a time, write transactions can occur in 
either full or various partial line sizes. Conducting partial write transactions not only 
reduces the effective data rate of the system bus, but each request for a partial write 
transaction also consumes the finite command bandwidth of the system bus. When 
both logical processors in an IA-32 processor that supports Hyper-Threading 
Technology are active, each logical processor is an agent that can initiate requests for 
bus transactions. 
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Conserve Bus Command Bandwidth

In an N-way MP system with IA-32 processors supporting Hyper-Threading 
Technology, there can be twice as many agents that can issue bus transaction requests. 
Thus preserving the bus command bandwidth can help each bus agent achieve higher 
performance. 

One way for conserving the available bus command bandwidth is to improve the 
locality of code and data. Improving the locality of data reduces the number of cache 
line evictions and requests to fetch data. Good locality in code also reduces the number 
of instruction fetches from system memory.

User/Source Coding Rule 26. (M impact, H generality) Improve data and code locality to 
conserve bus command bandwidth.  

Using a compiler that supports profiler-guided optimization can improve code locality 
by keeping frequently used code paths to stay in the cache, reducing the amount of 
instruction fetches. Loop blocking can improve the data locality.

Avoid Excessive Software Prefetches

Pentium 4 and Intel Xeon Processors have an automatic hardware prefetcher. It can 
bring data and instructions into the unified second-level cache based on prior reference 
patterns. In most situations, the hardware prefetcher is likely to reduce system memory 
latency effectively without explicit intervention from software using software 
prefetches. Using software prefetch instructions excessively or indiscriminately will 
inevitably cause severe performance penalty. This is because excessively or 
indiscriminately using software prefetch instructions actually wastes the command and 
data bandwidth of the system bus. Using software prefetches will delay the hardware 
prefetcher from starting to fetch data that may be needed by the processor core. It will 
also consume critical execution resources, resulting in stalled execution. The 
guidelines for using software prefetch instructions are described in detail in Chapter 2, 
and the calculation of prefetch-ahead distance is discussed in Chapter 6.

User/Source Coding Rule 27. (M impact, L generality) Avoid excessive use of software 
prefetch instructions and allow automatic hardware prefetcher to work. Excessive use of 
software prefetches can significantly and unnecessarily increase bus utilization if used 
inappropriately. 
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Improve Effective Latency of Cache Misses

System memory access latency due to cache misses is affected by the amount of bus 
traffic. This is because bus read requests must be arbitrated along with all other 
requests for bus transactions. Reducing the number of outstanding bus transactions 
helps improve effective memory access latency.

One technique worth considering to improve the effective latency of memory read 
transactions is to use multiple overlapping bus reads to reduce the latency of sparse 
reads. In situations where there is little locality of data or when memory reads need to 
be arbitrated with other bus transactions, the effective latency of scattered memory 
reads can be improved by issuing multiple memory reads back-to-back to overlap 
multiple outstanding memory read transactions. The average latency of back-to-back 
bus reads is likely to be lower than the average latency of scattered reads that are 
interspersed with other bus transactions. This is because only the first memory read 
needs to wait for the full delay of a cache miss.

User/Source Coding Rule 28. (M impact, M generality) Consider using overlapping 
multiple back-to-back memory reads to improve effective cache miss latencies.

Use Full Write Transactions to Achieve Higher Data Rate

Write transactions across the bus can result in write to physical memory either using 
the full line size of 64 bytes or less than the full line size. The latter is referred to as 
partial writes. Typically, writes to writeback (WB) memory addresses are full-size and 
writes to write-combine (WC) or uncacheable (UC) type memory addresses can result 
in partial writes. Both cached WB store operations and WC store operations utilize a 
set of six WC buffers (64 bytes wide) to manage the traffic of these write transactions. 
When competing traffic closes a WC buffer before all writes to the buffer are finished, 
this results in a series of 8-byte partial bus transactions rather than a single 64-byte 
write transaction.

User/Source Coding Rule 29. (M impact, M generality) Use full write transactions to 
achieve higher data throughput.

Frequently, multiple partial writes to WC memory can be combined into full-sized 
writes using a software write-combining technique to separate WC store operations 
from competing with WB store traffic. To implement software write-combining, 
uncacheable writes to memory with the WC attribute are written to a small, temporary 
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buffer (WB type) that fits in the first level data cache. When the temporary buffer is 
full, the application copies the content of the temporary buffer to the final WC 
destination.

When partial-writes are transacted on the bus, the effective data rate to system memory 
is reduced to only 1/8 of the system bus bandwidth.

Memory Optimization
Efficient operation of the caches is the most important aspect of memory optimization. 
Efficient operation of the caches can be achieved through several techniques including: 
cache blocking, shared memory optimization, eliminating 64-K-Aliased data accesses, 
and preventing excessive evictions in first-level cache.

Cache Blocking Technique

Loop blocking is a useful for reducing cache misses and improving memory access 
performance. The selection of a suitable block size is critical when applying the loop 
blocking technique. It is applicable to single-threaded applications as well as to 
multithreaded applications running on processors with or without Hyper-Threading 
Technology. This technique transforms the memory access pattern of a given problem 
into smaller blocks that can fit within the target cache size.

When targeting IA-32 processors with Hyper-Threading Technology, the loop 
blocking technique should select a block size that is no more than one half of the target 
cache size. The upper limit of the block size for loop blocking should be determined by 
dividing the target cache size by the number of logical processors available in a 
physical processor package. Typically, some cache lines are needed to access data that 
are not part of the source or destination buffers used in cache blocking, so the block 
size can be chosen between one quarter to one half of the target cache. Additional 
detail of the loop blocking technique is discussed in Chapter 3.

User/Source Coding Rule 30. (H impact, H generality)   Use cache blocking to improve 
locality of data access. Target one quarter to one half of the cache size when targeting IA-32 
processors with Hyper-Threading Technology. 
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Shared-Memory Optimization

Maintaining cache coherency between discrete processors frequently involves moving 
data across a bus that operates at a clock rate substantially slower that the processor 
frequency. 

Minimize Sharing of Data between Physical Processors

When two threads are executing on two physical processors and sharing data, reading 
from or writing to shared data usually involves several bus transactions, including 
snooping, request for ownership changes, and sometimes fetching data across the bus. 
Thus, each thread accessing large amount of shared memory is less likely to scale with 
processor clock rates. In addition, accessing shared memory can further limit a 
multithreaded application from scaling with the number of discrete processors. 
Multithreaded applications should consider allocating frequently accessed data using 
per-thread stack versus a common heap area.

User/Source Coding Rule 31. (H impact, M generality) Minimize the sharing of data 
between threads that execute on different physical processors sharing a common bus. 

One technique to minimize sharing of data is to copy data to local stack variables if it 
is to be operated with repeatedly over an extended period.  If necessary, results from 
multiple threads can be combined upon later writing back to a shared memory location.  
This approach can also minimize time spent in critical sections used to synchronize 
access to shared data.

Eliminate 64-K-Aliased Data Accesses

The 64-K aliasing condition is discussed in Chapter 2. Memory accesses that satisfy 
the 64-K aliasing condition can cause excessive evictions of the first-level data cache. 
Eliminating 64-K-aliased data accesses originating from each thread helps improve 
frequency scaling in general. Furthermore, it enables the first-level data cache to 
perform efficiently when Hyper-Threading Technology is fully utilized by software 
applications.

User/Source Coding Rule 32. (H impact, H generality)   Minimize data access patterns that 
are offset by multiples of 64-KB in each thread. 
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The presence of 64-K-aliased data access can be detected using Pentium 4 processor 
performance monitoring events. An updated lists of Pentium 4 processor performance 
metrics is listed in Appendix B. These performance metrics are based on the Pentium 4 
processor performance monitoring events and can be accessed through the Intel VTune 
performance analyzer.

Performance penalties associated with 64-K aliasing are applicable mainly to current 
processor implementations of Hyper-Threading Technology or Intel NetBurst 
microarchitecture. The next section discusses a couple of memory optimization 
techniques that are applicable only to multithreaded applications running on 
processors with Hyper-Threading Technology. 

Preventing Excessive Evictions in First-Level Data Cache

The allocation and eviction of a cache line in the cache is closely related to the 
mapping between the internal structure of the cache and the address of the data. 
Cached data in the first-level data cache are indexed to linear addresses but physically 
tagged while the second-level and third-level caches are tagged and indexed to 
physical addresses. Although two logical processors in the same physical processor 
package execute on separate linear address spaces, these two logical processors can 
reference data at the same linear address in two address spaces but mapped to different 
physical addresses. When these competing accesses occur simultaneously or nearly 
simultaneously, they can cause repeated evictions and allocations of cache lines in the 
first-level data cache. Preventing unnecessary evictions in the first-level data cache by 
two competing threads improves the temporal locality of the first-level data cache.

Multithreaded applications need to prevent unnecessary evictions in the first-level data 
cache when:

• Multiple threads within an application try to access private data on their stack, 
some data access patterns can cause excessive evictions of cache lines. Within the 
same software process, multiple threads have their respective stacks, and these 
stacks are located at different linear addresses. Frequently the linear addresses of 
these stacks are spaced apart by some fixed distance that increases the likelihood 
of a cache line being used by multiple threads.
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• Two instances of the same application run concurrently and are executing in lock 

steps (for example, corresponding data in each instance are accessed more or less 
synchronously), accessing data on the stack (and sometimes accessing data on the 
heap) by these two processes can also cause excessive evictions of cache lines 
because of address conflicts.

Per-thread Stack Offset

To prevent private stack accesses in concurrent threads from thrashing the first-level 
data cache, an application can add a per-thread stack offset to each of its threads. The 
size of these offsets should be multiples of a common base offset. The optimum choice 
of this common base offset may depend on the memory access characteristics of the 
threads, but it should be multiples of 128 bytes.

One effective technique for choosing a per-thread stack offset in an application is to 
add an equal amount of stack offset each time a new thread is created in a thread pool.7 
Example 7-4 shows a code fragment that implements per-thread stack offset for three 
threads using a reference offset of 1024 bytes.

User/Source Coding Rule 33. (H impact, M generality) Adjust the private stack of each 
thread in an application so that the spacing between these stacks is not offset by multiples of 64 
KB or 1 MB to prevent unnecessary cache line evictions, when using IA-32 processors with 
Hyper-Threading Technology. 

7. For parallel applications written to run with OpenMP, the OpenMP runtime library in Intel KAP/Pro 
Toolset automatically provides the stack offset adjustment for each thread. 
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Example 7-4 Adding an Offset to the Stack Pointer of Three Threads

Void Func_thread_entry(DWORD *pArg)
{DWORD StackOffset = *pArg;
DWORD var1; // The local variable at this scope may not benefit
DWORD var2; // from the adjustment of the stack pointer that ensue

// call runtime library routine to offset stack pointer
_alloca(StackOffset) ; 
}
// Managing per-thread stack offset to create three threads:
// * Code for the thread function
// * Stack accesses within descendant functions (do_foo1, do_foo2) are 
//  less likely to cause data cache evictions because of the stack 
//  offset.
do_foo1();
do_foo2();

}

main ()

{ DWORD Stack_offset, ID_Thread1, ID_Thread2, ID_Thread3;

Stack_offset = 1024; 

// stack offset between parent thread and the first child thread

ID_Thread1 = CreateThread(Func_thread_entry, &Stack_offset); 

// call OS thread API

Stack_offset = 2048;

ID_Thread2 = CreateThread(Func_thread_entry, &Stack_offset);

Stack_offset = 3072;

ID_Thread3 = CreateThread(Func_thread_entry, &Stack_offset);

}
_____________________________________________________________________
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Per-instance Stack Offset

Each instance of the same application runs in its own linear address space, but the 
address layout of data for stack segments is identical for these two instances. When 
two instances are running in lock steps, stack accesses are likely to cause of excessive 
evictions of cache lines in the first-level data cache for some early implementation of 
Hyper-Threading Technology in IA-32 processors. 

Although this situation (running two copies of the same application in lock steps) is 
seldom an objective for either creating multithreaded software or using a 
multiprocessor platform, it can happen by an end-user’s direction. One solution is to 
allow each software process to add a suitable linear address-offset for its stack. Once 
this offset is added at the start-up time for each software process, a buffer space of 
linear addresses is effectively established even when two copies of the same 
applications are executing using two logical processors in the same physical processor 
package. This buffer space in linear addresses has negligible impact on running 
dissimilar applications and on executing multiple copies of the same application. 

However, this buffer space enables the first-level data cache to be shared cooperatively 
when two copies of the same application are executing on the two logical processors in 
a physical processor package.

To establish a suitable stack offset for two instances of the same application running on 
two logical processors in the same physical processor package, the stack pointer can be 
adjusted in the entry function of the application using the technique shown in 
Example 7-5. The size of stack offsets should also be multiple of a reference offset that 
may depend on the characteristics of the application’s data access pattern. One solution 
to determine the per-instance value of the stack offsets is to choose a pseudo-random 
number that is also a multiple of the reference offset or 128 bytes. Usually, this 
per-instance pseudo-random offset can be chosen to be less than 7 Kilobytes. 
Example 7-5 provides a code fragment of adjusting stack pointer in an application 
entry function.

User/Source Coding Rule 34. (M impact, L generality) Add per-instance stack offset when 
two instances of the same application are executing in lock steps to avoid memory accesses 
that are offset by multiples of 64 KB or 1 MB, when targeting IA-32 processors with 
Hyper-Threading Technology. 
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Example 7-5 Adding a Pseudo-random Offset to the Stack Pointer in the Entry Function

void main()
{char * pPrivate = NULL;
long myOffset = GetMod7Krandom128X()

; a pseudo-random number that is a multiple 
; of 128 and less than 7K

  // ; use runtime library routine to reposition
_alloca(myOffset);  //  the stack pointer
}

// the rest of application code below, stack accesses in descendant
// functions (e.g. do_foo) are less likely to cause data cache 
// evictions because of the stack offsets.

do_foo();
}

Front-end Optimization
In the Intel NetBurst micro-architecture family of processors, the instructions are 
decoded into micro-ops (µops) and sequences of µops (called traces) are stored in the 
Execution Trace Cache. The trace cache is the primary sub-system in the front end of 
the processor that delivers µop traces to the execution engine. Optimization guidelines 
for front-end operation in single-threaded applications are discussed in Chapter 2. This 
section discusses guidelines for optimizing the operation of the Execution Trace Cache 
on IA-32 processors with Hyper-Threading Technology.

Avoid Excessive Loop Unrolling

Unrolling loops that are repeatedly executed can reduce the number of branches and 
improve the branch predictability of application code. Loop unrolling is discussed in 
detail in Chapter 2. In general, loop unrolling must be used judiciously considering 
both the benefit of improved branch predictability and the cost of increased code size 
relative to the trace cache.

User/Source Coding Rule 35. (M impact, L generality) Avoid excessive loop unrolling to 
ensure the Trace cache is operating efficiently. 

On Hyper-Threading-Technology-enabled processors, excessive loop unrolling is 
more likely to reduce the trace cache’s ability to deliver high bandwidth µop streams to 
the execution engine.
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One can monitor the efficiency of the front-end trace cache and delivery engine for an 
application, which could detect the symptom due to excessive loop unrolling. If the 
Trace cache is found to operate not in deliver mode for, say, 20% of the time that the 
processor is executing code for one thread, there may be software performance issues 
in the front end. Excessive loop unrolling could be a cause to unnecessary evictions 
and building new traces. 

Optimization for Code Size

When the trace cache is continuously and repeatedly delivering µops traces that are 
already built, the scheduler in the execution engine can dispatch µops for execution at 
a high rate to maximize the utilization of available execution resources. Optimizing 
application code size by organizing code sequences that are repeatedly executed into 
sections, each with a footprint that can fit into the trace cache, can improve application 
performance greatly.

On Hyper-Threading-Technology-enabled processors, multithreaded applications 
should improve code locality of frequently executed sections of code and target one 
half of the size of trace cache for each application thread when considering code size 
optimization. If code size becomes an issue affecting the efficiency of the front end, 
this may be detected by evaluating performance metrics discussed in the previous 
sub-section with respect to loop unrolling.

User/Source Coding Rule 36. (L impact, L generality) Optimize code size to improve 
locality of Trace cache and increase delivered trace length. 

Execution Resource Optimization
For applications based on the domain decomposition threading model, optimization 
techniques with respect to execution resources are essentially the same as 
single-threaded applications, in the absence of Hyper-Threading Technology. Each 
thread should be optimized to achieved optimal frequency scaling first, then 
optimization in an area such as thread synchronization can improve MP scaling to 
supplement good frequency scaling.

Hyper-Threading Technology enables several threads to run simultaneously on a 
physical processor while sharing on-chip execution resources. There may be instances 
where one thread has a high resource utilization rate, which may be indicated by a low 
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cycle per instruction (CPI) value. In these special situations, additional domain 
decomposition threads may not be able to take advantage of Hyper-Threading 
Technology to increase application performance. However, to the majority of 
applications, the average utilization rate of execution resources is low, compared to the 
processor’s peak execution bandwidth. 

To help multithreaded applications utilize shared execution resources effectively, this 
section describes guidelines to deal with common situations as well as those limited 
situations where execution resource utilization between threads may impact overall 
performance of the application in a multiprocessor system with Hyper-Threading 
Technology.

Optimization Priorities

There are three aspects of performance scaling: 

• Frequency scaling

• Scaling to the number of discrete processors

• Scaling to the number of logical processor per physical processor package. 

These three factors can be largely orthogonal in most cases, if code-tuning efforts 
follows the order of priorities listed below:

Tuning Suggestion 1. (H Impact, H Generality) Optimize single threaded code to achieve 
optimal frequency scaling first.

Most applications only use about 20-30% of the peak execution resources when 
running on modern high-end processors. Execution of a single thread can scale 
well with processor frequency while leaving substantial execution bandwidth and 
issue bandwidth unused. For example, most applications that scale well with 
frequency seldom use the issue bandwidth of 3 µops per cycle in the Pentium 4 and 
Intel Xeon processors. Optimizing single-threaded code for frequency scaling 
builds the foundation for multithreaded applications to take advantage of the 
frequency headroom in Intel NetBurst micro-architecture.
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Tuning Suggestion 1. (M Impact, M Generality) The next priority (after tuning for frequency 
scaling) is to optimize multithreaded applications to achieve optimal scaling with respect to the 
number of physical processors.

Following the guidelines for thread synchronization and conserving bus bandwidth 
can significantly increase the degree of task-level parallelism and improve MP 
scaling. Highly parallel application threads can utilize the performance potential of 
multiple discrete processors much more effectively than application with less 
parallelism. Application code with high degree of MP scaling is also more likely to 
take advantage of the performance potential of Hyper-Threading Technology.

Tuning Suggestion 1. (M Impact, L Generality) Use on-chip execution resources 
cooperatively if two threads are sharing the execution resources in the same physical processor 
package.

Using functional threading model, a multithreaded application can add additional 
threads and use the execution resources within a physical processors effectively. 
The concept of functional threading model may also be extended to multithreaded 
applications based on the domain threading model to form a heterogeneous 
domain-decomposition model, when targeted to run on MP systems with multiple 
physical processors. When two domain threads are both highly optimized to rely 
on a specific type of execution unit, a multithreaded application should consider 
adding additional functional threads (or other heterogeneous domain threads that 
are less dependent on the same execution unit) to use available processors. 

Continuing the domain threading model to decompose one finite task into finer 
threading granularity, while attempting to use all of the available processors is less 
likely to deliver optimal overall performance scaling with respect to MP and 
Hyper-Threading Technology. Because of the well-known Amdahl’s law: as the 
finite amount of total task is divided between increasing number of data-domain 
threads, the speed-up of these parallel threads represent a smaller percentage of the 
total time of execution. Increasing the degree of task-level parallelism in the 
workload also increases the opportunity to create additional threads based on the 
relevant threading models.  
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User/Source Coding Rule 37. (M impact, L generality) Consider using thread affinity so 
that two highly-optimized data domain threads are executing on separate physical processors. 

In many situations, data domain threads can scale well with frequency and 
effectively use logical processors sharing execution resources within a physical 
processor. In selected cases where an individual thread needs a specific type of 
execution resource dedicated to it, consider scheduling such a pair of data-domain 
threads to run on different physical processors in an MP system.

Managing Heavily-Used Execution Resources

One way to measure the degree of overall resource utilization by a single thread is to 
use performance-monitoring events to count the number of clockcycles that a logical 
processor is executing code and the number of instructions executed to completion in 
that logical processor. These performance metrics are described in Appendix B and can 
be accessed using the Intel VTune Performance Analyzer. An event ratio like 
non-halted cycles per instructions retired (non-halted CPI) and non-sleep CPI can be 
useful in directing code-tuning efforts. 

The non-sleep CPI metric can be interpreted as the inverse of the overall throughput of 
a physical processor package. The non-halted CPI metric can be interpreted as the 
inverse of the throughput of a logical processor8. 

When a single thread is executing and all on-chip execution resources are available to 
it, non-halted CPI can also indicate the excess unused execution bandwidth that is 
available to another thread that uses the logical processor in the same physical 
processor package. If the value of a non-halted CPI is significantly higher than unity, 
and the overall on-chip execution resource utilization is low, a multithreaded 
application can direct tuning effort to encompass all three scaling factors discussed 
earlier.

8. Non-halted CPI can correlate to the resource utilization of an application thread, if the application thread is 
affinitized to a fixed logical processor.
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When a single thread with exclusive use of on-chip execution resources already exhibit 
a non-halted CPI in the neighborhood of unity9, a multithreaded application is likely to 
have smaller opportunity to optimize for Hyper-Threading Technology, but likely to 
accomplish good frequency scaling and good MP scaling in an orthogonal manner. At 
the same time, the multithreaded application may still use functional decomposition 
threads to optimize for shared execution resources.

Another technique can be useful when one thread contains a tight sequence of 
instructions in its inner loop and the inner loop is repeated to consume a significant 
portion of the total time of execution. In this situation, it may be possible to identify 
and make sure a critical execution unit used in the inner loop does not consume more 
than half of the peak bandwidth of that resource. 

For example, if an inner loop needs 100 clockcycles to complete on average and this 
inner loop contains three single-precision floating-point divisions. Because each 
single-precision floating-point division has a throughput of 23 cycles, performing 3 
divisions in the inner loop exceeded half the peak bandwidth of the execution unit for 
single-precision floating-point division. Hyper-Threading Technology is not expected 
to increase an application’s throughput if two of these threads are running and sharing 
execution resources in the same physical processor. However, if the second thread does 
not use the floating-point divider, then Hyper-Threading Technology is likely to 
increase the application’s throughput.

User/Source Coding Rule 38. (M impact, L generality) If a single thread consumes half of 
the peak bandwidth of a specific execution unit (e.g. fdiv), consider adding a thread that 
seldom or do not rely on that execution unit, when tuning for Hyper-Threading Technology. 

A third technique for ensuring that the processor’s execution resources are used 
efficiently is to prevent machine clear conditions. When a machine clear condition 
occurs, all instructions that are in flight (at various stages of processing in the pipeline) 
must be resolved when they are either retired or cancelled. While the pipeline is being 
cleared, no new instructions are fed into the pipeline for execution. Before a machine 
clear condition is de-asserted, execution resources are idle.

9. In current implementations of processors based on Intel NetBurst microarchitecture, the theoretical lower 
bound for either non-halted CPI or non-sleep CPI is 1/3. Practical applications rarely achieve any value close 
to the lower bound.
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Reducing the machine clear condition benefits single-thread performance because it 
increases the frequency scaling of each thread. The impact is even higher with 
Hyper-Threading Technology, because a machine clear condition caused by one thread 
can impact other threads executing simultaneously.

Several performance metrics can be used to detect situations that may cause the 
pipeline to be cleared. The primary metric is Machine Clear Count: It indicates the 
total number of times a machine clear condition is asserted due to any causes. Some of 
the causes are memory order violation, self-modifying code.

Write-combining buffers are another example of execution resources that are shared 
between two logical processors and may be used heavily in some situations.With two 
threads running simultaneously on a processor with Hyper-Threading Technology, the 
writes of both threads count toward the limit of four write-combining buffers.For 
example, if an inner loop that writes to three separate areas of memory per iteration is 
run in two threads at the same time, the total number of cache lines being written might 
be six, – so the code would likely lose the substantial benefits of write-combining.  
Loop-fission applied to this loop should create two new loops, neither of which writes 
to more than two cache lines per iteration.
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Application Performance 
Tools
Intel offers an array of application performance tools that are optimized to take the best 
advantage of the Intel architecture (IA)-based processors. This appendix introduces 
these tools and explains their capabilities which you can employ for developing the 
most efficient programs, without having to write assembly code.

The following performance tools are available:

• Intel C++ Compiler and Intel Fortran Compiler

The Intel compilers generate highly optimized executable code and provide unique 
features such as profile-guided optimizations and high-level language support, 
including vectorization, for MMX technology, the Streaming SIMD Extensions 
(SSE), and the Streaming SIMD Extensions 2 (SSE2).

• Enhanced Debugger

The Enhanced Debugger (EDB) enables you to debug C++, Fortran or mixed 
language programs. It allows you to view the XMM registers in a variety of 
formats corresponding to the data types supported by SSE and SSE2. These 
registers can also be viewed using the debugger supplied with Microsoft Visual 
C++* version 6.0, service pack 4 or later.

• VTune Performance Analyzer

The VTune analyzer collects, analyzes, and provides Intel architecture-specific 
software performance data from the system-wide view down to a specific module, 
function, and instruction in your code.
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• Intel Performance Libraries

The Intel Performance Library family consists of a set of software libraries 
optimized for Intel architecture processors. The library family includes the 
following: 

— Intel® Math Kernel Library (MKL)

— Intel® Integrated Performance Primitives (IPP)

• Intel Threading Tools. The Intel Threading Tools consist of the following:

— Intel Thread Checker

— Thread Profiler

Intel Compilers1

The Intel C++ compilers can deliver significant application performance 
improvements for Microsoft Windows as well as Linux operating system 
environments. In Windows environment, the Intel C++ compiler is compatible with 
Microsoft Visual C++* and plugs in to the Microsoft Developer Studio IDE. The Intel 
Fortran Compiler can be run out of the Microsoft Developer Studio IDE via the 
Fortran Build Tool that plugs into it. The Fortran compiler offers substantial source 
compatibility with Compaq* Visual Fortran. In Linux environment, the Intel Compilers are 
compatible with widely used Linux software development utilities.

Both compilers allow you to optimize your code by using special optimization options 
described in this section. There are several coding methods and optimizations, 
described here and other sections in this manual, targeted specifically for enabling 
software developers to optimize applications for the Pentium III and Intel Pentium 4 
processors. Vectorization, processor dispatch, inter-procedural optimization, and 
profile-guided optimization are all supported by the Intel compilers and can 
significantly aid the performance of an application.

1. The compiler options shown in this section use syntax specific to the Microsoft Windows-based compiler. 
Equivalent options, which may have slightly different syntax, exist for the Linux-based compiler. See your 
compiler documentation for a complete listing and description of the various options available.
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The most general optimization options are -O1 and -O2. Each of them enables a 
number of specific optimization options. In most cases, -O2 is recommended over -O1 
because the -O2 option enables inline expansion, which helps programs that have 
many function calls. The -O2 option is on by default.

The -O1 and -O2 options enable specific options as follows: 

-O1 Enables options -Og, -Oi-, -Os, -Oy, -Ob1, -Gf, -Gs, and 
-Gy. However, -O1 disables a few options that increase code size. 

-O2 Enables options -Og, -Oi, -Ot, -Oy, -Ob1, -Gf, -Gs, and 
-Gy. Confines optimizations to the procedural level.

The -Od option disables all optimizations.

All the command-line options are described in the Intel C++ Compiler User’s Guide.

Code Optimization Options

This section describes the options used to optimize your code and improve the 
performance of your application.

Targeting a Processor (-Gn)

Use -Gn to target an application to run on a specific processor for maximum 
performance. Any of the -Gn suboptions you choose results in your binary being 
optimized for corresponding Intel architecture 32-bit processors. -G6 is the default, 
and targets optimization for the Pentium II and Pentium III processors. -G7 targets the 
Intel Pentium 4 processor. Code produced will run on any Intel architecture 32-bit 
processor, but will be optimized specifically for the targeted processor.

Automatic Processor Dispatch Support (-Qx[extensions] and 
-Qax[extensions])

The -Qx[extensions] and -Qax[extensions] options provide support to generate 
code that is specific to processor-instruction extensions. 

 -Qx[extensions] generates specialized code to run exclusively on the 
processors indicated by the extension(s).
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-Qax[extensions] generates code specialized to processors which support the 

specified extensions, but also generates generic IA-32 code. 
The generic code usually executes slower than the 
specialized version. A runtime check for the processor type 
is made to determine which code executes.

You can specify the same extensions for either option as follows:

i Pentium II and Pentium III processors, which use the CMOV and FCMOV 
instructions

M Pentium processor with MMX technology, Pentium II, and 
Pentium III processors

K Streaming SIMD Extensions. Includes the i and M extensions.

W Streaming SIMD Extensions 2. Includes the i, M, and K extensions.

 

Vectorizer Switch Options

The Intel C++ and Fortran Compiler can vectorize your code using the vectorizer 
switch options. The options that enable the vectorizer are the-Qx[M,K,W] and 
-Qax[M,K,W] described above. The compiler provides a number of other vectorizer 
switch options that allow you to control vectorization. All vectorization switches 
require the -Qx[M,K,W] or -Qax[M,K,W] switch to be on. The default is off.

In addition to the -Qx[M,K,W] or -Qax[M,K,W] switches, the compiler provides the 
following vectorization control switch options:

-Qvec_report[n] Controls the vectorizer’s diagnostic levels, where n is either 
0, 1, 2, or 3.

-Qrestrict Enables pointer disambiguation with the restrict qualifier.

CAUTION.  When you use -Qax[extensions] in conjunction with 
-Qx[extensions], the extensions specified by -Qx[extensions] 
can be used unconditionally by the compiler, and the resulting 
program will require the processor extensions to execute properly.
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Prefetching

The compilers, with the -Qx[M,K,W] and -Qax[M,K,W] switches on, insert prefetch 
instructions, where appropriate, for the Pentium III and Pentium 4 processors.

Loop Unrolling

The compilers automatically unroll loops with the -Qx[M,K,W] and -Qax[M,K,W] 
switches.

To disable loop unrolling, specify -Qunroll0.

Multithreading with OpenMP

Both the Intel C++ and Fortran Compilers support shared memory parallelism via 
OpenMP compiler directives, library functions and environment variables. OpenMP 
directives are activated by the compiler switch -Qopenmp. The available directives are 
described in the Compiler User’s Guides available with the Intel C++ and Fortran 
Compilers, version 5.0 and higher. Further information about the OpenMP standard is 
available at http://www.openmp.org.

Inline Expansion of Library Functions (-Oi, -Oi-)

The compiler inlines a number of standard C, C++, and math library functions by 
default. This usually results in faster execution of your program. Sometimes, however, 
inline expansion of library functions can cause unexpected results. For explanation, 
see the Intel® C++ Compiler User’s Guide.

Floating-point Arithmetic Precision (-Op, -Op-, -Qprec, -Qprec_div, -Qpc, 
-Qlong_double)

These options provide optimizations with varying degrees of precision in 
floating-point arithmetic.
A-5

http://www.openmp.org
http://www.openmp.org
http://www.openmp.org


Intel Pentium 4 and Intel Xeon Processor Optimization Application Performance Tools A

Rounding Control Option (-Qrcd)

The compiler uses the -Qrcd option to improve the performance of code that requires 
floating-point calculations. The optimization is obtained by controlling the change of 
the rounding mode.

The -Qrcd option disables the change to truncation of the rounding mode in 
floating-point-to-integer conversions. 

For complete details on all of the code optimization options, refer to the Intel C++ 
Compiler User’s Guide.

Interprocedural and Profile-Guided Optimizations

The following are two methods to improve the performance of your code based on its 
unique profile and procedural dependencies: 

Interprocedural Optimization (IPO)

Use the -Qip option to analyze your code and apply optimizations between procedures 
within each source file. Use multifile IPO with -Qipo to enable the optimizations 
between procedures in separate source files.

Profile-Guided Optimization (PGO)

Creates an instrumented program from your source code and special code from the 
compiler. Each time this instrumented code is executed, the compiler generates a 
dynamic information file. When you compile a second time, the dynamic information 
files are merged into a summary file. Using the profile information in this file, the 
compiler attempts to optimize the execution of the most heavily travelled paths in the 
program.

Profile-guided optimization is particularly beneficial for the Pentium 4 processor. It 
greatly enhances the optimization decisions the compiler makes regarding instruction 
cache utilization and memory paging. Also, because PGO uses execution-time 
information to guide the optimizations, branch-prediction can be significantly 
enhanced by reordering branches and basic blocks to keep the most commonly used 
paths in the microarchitecture pipeline, as well as generating the appropriate 
branch-hints for the processor.
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When you use PGO, consider the following guidelines:

• Minimize the changes to your program after instrumented execution and before 
feedback compilation. During feedback compilation, the compiler ignores 
dynamic information for functions modified after that information was generated. 

• Repeat the instrumentation compilation if you make many changes to your source 
files after execution and before feedback compilation.

For complete details on the interprocedural and profile-guided optimizations, refer to 
the Intel C++ Compiler User’s Guide With Support for the Streaming SIMD 
Extensions 2 (Doc. number 718195-2001).

Intel VTune Performance Analyzer
The Intel VTune Performance Analyzer is a powerful software-profiling tool for 
Microsoft Windows and Linux. The VTune analyzer helps you understand the 
performance characteristics of your software at all levels: the system, application, 
micro-architecture.

The sections that follow describe the major features of the VTune analyzer and briefly 
explain how to use them. For more details on these features, run the VTune analyzer 
and see the online help or the built in Getting Started Guide.

All these features are available for Microsoft Windows. However, sampling is the only 
profiling tool currently available on Linux.

Sampling

Sampling allows you to profile all active software on your system, including operating 
system, device driver, and application software. It works by occasionally interrupting 
the processor and collecting the instruction address, process ID, and thread ID. After 

NOTE.  The compiler issues a warning that the dynamic 
information corresponds to a modified function.
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the sampling activity completes, the VTune analyzer displays the data by process, 
thread, software module, function, relative virtual address, or line of source. There are 
two methods for generating samples: Time-based sampling and Event-based sampling.

Time-based Sampling
• Time-based sampling (TBS) uses an operating system’s (OS) timer to periodically 

interrupt the processor to collect samples. The sampling interval is user definable.  
TBS is useful for identifying the software on your computer that is taking the most 
CPU time.

Figure A-1 provides an example of a hotspots report by location.

Figure A-1 Sampling Analysis of Hotspots by Location
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Event-based Sampling

Event-based sampling (EBS) profiles all software on your computer based on the 
occurrence of processor events, such as cache misses and branch mispredictions. The 
VTune analyzer indicates where micro architectural events, specific to the Pentium 4, 
Pentium III and Pentium II processors, occur the most often. On Pentium III and 
Pentium II processors, the VTune analyzer can collect two different events at a time.  
The number of the events that the VTune analyzer can collect at once on the Pentium 4 
processor depends on the events selected.

Event-based samples are collected after a specific number of processor events have 
occurred. Like TBS, the samples can then be attributed to the different processes, 
threads, and software modules running on the system. You identify where the events 
are occurring from the system level down to the source level.

EBS can be used to provide detailed information on the behavior of the microprocessor 
as it executes software. Some of the events that can be sampled include clockticks, 
instructions retired, mispredicted branches retired, and L1 cache load misses retired.  
All the different events are described in the VTune analyzer’s on-line help.

Call Graph

Call graph helps you understand the relationships between the functions in your 
application by providing timing and caller / callee (functions called) information. Call 
graph works by instrumenting the functions in your application.  Instrumentation is the 
process of modifying a function so that information can be captured when the function 
is executed.  Instrumentation does not change the functionality of the program.  
However, it can reduce performance. The VTune analyzer can detect modules as they 
are loaded by the operating system, and instrument them at run-time. Call graph can be 
used to profile Win32*, Java*, and Microsoft.NET* applications. Call graph only 
works for ring 3 software.

Call graph profiling provides the following information on the functions called by your 
application: total time, self-time, wait time, self wait time, callers, callees, and the 
number of calls. This data is displayed using three different views: function summary, 
call graph, and call list. These views are all synchronized.
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The Function Summary View can be used to focus the data displayed in the call graph 
and call list views. This view displays all the information about the functions called by 
your application in a table format.  However, it does not provide callee and caller 
information. It just provides timing information and number of times a function is 
called.    

The Call Graph View graphically depicts the caller / callee relationships. Each thread 
in the application is the root of a call tree. Each node (box) in the call tree represents a 
function. Each edge (line with an arrow) connecting two nodes represents the call from 
the parent to the child function. If the mouse pointer is hovered over a node, a tool tip 
will pop up displaying the function’s timing information.

The Call List View is useful for analyzing programs with large, complex call trees.  
This view displays only the caller and callee information for the single function that 
you select in the Function Summary View. The data is displayed in a table format.

Counter Monitor

Counter monitor helps you identify system level performance hold-ups. It periodically 
polls software and hardware performance counters. The performance counter data can 
help you understand the cause-and-effect relationship between the computer’s 
subsystems and your application. Counter monitor data can be displayed in real-time 
and logged to a file. You can also develop application specific performance counters 
using Performance DLLs (for more information see the VTune analyzer on-line help). 
The VTune analyzer can also correlate performance counter data with sampling data.

Intel® Tuning Assistant

The Intel Tuning Assistant can generate tuning advice based on counter monitor and 
sampling data.  It can also analyze C, C++, Fortran, Java*, and assembly source code, 
and generate source level optimization advice.  You can invoke the Intel Tuning 
Assistant from the source, counter monitor, or sampling views by clicking on the Intel 
Tuning Assistant icon.  

When analyzing source code, the Intel Tuning Assistant examines the entire block of 
code or function you select and searches for optimization opportunities. Typically, a 
compiler is restricted by pointer semantics when optimizing code. The Intel Tuning 
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Assistant can suggest source-level modifications to overcome these and other 
restrictions. It also recognizes commonly used code patterns in your code and suggests 
how they can be modified to improve performance. You can double-click on any 
advice in the Intel Tuning Assistant window to display context-sensitive help with 
examples of the original and optimized code.

Intel Performance Libraries
The Intel Performance Library family contains a variety of specialized libraries which 
has been optimized for performance on Intel processors. These optimizations take 
advantage of appropriate architectural features, including MMX technology, 
Streaming SIMD Extensions (SSE) and Streaming SIMD Extensions 2 (SSE2). The 
library set includes:

• The Intel Math Kernel Library (Intel MKL) is composed of highly optimized 
mathematical functions for engineering, scientific and financial applications 
requiring high performance on Intel platforms. The functional areas of the library 
include linear algebra consisting of LAPACK and BLAS, Fast Fourier Transforms 
(FFT) and vector transcendental functions (vector math library/VML). Intel MKL 
is optimized for the latest features and capbilities of the Intel Pentium 4 processor, 
Intel Xeon processors and Intel® Itanium® architecture.

• Intel® Integrated Performance Primitives (IPP) is a cross-platform software library 
which provides a range of library functions for multimedia, audio codecs, video 
codecs (for example H.263, MPEG-4), image processing (JPEG), signal 
processing, speech compression (that is, G.723.1) plus computer vision as well as 
math support routines for such processing capabilities. Intel IPP is optimized for 
the broad range of Intel microprocessors: Intel Pentium 4 processor, the Intel 
Itanium architecture, Intel Xeon processors, Intel® SA-1110 and Intel® PCA 
application processors based on the Intel® XScale™ microarchitecture. With a 
single API across the range of platforms, the users can have platform compatibility 
and reduced cost of development.
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Benefits Summary

The overall benefits the libraries provide to the application developers are as follows:

• Low-level building block functions that support rapid application development, 
improving time to market 

• Highly-optimized routines with a C interface that give Assembly-level 
performance in a C/C++ development environment (MKL also supports a Fortran 
interface)

• Processor-specific optimizations that yield the best performance for each Intel 
processor 

• Processor detection and DLL dispatching that loads the appropriate code for the 
current processor

• Built-in error handling facility that improves productivity in the development cycle

The MKL and IPP libraries are optimized for all Intel architecture-based processors, 
including the Pentium, Pentium II, Pentium III, Pentium 4, Intel Xeon and Itanium  
processors. IPP is also optimized for the Intel® StrongARM* SA1110 processor. 

 Libraries Architecture

Intel Performance Libraries are designed for performance, productivity and ease of 
use. The Math Kernel Library (MKL) is designed for scientific, engineering and 
financial applications and supports both Fortran and C calling conventions. Its 
high-performance math functions include full Linear Algebra PACKage (LAPACK), 
Basic Linear Algebra Subprograms (BLAS) and fast Fourier transforms (FFTs) 
threaded to run on multiprocessor systems. No change of the code is required for 
multiprocessor support. The library, including the parts which are not threaded, such as 
VML (the vector transcendental functions, Vector Math Library),  is threadsafe. All 
libraries employ sophisticated memory management schemes and processor detection.

The Intel Integrated Performance Primitives (IPP) functions are light weight kernels 
without the predefined data structures of other libraries. They are designed for use as 
building blocks for efficiently constructing and optimizing more complex functions. 
Latest additions to IPP also include basic functions for operations on small matrices 
and fixed-accuracy vector arithmetic functions, as well as more sophisticated 
primitives for construction of audio, video and speech codecs such as MP3, MPEG-4, 
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JPEG, G.723 and GSM-AMR. With the level of optimization provided by IPP, 
application developers are urged to investigate and utilize IPP to the full extent 
possible.

Optimizations with the Intel Performance Libraries

The Intel Performance Libraries implement a number of optimizations that are 
discussed throughout this manual. Examples include architecture-specific tuning such 
as loop unrolling, instruction pairing and scheduling; and memory management with 
explicit and implicit data prefetching and cache tuning.

The Libraries take advantage of the parallelism in the SIMD instructions using MMX 
technology, Streaming SIMD Extensions (SSE), and Streaming SIMD Extensions 2 
(SSE2). These techniques improve the performance of computationally intensive 
algorithms and deliver hand coded performance in a high level language development 
environment.

For performance sensitive applications, the Intel Performance Libraries free the 
application developer from the time consuming task of assembly-level programming 
for a multitude of frequently used functions. The time required for prototyping and 
implementing new application features is substantially reduced and most important, 
the time to market is substantially improved. Finally, applications developed with the 
Intel Performance Libraries benefit from new architectural features of future 
generations of Intel processors simply by relinking the application with upgraded 
versions of the libraries.

Enhanced Debugger (EDB)
The Enhanced Debugger (EDB) enables you to debug C++, Fortran or mixed language 
programs running under Windows NT* or Windows 2000 (not Windows 98). It allows 
you to display in a separate window the contents of the eight registers, XMM0 through 
XMM7, used by the Streaming SIMD Extensions and Streaming SIMD Extensions 2. 
You may select one of five formats for the register fields: byte (16 bytes); word (8 
words); double word (4 double words); single precision (4 single precision floating 
point); and double precision (2 double precision floating point). When a register is 
updated, the new value appears in red. The corresponding Streaming SIMD Extensions 
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or Streaming SIMD Extensions 2 instruction can be seen in the disassembly window. 
For further detail on the features and use of the Enhanced Debugger, refer to the online 
help.

Intel® Threading Tools2

The Intel® Threading Tools consist of the The Intel Thread Checker and Thread 
Profiler.

Intel Thread Checker

The Intel Thread Checker locates programming errors in threaded applications. Use 
the Intel Thread Checker to find threading errors and reduce the amount of time you 
spend debugging your threaded application. 

The Intel Thread Checker product is an Intel VTune Performance Analyzer plug-in 
data collector that executes your program and automatically locates threading errors. 
As your program runs, the Intel Thread Checker monitors memory accesses and other 
events and automatically detects situations which could cause unpredictable 
threading-related results. The Intel Thread Checker detects thread deadlocks, stalls, 
data race conditions and more.

Thread Profiler

The thread profiler is a plug-in data collector for the Intel VTune Performance 
Analyzer. Use it to analyze threading performance and identify parallel performance 
problems. The thread profiler graphically illustrates what each OpenMP thread is 
doing at various levels of detail using a hierarchical summary. Mountains of data are 
collapsed into relevant summaries, sorted to identify parallel regions or loops that 
require attention. Its intuitive, color-coded displays make it easy to assess your 
application’s performance. 

2. For additional threading resources, visit http://www.intel.com/software/products/threadtool.htm.
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Intel® Software College

The Intel® Software College is a valuable resource for classes on Streaming SIMD 
Extensions 2 (SSE2), Threading and the IA-32 Intel Architecture. For online training 
on how to use the SSE2 and Hyper-Threading Technology, refer to the IA-32 
Architecture Training - Online Training at  
http://developer.intel.com/software/college/CourseCatalog.asp?CatID=web-based. For 
key algorithms and their optimization examples for the Pentium 4 processor, refer to 
the application notes. You can find additional information on classroom training from 
the Intel Software College Web site at http://developer.intel.com/software/college, and 
general information for developers from Intel Developer Services at 
http://www.intel.com/ids.
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Intel Pentium 4
Processor
Performance Metrics
The Intel Pentium 4 processor performance metrics are a set of quantities that are 
useful for tuning software performance when running applications on the Pentium 4 
and Intel Xeon processors. The metrics are derived from the Pentium 4 and Intel Xeon 
processor performance monitoring events, which are described in Chapter 15 and 
Appendix A of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3: 
“System Programming.”

The descriptions of the Intel Pentium 4 processor performance metrics use 
terminology that are specific to the Intel NetBurst microarchitecture and to the 
implementation in the Pentium 4 and Intel Xeon processors. The following sections 
explain the terminology specific to Pentium 4 and Intel Xeon processors, usage notes 
that apply to counting clock cycles, and notes for using some of the performance 
metrics dealing with bus, memory and Hyper-Threading Technology. The performance 
metrics are listed in Tables B-1 through B-6.

Pentium 4 Processor-Specific Terminology

Bogus, Non-bogus, Retire

Branch mispredictions incur a large penalty on microprocessors with deep pipelines. In 
general, the direction of branches can be predicted with a high degree of accuracy by 
the front end of the Intel Pentium 4 processor, such that most computations can be 
performed along the predicted path while waiting for the resolution of the branch. 

In the event of a misprediction, instructions and micro-ops (µops) that were scheduled 
to execute along the mispredicted path must be cancelled. These instructions and µops 
are referred to as bogus instructions and bogus µops. A number of Pentium 4 processor 
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performance monitoring events, for example, instruction_ retired and 
mops_retired, can count instructions or µops that are retired based on the 
characterization of bogus versus non-bogus.

In the event descriptions in Table B-1, the term “bogus” refers to instructions or 
micro-ops that must be cancelled because they are on a path taken from a mispredicted 
branch. The terms “retired” and “non-bogus” refer to instructions or micro-ops along 
the path that results in committed architectural state changes as required by the 
program execution. Thus instructions and µops are either bogus or non-bogus, but not 
both.

Bus Ratio 

Bus Ratio is the ratio of the processor clock to the bus clock. In the Bus Utilization 
metric, it is the Bus_ratio.

Replay

In order to maximize performance for the common case, the Intel NetBurst  
micro-architecture sometimes aggressively schedules µops for execution before all the 
conditions for correct execution are guaranteed to be satisfied. In the event that all of 
these conditions are not satisfied, µops must be reissued. This mechanism is called 
replay. 

Some occurrences of replays are caused by cache misses, dependence violations (for 
example, store forwarding problems), and unforeseen resource constraints. In normal 
operation, some number of replays are common and unavoidable. An excessive 
number of replays indicate that there is a performance problem.

Assist

When the hardware needs the assistance of microcode to deal with some event, the 
machine takes an assist. One example of such situation is an underflow condition in 
the input operands of a floating-point operation. The hardware must internally modify 
the format of the operands in order to perform the computation. Assists clear the entire 
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machine of µops before they begin to accumulate, and are costly. The assist mechanism 
on the Pentium 4 processor is similar in principle to that on the Pentium II processors, 
which also have an assist event.

Tagging

Tagging is a means of marking µops to be counted at retirement. See Appendix A of 
the IA-32 Intel Architecture Software Developer’s Manual, Volume 3: “System 
Programming” for the description of the tagging mechanisms. The same event can 
happen more than once per µop. The tagging mechanisms allow a µop to be tagged 
once during its lifetime. The retired suffix is used for metrics that increment a count 
once per µop, rather than once per event. For example, a µop may encounter a cache 
miss more than once during its life time, but a Misses Retired metric (for example, 
1st-Level Cache Misses Retired) will increment only once for that µop.

Counting Clocks
The count of cycles, also known as clock ticks, forms a fundamental basis for 
measuring how long a program takes to execute, and as part of efficiency ratios like 
cycles per instruction (CPI).  Some processor clocks may stop “ticking” under certain 
circumstances:

• The processor is halted, e.g. during I/O, there may be nothing for the CPU to do 
while servicing a disk read request, and the processor may halt to save power. 
When Hyper-Threading Technology is enabled, both logical processors must be 
halted for performance-monitoring-related counters to be powered down.

• The processor is asleep, either as a result of being halted for a while, or as part of a 
power-management scheme.  Note that there are different levels of sleep, and in 
the deeper sleep levels, the timestamp counter stops counting.

This section describes three mechanisms to count processor clock cycles for 
monitoring performance. They are:

• Non-Halted Clockticks: clocks when the specified logical processor is not halted 
nor in any power-saving states. These can be measured on a per-logical-processor 
basis, when Hyper-Threading Technology is enabled.
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• Non-Sleep Clockticks: clocks when the physical processor is not in any of the 

sleep modes, nor power-saving states. These cannot be measured on a per-logical- 
processor basis

• Timestamp Counter: clocks when the physical processor is not in deep sleep. 
These cannot be measured on a per-logical-processor basis.

The first two metrics use performance counters, and thus can be used to cause interrupt 
upon overflow for sampling.  They may also be useful for those cases where it is easier 
for a tool to read a performance counter instead of the time stamp counter. The 
timestamp counter is accessed via an instruction, RDTSC.  

For applications with a significant amount of I/O, there may be two ratios of interest:

• Non-halted CPI: non-halted clockticks/instructions retired measures the CPI for 
the phases where the CPU was being used. This ratio can be measured on a per- 
logical-processor basis, when Hyper-Threading Technology is enabled.

• Nominal CPI: timestamp counter ticks/instructions retired measures the CPI over 
the entire duration of the program, including those periods the machine is halted 
while waiting for I/O.

The distinction between these two CPI is important for processors that support 
Hyper-Threading Technology. Non-halted CPI should use the “Non-Halted clockticks” 
performance metric as the numerator. Nominal CPI can use “Non-Sleep clockticks” in 
the numerator. “Non-sleep clockticks” is the same as the “clockticks” metric in 
previous editions of this manual.

Non-Halted Clockticks

Non-halted clockticks can be obtained by programming the appropriate ESCR and 
CCCR following the recipe listed in the general metrics category in Table B-1. 
Additionally, the desired T0_OS/T0_USR/T1_OS/T1_USR bits may be specified to 
qualify a specific logical processor and/or kernel vs. user mode.
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Non-Sleep Clockticks 

The performance monitoring counters can also be configured to count clocks 
whenever the performance monitoring hardware is not powered-down.  To count 
“non-sleep clockticks” with a performance-monitoring counter, do the following:

• Select any one of the 18 counters.

• Select any of the possible ESCRs whose events the selected counter can count, and 
set its event select to anything other than no_event.  This may not seem necessary, 
but the counter may be disabled in some cases if this is not done.

• Turn threshold comparison on in the CCCR by setting the compare bit to 1.

• Set the threshold to 15 and the complement to 1 in the CCCR.  Since no event can 
ever exceed this threshold, the threshold condition is met every cycle, and hence 
the counter counts every cycle. Note that this overrides any qualification (e.g. by 
CPL) specified in the ESCR.

• Enable counting in the CCCR for that counter by setting the enable bit.

The counts produced by the Non-halted and Non-sleep metrics are equivalent in most 
cases if each physical package supports one logical processor and is not in any 
power-saving states. An operating system may execute the HLT instruction and place a 
physical processor in a power-saving state.

On processors that support Hyper-Threading Technology, each physical package can 
support two or more logical processors. Current implementation of Hyper-Threading 
Technology provides two logical processors for each physical processor. 

While both logical processors can execute two threads simultaneously, one logical 
processor may be halted to allow the other logical processor to execute without sharing 
execution resources between two logical processors. “Non-halted clockticks” can be 
qualified to count the number of processor clock cycles for each logical processor 
whenever that logical processor is not halted (it may include some portion of the clock 
cycles for that logical processor to complete a transition into a halted state). A physical 
processor that supports Hyper-Threading Technology enters into a power-saving state 
if all logical processors are halted.

“Non-sleep clockticks” use is based on the filtering mechanism in the CCCR: it will 
continue to increment as long as one logical processor is not halted, nor is it in any 
power-saving states. An application may indirectly cause a processor to enter into a 
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power-saving state via an OS service that transfers control into the operating system’s 
idle loop. The system idle loop may place the processor into a power-saving state after 
an implementation-dependent period if there is no work for the processor to do.

Time Stamp Counter

The time stamp counter increments whenever the sleep pin is not asserted or when the 
clock signal on the system bus is active.  It can be read with the RDTSC instruction.  
The difference in values between two reads (modulo 2**64) gives the number of 
processor clocks between those reads.

The time stamp counter and “Non-sleep clockticks” counts should agree in practically 
all cases if the physical processor is not in any power-saving states. However, it is 
possible to have both logical processors in a physical package halted, which results in 
most of the chip (including the performance monitoring hardware) being powered 
down. In this situation, it is possible for the time stamp counter to continue 
incrementing because the clock signal on the system bus is still active, but “non-sleep 
clockticks” will no longer increment because the performance monitoring hardware is 
powered down in power-saving states.

Micro-architecture Notes

Trace Cache Events

The trace cache is not directly comparable to an instruction cache. The two are 
organized very differently. For example, a trace can span many lines' worth of 
instruction-cache data. As with most micro-architectural elements, trace cache 
performance is only an issue if something else is not a bigger bottleneck. If an 
application is bus bandwidth bound, the bandwidth that the front end is getting uops to 
the core may be irrelevant.  When front-end bandwidth is an issue, the trace cache, in 
deliver mode, can issue uops to the core faster than either the decoder (build mode) or 
the microcode store (the MS ROM).  Thus the percent of time in trace cache deliver 
mode, or similarly, the percentage of all bogus and non-bogus uops from the trace 
cache can be a useful metric for determining front-end performance.  
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The metric that is most analogous to an instruction cache miss is a trace cache miss.  
An unsuccessful lookup of the trace cache (colloquially, a miss) is not interesting, per 
se, if we are in build mode and don’t find a trace available; we just keep building 
traces.  The only “penalty” in that case is that we continue to have a lower front-end 
bandwidth.  The trace cache miss metric that is currently used is not just any TC miss, 
but rather one that is incurred while the machine is already in deliver mode; i.e., when 
a 15-20 cycle penalty is paid.  Again, care must be exercised: a small average number 
of TC misses per instruction does not indicate good front-end performance if the 
percentage of time in deliver mode is also low.

Bus and Memory Metrics

In order to correctly interpret the observed counts of performance metrics related to 
bus events, it is helpful to understand transaction sizes, when entries are allocated in 
different queues, and how sectoring and prefetching affect counts.

There is a simplified block diagram below of the sub-systems connected to the IOQ 
unit in the front side bus sub-system and the BSQ unit that interface to the IOQ. A 
two-way SMP configuration is illustrated.  1st-level cache misses and writebacks (also 
called core references) result in references to the 2nd-level cache.  The Bus Sequence 
Queue (BSQ) holds requests from the processor core or prefetcher that are to be 
serviced on the front side bus (FSB), or in the local XAPIC.  If a 3rd-level cache is 
present on-die, the BSQ also holds writeback requests (dirty, evicted data) from the 
2nd-level cache.  The FSB's IOQ holds requests that have gone out onto the front side 
bus.   
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Core references are nominally 64 bytes, the size of a 1st-level cache line.  Smaller 
sizes are called partials, e.g., uncacheable and write combining reads, uncacheable, 
write-through and write-protect writes, and all I/O.  Writeback locks, streaming stores 
and write combining stores may be full line or partials.  Partials are not relevant for 
cache references, since they are associated with non-cached data.  Likewise, 
writebacks (due to the eviction of dirty data) and RFOs (reads for ownership due to 
program stores) are not relevant for non-cached data.

The granularity at which the core references are counted by different bus and memory 
metrics listed in  Table B-1 varies, depending on the underlying performance-
monitoring events that these bus and memory metrics are derived from. The granulari-
ties of core references are listed below, according to the performance monitoring 
events that are documented in Appendix A of the IA-32 Intel Architecture Software 
Developer’s Manual, Volume 3: “System Programming”:

Figure B-1 Relationships Between the Cache Hierarchy, IOQ, BSQ and Front Side Bus

Chip SetSystem Memory

1st Level Data
Cache

3rd Level Cache

FSB_ IOQ

BSQ

Unified 2nd Level
Cache

1st Level Data
Cache

3rd Level Cache

FSB_ IOQ

BSQ

Unified 2nd Level
Cache
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Reads due to program loads

• BSQ_cache_reference: 128 bytes for misses (on current implementations), 64 
bytes for hits

• BSQ_allocation: 128 bytes for hits or misses (on current implementations), smaller 
for partials’ hits or misses

• BSQ_active_entries: 64 bytes for hits or misses, smaller for partials’ hits or misses

• IOQ_allocation, IOQ_active_entries: 64 bytes, smaller for partials’ hits or misses.

Reads due to program writes (RFOs)

• BSQ_cache_reference: 64 bytes for hits or misses

• BSQ_allocation: 64 bytes for hits or misses (the granularity for misses may change 
in future implementations of BSQ_allocation), smaller for partials’ hits or misses

• BSQ_active_entries: 64 bytes for hits or misses, smaller for partials’ hits or misses

• IOQ_allocation, IOQ_active_entries: 64 bytes for hits or misses, smaller for 
partials’ hits or misses.

Writebacks (dirty evictions)

• BSQ_cache_reference: 64 bytes 

• BSQ_allocation: 64 bytes 

• BSQ_active_entries: 64 bytes

• IOQ_allocation, IOQ_active_entries: 64 bytes. 

The count of IOQ allocations may exceed the count of corresponding BSQ allocations 
on current implementations for several reasons, including: 

• Partials: 

In the FSB IOQ, any transaction smaller than 64 bytes is broken up into one to 
eight  partials, each being counted separately as a or one to eight-byte chunks.  In 
the BSQ, allocations of partials get a count of one.  Future implementations will 
count each partial individually. 
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• Different transaction sizes: 

The allocations of non-partial programmatic load requests get a count of one per 
128 bytes in the BSQ on current implementations, and a count of one per 64 bytes 
in the FSB IOQ.  The allocations of RFOs get a count of 1 per 64 bytes for earlier 
processors and for the FSB IOQ (This granularity may change in future 
implementations).

• Retries: 

If the chipset requests a retry, the FSB IOQ allocations get one count per retry.

There are two noteworthy cases where there may be BSQ allocations without FSB 
IOQ allocations. The first is UC reads and writes to the local XAPIC registers.  
Second, if a cache line is evicted from the 2nd-level cache but it hits in the on-die 
3rd-level cache, then a BSQ entry is allocated but no FSB transaction is necessary, and 
there will be no allocation in the FSB IOQ. The difference in the number of write 
transactions of the writeback (WB) memory type for the FSB IOQ and the BSQ can be 
an indication of how often this happens. It is less likely to occur for applications with 
poor locality of writes to the 3rd-level cache, and of course cannot happen when no 
3rd-level cache is present.

Usage Notes for Specific Metrics

The difference between the metrics “Read from the processor” and “Reads 
non-prefetch from the processor”  is nominally the number of hardware prefetches.   

The paragraphs below cover several performance metrics that are based on the 
Pentium 4 processor performance-monitoring event “BSQ_cache_rerference”. The 
metrics are:

• 2nd-Level Cache Read Misses

• 2nd-Level Cache Read References

• 3rd-Level Cache Read Misses

• 3rd-Level Cache Read References

• 2nd-Level Cache Reads Hit Shared

• 2nd-Level Cache Reads Hit Modified

• 2nd-Level Cache Reads Hit Exclusive
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• 3rd-Level Cache Reads Hit Shared

• 3rd-Level Cache Reads Hit Modified

• 3rd-Level Cache Reads Hit Exclusive.

These metrics based on BSQ_cache_reference may be useful as an indicator of the 
relative effectiveness of the 2nd-level cache, and the 3rd-level cache if present. But 
due to the current implementation of  BSQ_cache_reference in Pentium 4 and Intel 
Xeon processors, they should not be used to calculate cache hit rates or cache miss 
rates.  The following three paragraphs describe some of the issues related to 
BSQ_cache_reference, so that its results can be better interpreted.

Current implementations of the BSQ_cache_reference event do not distinguish 
between programmatic read and write misses.  Programmatic writes that miss must get 
the rest of the cache line and merge the new data.  Such a request is called a read for 
ownership (RFO).  To the “BSQ_cache_reference” hardware, both a programmatic 
read and an RFO look like a data bus read, and are counted as such.  Further distinction 
between programmatic reads and RFOs may be provided in future implementations.  

Current implementations of the BSQ_cache_reference event can suffer from perceived 
over- or under-counting.  References are based on BSQ allocations, as described 
above.  Consequently, read misses are generally counted once per 128-byte line BSQ 
allocation (whether one or both sectors are referenced), but read and write (RFO) hits 
and most write (RFO) misses are counted once per 64-byte line, the size of a core 
reference.  This makes the event counts for read misses appear to have a 2-times 
overcounting with respect to read and write (RFO) hits and write (RFO) misses.  This 
granularity mismatch cannot always be corrected for, making it difficult to correlate to 
the number of programmatic misses and hits.  If the user knows that both sectors in a 
128 -byte line are always referenced soon after each other, then the number of read 
misses can be multiplied by two to adjust miss counts to a 64-byte granularity.  

Prefetches themselves are not counted as either hits or misses, as of Pentium 4 and 
Intel Xeon processors with a CPUID signature of 0xf21.  However, in Pentium 4 
Processor implementations with a CPUID signature of 0xf07 and earlier have the 
problem that reads to lines that are already being prefetched are counted as hits in 
addition to  misses, thus overcounting hits.   
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The number of “Reads Non-prefetch from the Processor” is a good approximation of 
the number of outermost cache misses due to loads or RFOs, for the writeback memory 
type.

Usage Notes on Bus Activities

A number of performance metrics in Table B-1 are based on IOQ_active_entries and 
BSQ_active entries. The next three paragraphs provide information of various bus 
transaction underway metrics. These metrics nominally measure the end-to-end 
latency of transactions entering the BSQ; i.e., the aggregate sum of the 
allocation-to-deallocation durations for the BSQ entries used for all individual 
transaction in the processor.  They can be divided by the corresponding 
number-of-transactions metrics (i.e., those that measure allocations) to approximate an 
average latency per transaction.  However, that approximation can be significantly 
higher than the number of cycles it takes to get the first chunk of data for the demand 
fetch (e.g., load), because the entire transaction must be completed before deallocation.  
That latency includes deallocation overheads, and the time to get the other half of the 
128-byte line, which is called an adjacent-sector prefetch.  Since adjacent-sector 
prefetches have lower priority than demand fetches, there is a high probability on a 
heavily utilized system that the adjacent-sector prefetch will have to wait until the next 
bus arbitration cycle from that processor.  Note also that on current implementations, 
the granularities at which BSQ_allocation  and BSQ_active_entries count can differ, 
leading to a possible 2-times overcounting of latencies for non-partial programmatic 
loads.

Users of the bus transaction underway metrics would be best served by employing 
them for relative comparisons across BSQ latencies of all transactions.  Users that 
want to do cycle-by-cycle or type-by-type analysis should be aware that this event is 
known to be inaccurate for “UC Reads Chunk Underway” and “Write WC partial 
underway” metrics.  Relative changes to the average of all BSQ latencies should be 
viewed as an indication that overall memory performance has changed. That memory 
performance change may or may not be reflected in the measured FSB latencies.

Also note that for Pentium 4 and Intel Xeon Processor implementations with an 
integrated 3rd-level cache, BSQ entries are allocated for all 2nd-level writebacks 
(replaced lines), not just those that become bus accesses (i.e., are also 3rd-level 
misses).  This can decrease the average measured BSQ latencies for workloads that 
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frequently thrash (miss or prefetch a lot into) the 2nd-level cache but hit in the 
3rd-level cache.  This effect may be less of a factor for workloads that miss all on-chip 
caches, since all BSQ entries due to such references will become bus transactions.

Metrics Descriptions and Categories
The Performance metrics for Intel Pentium 4 and Intel Xeon processors are listed in 
Table B-1. These performance metrics consist of recipes to program specific Pentium 4 
and Intel Xeon processor performance monitoring events to obtain event counts that 
represent one of the following: number of instructions, cycles, or occurrences. 
Table B-1 also includes a few ratios that are derived from counts of other performance 
metrics.

On IA-32 processors that support Hyper-Threading Technology, the performance 
counters and associated model specific registers (MSRs) are extended to support 
Hyper-Threading Technology. A subset of the performance monitoring events allow 
the event counts to be qualified by logical processors. The programming interface for 
qualification of performance monitoring events by logical processors is documented in  
IA-32 Intel Architecture Software Developer’s Manual, Volume 3: “System 
Programming.” Other performance monitoring events produce counts that are  
independent of which logical processor is associated with the microarchitectural 
events. The qualification of the performance metrics on IA-32 processors that support 
Hyper-Threading Technology is listed in Table B-5 and B-6.  

In Table B-1, the recipe for programming the performance metrics using 
performance-monitoring event is arranged as follows: 

• Column 1 specifies performance metrics. This may be a single-event metric; for 
example, the metric Instructions Retired is based on the counts of the performance 
monitoring event instr_retired, using a specific set of event mask bits. Or it can 
be an expression built up from other metrics; for example, IPC is derived from two 
single-event metrics.

• Column 2 provides a description of the metric in column 1. Please refer to the 
previous section, “Pentium 4 Processor-Specific Terminology” for various terms 
that are specific to the Pentium 4 processor’s performance monitoring capabilities. 
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• Column 3 specifies the performance monitoring event(s) or an algebraic 

expression(s) that form(s) the metric. There are several metrics that require yet 
another sub-event in addition to the counting event. The additional sub-event 
information is included in column 3 as various tags, which are described in 
“Performance Metrics and Tagging Mechanisms”. For event names that appear in 
this column, refer to the IA-32 Intel Architecture Software Developer’s Manual, 
Volume 3: “System Programming.”

• Column 4 specifies the event mask bit that is needed to use the counting event. The 
addresses of various model-specific registers (MSR), the event mask bits in Event 
Select Control registers (ESCR), the bit fields in Counter Configuration Control 
registers (CCCR) are described in IA-32 Intel Architecture Software Developer’s 
Manual, Volume 3: “System Programming.”

The metrics listed in Table B-1 are grouped into several categories:

General Operation not specific to any sub-system of the 
microarchitecture

Branching Branching activities 

Trace Cache and Front End Front end activities and trace cache operation 
modes

Memory Memory operation related to the cache hierarch

Bus Activities related to Front-Side Bus (FSB)

Characterization Operations specific to the processor core

Table B-1 Pentium 4 Processor Performance Metrics

Metric Description
Event Name or Metric 
Expression

Event Mask value 
required

General metrics

Non-Sleep 
Clockticks

The number of 
clockticks.while a processor 
is not in any sleep modes.

See explanation on how 
to count clocks in section  
“Counting Clocks”.

Non-Halted 
Clockticks

The number of clockticks 
that the processor is in not 
halted nor in sleep. 

Global_power_events RUNNING

continued
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Instructions 
Retired

Non-bogus IA-32 instructions 
executed to completion. May 
count more than once for 
some instructions with 
complex uop flow and were 
interrupted before 
retirement. The count may 
vary depending on the 
microarchitectural states 
when counting begins. 

Instr_retired NBOGUSNTAG|
NBOGUSTAG

Non-Sleep 
CPI

Cycles per instruction for a 
physical processor package.

(Non-Sleep Clockticks) / 
(Instructions Retired)

Non-Halted 
CPI

Cycles per instruction for a 
logical processor.

(Non-Halted Clockticks) / 
(Instructions Retired)

µops Retired Non-bogus µops executed to 
completion

uops_retired NBOGUS

UPC µop per cycle for a logical 
processor

µops Retired/ Non-Halted 
Clockticks

Speculative 
Uops Retired 

Number of uops retired 
(include both instructions 
executed to completion and 
speculatively executed in the 
path of branch 
mispredictions). 

uops_retired NBOGUS|BOGUS

Branching metrics

Branches 
Retired 

All branch instructions 
executed to completion

Branch_retired MMTM|MMNM|MMTP|
MMNP

Mispredicted 
Branches 
Retired

Mispredicted branch 
instructions executed to 
completion. This stat is often 
used in a per-instruction 
ratio.

Mispred_branch_
retired

NBOGUS

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric 
Expression

Event Mask value 
required
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Misprediction 
Ratio

Misprediction rate per 
branch

(Mispredicted Branches 
Retired) /(Branches 
Retired)

All returns The number of return 
branches 

retired_branch_type RETURN

All indirect 
branches

All returns and indirect calls 
and indirect jumps 

retired_branch_type INDIRECT

All calls All direct and indirect calls retired_branch_type CALL

All 
conditionals

The number of branches that 
are conditional jumps (may 
overcount if the branch is 
from build mode or there is a 
machine clear near the 
branch) 

retired_branch_type CONDITIONAL

Mispredicted 
returns 

The number of mispredicted 
returns including all causes. 

retired_mispred_bran
ch_type

RETURN

Mispredicted 
indirect 
branches

All Mispredicted returns and 
indirect calls and indirect 
jumps  

retired_mispred_bran
ch_type

INDIRECT

Mispredicted 
calls

All Mispredicted indirect calls  retired_branch_type CALL

Mispredicted 
conditionals

The number of mispredicted 
branches that are conditional 
jumps  

retired_mispred_bran
ch_type

CONDITIONAL

Trace Cache (TC) and front end metrics

Page Walk 
Miss ITLB

The number of page walk 
requests due to ITLB misses.

page_walk_type ITMISS

ITLB Misses The number of ITLB lookups 
that resulted in a miss. Page 
Walk Miss ITLB.is less 
speculative than ITLB 
Misses and is the 
recommended alternative.

ITLB_reference MISS

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric 
Expression

Event Mask value 
required
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Logical 
Processor 0 
Deliver Mode

The number of cycles that 
the trace and delivery engine 
(TDE) is delivering traces 
associated with logical 
processor 0, regardless of 
the operating modes of the 
TDE for traces associated 
with logical processor 1. If a 
physical processor supports 
only one logical processor, 
all traces are associated with 
logical processor 0. This is 
the formerly known as “Trace 
Cache Deliver Mode“

 TC_deliver_mode SS|SB|SI

Logical 
Processor 1 
Deliver Mode

The number of cycles that 
the trace and delivery engine 
(TDE) is delivering traces 
associated with logical 
processor 1, regardless of 
the operating modes of the 
TDE for traces associated 
with logical processor 0. This 
metric is applicable only if a 
physical processor supports 
Hyper-Threading 
Technology and have two 
logical processors per 
package. 

 TC_deliver_mode SS|BS|IS

% Logical 
Processor N 
In Deliver 
Mode

Fraction of all non-halted 
cycles that the trace cache is 
delivering µops associated 
with a given logical 
processor.

(Logical Processor N 
Deliver 
Mode)*100/(Non-Halted 
Clockticks)

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric 
Expression

Event Mask value 
required
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Logical 
Processor 0 
Build Mode

The number of cycles that 
the trace and delivery engine 
(TDE) is building traces 
associated with logical 
processor 0, regardless of 
the operating modes of the 
TDE for traces associated 
with logical processor 1. If a 
physical processor supports 
only one logical processor, 
all traces are associated with 
logical processor 0. 

 TC_deliver_mode BB|BS|BI

Logical 
Processor 1 
Build Mode

The number of cycles that 
the trace and delivery engine 
(TDE) is building traces 
associated with logical 
processor 1, regardless of 
the operating modes of the 
TDE for traces associated 
with logical processor 0. This 
metric is applicable only if a 
physical processor supports 
Hyper-Threading 
Technology and have two 
logical processors per 
package. 

 TC_deliver_mode BB|SB|IB

Trace Cache 
Misses

The number of times that 
significant delays occurred in 
order to decode instructions 
and build a trace because of 
a TC miss. 

BPU_fetch_request TCMISS

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric 
Expression

Event Mask value 
required
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TC to ROM 
Transfers 

Twice the number of times 
that the ROM microcode is 
accessed to decode complex 
IA-32 instructions instead of 
building|delivering traces. 
(Divide the count by 2 to get 
the number of occurrence.) 

tc_ms_xfer CISC

Speculative 
TC-Built Uops 

The number of speculative 
uops originating when the 
TC is in build mode. 

uop_queue_writes FROM_TC_BUILD 

Speculative 
TC-Delivered 
Uops 

The number of speculative 
uops originating when the 
TC is in deliver mode. 

uop_queue_writes FROM_TC_DELIVER

Speculative 
Microcode 
Uops

The number of speculative 
uops originating from the 
microcode ROM (Not all 
uops of an instruction from 
the microcode ROM will be 
included).

uop_queue_writes FROM_ROM

Memory metrics

Page Walk 
DTLB All 
Misses

The number of page walk 
requests due to DTLB 
misses from either load or 
store.

page_walk_type DTMISS

1st-Level 
Cache Load 
Misses 
Retired

The number of retired µops 
that experienced 1st-Level 
cache load misses. This stat 
is often used in a 
per-instruction ratio.

Replay_event; set the 
following replay tag: 
1stL_cache_load_miss
_
retired

NBOGUS

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric 
Expression

Event Mask value 
required
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2nd-Level 
Cache Load 
Misses 
Retired

The number of retired load 
µops that experienced 
2nd-Level cache  misses. 
This stat is known to 
undercount  when loads are 
spaced apart.

Replay_event; set the 
following replay tag: 
2ndL_cache_load_miss
_
retired

NBOGUS

DTLB Load 
Misses 
Retired

The number of retired load 
µops that experienced DTLB 
misses. 

Replay_event; set the 
following replay tag: 
DTLB_load_miss_
retired.

NBOGUS

DTLB Store 
Misses 
Retired

The number of retired store 
µops that experienced DTLB 
misses. 

Replay_event; set the 
following replay tag: 
DTLB_store_miss_

retired.

NBOGUS

DTLB Load 
and Store 
Misses 
Retired

The number of retired load or 
µops that experienced DTLB 
misses. 

Replay_event; set the 
following replay tag: 
DTLB_all_miss_retired

NBOGUS

64K Aliasing 
Conflicts1

The number of 64K aliasing 
conflicts. A memory 
reference causing 64K 
aliasing conflict can be 
counted more than once in 
this stat. The performance 
penalty resulted from 
64K-aliasing conflict can 
vary from being unnoticeable 
to considerable. Some 
implementations of the 
Pentium 4 processor family 
can incur significant 
penalties for loads that alias 
to preceding stores. 

Memory_cancel 64K_CONF

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric 
Expression

Event Mask value 
required
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Split Load 
Replays

The number of load 
references to data that 
spanned two cache lines.

Memory_complete LSC

Split Loads 
Retired

The number of retired load 
µops that spanned two 
cache lines. 

Replay_event; set the 
following replay tag: 
Split_load_retired.

NBOGUS

Split Store 
Replays

The number of store 
references that spans across 
cache line boundary.

Memory_complete SSC

Split Stores 
Retired

The number of retired store 
µops that spanned two 
cache lines. 

Replay_event; set the 
following replay tag: 
Split_store_retired.

NBOGUS

MOB Load 
Replays

The number of replayed 
loads related to the Memory 
Order Buffer (MOB). This 
metric counts only the case 
where the store-forwarding  
data is not an aligned subset 
of the stored data.

MOB_load_replay PARTIAL_DATA, 
UNALGN_ADDR

2nd-Level 
Cache Read 
Misses2

The number of 2nd-level 
cache read misses (load and 
RFO misses). Beware of 
granularity differences. 

BSQ_cache_reference RD_2ndL_MISS

2nd-Level 
Cache Read 
References2

The number of 2nd-level 
cache read references 
(loads and RFOs). Beware of 
granularity differences.  

BSQ_cache_reference RD_2ndL_HITS, 
RD_2ndL_HITE, 
RD_2ndL_HITM, 
RD_2ndL_MISS

3rd-Level 
Cache Read 
Misses2 

The number of 3rd-level 
cache read misses (load and 
RFOs misses). Beware of 
granularity differences. 

BSQ_cache_reference RD_3rdL_MISS 

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric 
Expression

Event Mask value 
required
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3rd-Level 
Cache Read 
References2

The number of 3rd-level 
cache read references 
(loads and RFOs). Beware of 
granularity differences.  

BSQ_cache_reference RD_3rdL_HITS, 
RD_3rdL_HITE, 
RD_3rdL_HITM, 
RD_3rdL_MISS

2nd-Level 
Cache Reads 
Hit Shared 

The number of 2nd-level 
cache read references 
(loads and RFOs) that hit the 
cache line in shared state. 
Beware of granularity 
differences. 

BSQ_cache_reference RD_2ndL_HITS

2nd-Level 
Cache Reads 
Hit Modified 

The number of 2nd-level 
cache read references 
(loads and RFOs) that hit the 
cache line in modified state. 
Beware of granularity 
differences. 

BSQ_cache_reference RD_2ndL_HITM

2nd-Level 
Cache Reads 
Hit Exclusive 

The number of 2nd-level 
cache read references 
(loads and RFOs) that hit the 
cache line in exclusive state. 
Beware of granularity 
differences. 

BSQ_cache_reference RD_2ndL_HITE

3rd-Level 
Cache Reads 
Hit Shared 

The number of 3rd-level 
cache read references 
(loads and RFOs) that hit the 
cache line in shared state. 
Beware of granularity 
differences. 

BSQ_cache_reference RD_3rdL_HITS

3rd-Level 
Cache Reads 
Hit Modified 

The number of 3rd-level 
cache read references 
(loads and RFOs) that hit the 
cache line in modified state. 
Beware of granularity 
differences. 

BSQ_cache_reference RD_3rdL_HITM

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric 
Expression

Event Mask value 
required
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3rd-Level 
Cache Reads 
Hit Exclusive 

The number of 3rd-level 
cache read references 
(loads and RFOs) that hit the 
cache line in exclusive state. 
Beware of granularity 
differences. 

BSQ_cache_reference RD_3rdL_HITE

MOB Load 
Replays 
Retired

The number of retired load 
µops that experienced 
replays related to the MOB. 

Replay_event; set the 
following replay tag: 
MOB_load_replay_
retired.

NBOGUS

Loads Retired The number of retired load 
operations that were tagged 
at the front end. 

Front_end_event; set 
the following  front end 
tag: Memory_loads.

NBOGUS

Stores Retired The number of retired stored 
operations that were tagged 
at the front end. This stat is 
often used in a 
per-instruction ratio.

Front_end_event; set 
the following  front end 
tag: Memory_stores.

NBOGUS

Bus metrics

Bus Accesses 
from the 
Processor 

The number of all bus 
transactions that were 
allocated in the IO Queue 
from this processor. Beware 
of granularity issues with this 
event. Also Beware of 
different recipes in mask bits 
for Pentium 4 and Intel Xeon 
processors between CPUID 
model field value of 2 and 
model value less than 2. 

IOQ_allocation 1a. ReqA0, ALL_READ, 
ALL_WRITE, OWN, 
PREFETCH (CPUID 
model < 2); 

1b.ReqA0, ALL_READ, 
ALL_WRITE, MEM_WB, 
MEM_WT, MEM_WP, 
MEM_WC, MEM_UC, OWN, 
PREFETCH (CPUID 
model >= 2).

2. Enable edge 
filtering6 in the 
CCCR.
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Non-prefetch 
Bus Accesses 
from the 
Processor 

The number of all bus 
transactions that were 
allocated in the IO Queue 
from this processor 
excluding prefetched 
sectors. Beware of 
granularity issues with this 
event. Also Beware of 
different recipes in mask bits 
for Pentium 4 and Intel Xeon 
processors between CPUID 
model field value of 2 and 
model value less than 2.

IOQ_allocation 1a. ReqA0, ALL_READ, 
ALL_WRITE, OWN 
(CPUID model < 2);

1b. ReqA0, ALL_READ, 
ALL_WRITE, MEM_WB, 
MEM_WT, MEM_WP, 
MEM_WC, MEM_UC, OWN 
(CPUID model < 2).

2. Enable edge 
filtering6 in the 
CCCR.

Prefetch Ratio Fraction of all bus 
transactions (including 
retires) that were for HW or 
SW prefetching.

(Bus Accesses – 
Nonprefetch Bus 
Accesses)/ (Bus 
Accesses)

FSB Data 
Ready

The number of front-side bus 
clocks that the bus is 
transmitting data driven by 
this processor (includes full 
reads|writes and partial 
reads|writes and implicit 
writebacks).  

FSB_data_activity 1. DRDY_OWN, 
DRDY_DRV

2. Enable edge 
filtering6 in the 
CCCR.

Bus Utilization The % of time that the bus is 
actually occupied 

(FSB Data Ready) 
*Bus_ratio*100/ 
Non-Sleep Clockticks

continued
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Reads from 
the Processor  

The number of all read 
(includes RFOs) transactions 
on the bus that were 
allocated in IO Queue from 
this processor (includes 
prefetches). Beware of 
granularity issues with this 
event. Also Beware of 
different recipes in mask bits 
for Pentium 4 and Intel Xeon 
processors between CPUID 
model field value of 2 and 
model value less than 2.

IOQ_allocation 1a. ReqA0, ALL_READ, 

OWN, PREFETCH (CPUID 
model < 2);

1b. ReqA0, ALL_READ, 
MEM_WB, MEM_WT, 
MEM_WP, MEM_WC, 
MEM_UC, 

OWN, PREFETCH (CPUID 
model >= 2);

2. Enable edge 
filtering6 in the 
CCCR.

Writes from 
the Processor 

The number of all write 
transactions on the bus that 
were allocated in IO Queue 
from this processor 
(excludes RFOs). Beware of 
granularity issues with this 
event. Also Beware of 
different recipes in mask bits 
for Pentium 4 and Intel Xeon 
processors between CPUID 
model field value of 2 and 
model value less than 2.

IOQ_allocation 1a. ReqA0, 
ALL_WRITE, OWN

(CPUID model < 2);

1b. ReqA0, 
ALL_WRITE, MEM_WB, 
MEM_WT, MEM_WP, 
MEM_WC, MEM_UC, OWN

(CPUID model >= 2).

2. Enable edge 
filtering6 in the 
CCCR.

continued
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Reads 
Non-prefetch 
from the 
Processor 

The number of all read 
transactions (includes RFOs 
but excludes prefetches) on 
the bus that originated from 
this processor. Beware of 
granularity issues with this 
event. Also Beware of 
different recipes in mask bits 
for Pentium 4 and Intel Xeon 
processors between CPUID 
model field value of 2 and 
model value less than 2.

IOQ_allocation 1a. ReqA0, ALL_READ, 
OWN (CPUID model < 
2);

1b. ReqA0, ALL_READ, 
MEM_WB, MEM_WT, 
MEM_WP, MEM_WC, 
MEM_UC, OWN (CPUID 
model >= 2).

2. Enable edge 
filtering6 in the 
CCCR.

All WC from 
the Processor 

The number of Write 
Combining memory 
transactions on the bus that 
originated from this 
processor. Beware of 
granularity issues with this 
event.  Also Beware of 
different recipes in mask bits 
for Pentium 4 and Intel Xeon 
processors between CPUID 
model field value of 2 and 
model value less than 2.

IOQ_allocation 1a. ReqA0, MEM_WC, 
OWN (CPUID model < 
2);

1a. ReqA0,ALL_READ, 
ALL_WRITE, MEM_WC, 
OWN (CPUID model >= 
2)

2. Enable edge 
filtering6 in the 
CCCR.

continued
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All UC from 
the Processor 

The number of UC 
(Uncacheable) memory 
transactions on the bus that 
originated from this 
processor. User Note: 
Beware of granularity issues. 
e.g. a store of dqword to UC 
memory requires two entries 
in IOQ allocation. Also 
Beware of different recipes in 
mask bits for Pentium 4 and 
Intel Xeon processors 
between CPUID model field 
value of 2 and model value 
less than 2.

IOQ_allocation 1a. ReqA0, MEM_UC, 
OWN (CPUID model < 
2);

1a. ReqA0,ALL_READ, 
ALL_WRITE, MEM_UC, 
OWN (CPUID model >= 
2)

2. Enable edge 
filtering6 in the 
CCCR.

Bus Accesses 
from All 
Agents 

The number of all bus 
transactions that were 
allocated in the IO Queue by 
all agents. Beware of 
granularity issues with this 
event. Also Beware of 
different recipes in mask bits 
for Pentium 4 and Intel Xeon 
processors between CPUID 
model field value of 2 and 
model value less than 2.

IOQ_allocation 1a. ReqA0, ALL_READ, 
ALL_WRITE, OWN, 
OTHER, PREFETCH

 (CPUID model < 2); 
1b.ReqA0, ALL_READ, 
ALL_WRITE, MEM_WB, 
MEM_WT, MEM_WP, 
MEM_WC, MEM_UC, OWN, 
OTHER, PREFETCH

 (CPUID model >= 2).

2. Enable edge 
filtering6 in the 
CCCR.

continued
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Bus Accesses 
Underway 
from the 
processor7 

This is an accrued sum of 
the durations of all bus 
transactions by this 
processor. Divide by “Bus 
Accesses from the 
processor” to get bus 
request latency. Also 
Beware of different recipes in 
mask bits for Pentium 4 and 
Intel Xeon processors 
between CPUID model field 
value of 2 and model value 
less than 2.

IOQ_active_entries 1a. ReqA0, ALL_READ, 
ALL_WRITE, OWN, 
PREFETCH

 (CPUID model < 2); 
1b.ReqA0, ALL_READ, 
ALL_WRITE, MEM_WB, 
MEM_WT, MEM_WP, 
MEM_WC, MEM_UC, OWN, 
PREFETCH

 (CPUID model >= 2).

Bus Reads 
Underway 
from the 
processor7 

This is an accrued sum of 
the durations of all read 
(includes RFOs) transactions 
by this processor. Divide by 
“Reads from the Processor” 
to get bus read request 
latency. Also Beware of 
different recipes in mask bits 
for Pentium 4 and Intel Xeon 
processors between CPUID 
model field value of 2 and 
model value less than 2.

IOQ_active_entries 1a. ReqA0, ALL_READ, 

OWN, PREFETCH (CPUID 
model < 2);

1b. ReqA0, ALL_READ, 
MEM_WB, MEM_WT, 
MEM_WP, MEM_WC, 
MEM_UC, 

OWN, PREFETCH (CPUID 
model >= 2);

continued
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Non-prefetch 
Reads 
Underway 
from the 
processor7 

This is an accrued sum of the 
durations of read (includes 
RFOs but excludes 
prefetches) transactions that 
originate from this processor. 
Divide by “Reads Non-
prefetch from the processor” 
to get Non-prefetch read 
request latency. Also Beware 
of different recipes in mask 
bits for Pentium 4 and Intel 
Xeon processors between 
CPUID model field value of 2 
and model value less than 2.

IOQ_active_entries 1a. ReqA0, ALL_READ, 
OWN (CPUID model < 
2);

1b. ReqA0, ALL_READ, 
MEM_WB, MEM_WT, 
MEM_WP, MEM_WC, 
MEM_UC, OWN (CPUID 
model >= 2).

All UC 
Underway 
from the 
processor7 

This is an accrued sum of 
the durations of all UC 
transactions by this 
processor. Divide by “All UC 
from the processor” to get 
UC request latency.  Also 
Beware of different recipes in 
mask bits for Pentium 4 and 
Intel Xeon processors 
between CPUID model field 
value of 2 and model value 
less than 2.

IOQ_active_entries 1a. ReqA0, MEM_UC, 
OWN (CPUID model < 
2);

1a. ReqA0,ALL_READ, 
ALL_WRITE, MEM_UC, 
OWN (CPUID model >= 
2)

continued
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All WC 
Underway 
from the 
processor7 

This is an accrued sum of 
the durations of all WC 
transactions by this 
processor. Divide by “All WC 
from the processor” to get 
WC request latency. Also 
Beware of different recipes in 
mask bits for Pentium 4 and 
Intel Xeon processors 
between CPUID model field 
value of 2 and model value 
less than 2.

IOQ_active_entries 1a. ReqA0, MEM_WC, 
OWN (CPUID model < 
2);

1a. ReqA0,ALL_READ, 
ALL_WRITE, MEM_WC, 
OWN (CPUID model >= 
2)

Bus Writes 
Underway 
from the 
processor7 

This is an accrued sum of 
the durations of all write 
transactions by this 
processor. Divide by “Writes 
from the Processor” to get 
bus write request latency. 
Also Beware of different 
recipes in mask bits for 
Pentium 4 and Intel Xeon 
processors between CPUID 
model field value of 2 and 
model value less than 2.

IOQ_active_entries 1a. ReqA0, 
ALL_WRITE, OWN

(CPUID model < 2);

1b. ReqA0, 
ALL_WRITE, MEM_WB, 
MEM_WT, MEM_WP, 
MEM_WC, MEM_UC, OWN

(CPUID model >= 2).

Bus Accesses 
Underway 
from All 
Agents7 

This is an accrued sum of 
the durations of entries by all 
agents on the bus. Divide by 
“Bus Accesses from All 
Agents” to get bus request 
latency. Also Beware of 
different recipes in mask bits 
for Pentium 4 and Intel Xeon 
processors between CPUID 
model field value of 2 and 
model value less than 2.

IOQ_active_entries 1a. ReqA0, ALL_READ, 
ALL_WRITE, OWN, 
OTHER, PREFETCH

 (CPUID model < 2); 
1b.ReqA0, ALL_READ, 
ALL_WRITE, MEM_WB, 
MEM_WT, MEM_WP, 
MEM_WC, MEM_UC, OWN, 
OTHER, PREFETCH

 (CPUID model >= 2).

continued
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Write WC Full 
(BSQ)

The number of write (but 
neither writeback nor RFO) 
transactions to WC-type 
memory. 

BSQ_allocation 1. REQ_TYPE1| 
REQ_LEN0|REQ_LEN1|ME
M_TYPE0|REQ_DEM_
TYPE

2. Enable edge 
filtering6 in the 
CCCR.

Write WC 
Partial (BSQ)

The number of partial write 
transactions to WC-type 
memory. User note: This 
event may undercount WC 
partials that originate from 
DWord operands.

BSQ_allocation 1. REQ_TYPE1| 
REQ_LEN0|MEM_TYPE0|R
EQ_DEM_TYPE

2. Enable edge 
filtering6 in the 
CCCR.

Writes WB 
Full (BSQ) 

The number of writeback 
(evicted from cache) 
transactions to WB-type 
memory. Note: These 
writebacks may not have a 
corresponding FSB IOQ 
transaction if 3rd level cache 
is present. 

BSQ_allocation 1. REQ_TYPE0| 
REQ_TYPE1|REQ_LEN0|R
EQ_LEN1|MEM_TYPE1|ME
M_TYPE2|REQ_CACHE_T
YPE|REQ_DEM_TYPE

2. Enable edge 
filtering6 in the 
CCCR.

Reads 
Non-prefetch 
Full (BSQ) 

The number of read 
(excludes RFOs and HW|SW 
prefetches) transactions to 
WB-type memory. Beware of 
granularity issues with this 
event. 

BSQ_allocation 1. REQ_LEN0| 
REQ_LEN1|MEM_TYPE1|M
EM_TYPE2|REQ_CACHE_
TYPE|REQ_DEM_TYPE

2. Enable edge 
filtering6 in the 
CCCR.

continued
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Reads 
Invalidate 
Full- RFO 
(BSQ) 

The number of read 
invalidate (RFO) 
transactions to WB-type 
memory

BSQ_allocation 1. REQ_TYPE0| 
REQ_LEN0|REQ_LEN1|ME
M_TYPE1|MEM_TYPE2|R
EQ_CACHE_TYPE|REQ_O
RD_TYPE|REQ_DEM_TYP
E

2. Enable edge 
filtering6 in the 
CCCR.

UC Reads 
Chunk (BSQ) 

The number of 8-byte 
aligned UC read 
transactions. User note: 
Read requests associated 
with 16 byte operands may 
under-count. 

BSQ_allocation 1.  REQ_LEN0| 
REQ_ORD_TYPE|REQ_DE
M_TYPE

2. Enable edge 
filtering6 in the 
CCCR.

UC Reads 
Chunk Split 
(BSQ) 

The number of UC read 
transactions that span an 
8-byte boundary. User note: 
Read requests may 
under-count if the data chunk 
straddles 64-byte boundary. 

BSQ_allocation 1.  REQ_LEN0| 
REQ_SPLIT_TYPE|REQ_
ORD_TYPE|REQ_DEM_TY
PE

2. Enable edge 
filtering6 in the 
CCCR.

UC Write 
Partial (BSQ) 

The number of UC write 
transactions. Beware of 
granularity issues between 
BSQ and FSB IOQ events. 

BSQ_allocation 1.  REQ_TYPE0| 
REQ_LEN0| 
REQ_SPLIT_TYPE|REQ_
ORD_TYPE|REQ_DEM_TY
PE

2. Enable edge 
filtering6 in the 
CCCR.

continued
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IO Reads 
Chunk (BSQ) 

The number of 8-byte 
aligned IO port read 
transactions.

BSQ_allocation 1.  REQ_LEN0| 
REQ_ORD_TYPE|REQ_IO
_TYPE|REQ_DEM_TYPE

2. Enable edge 
filtering6 in the 
CCCR.

IO Writes 
Chunk (BSQ) 

The number of IO port write 
transactions. 

BSQ_allocation 1. REQ_TYPE0| 
REQ_LEN0| 
REQ_ORD_TYPE|REQ_IO
_TYPE|REQ_DEM_TYPE

2. Enable edge 
filtering6 in the 
CCCR.

WB Writes 
Full Underway 
(BSQ)8 

This is an accrued sum of 
the durations of writeback 
(evicted from cache) 
transactions to WB-type 
memory. Divide by Writes 
WB Full (BSQ) to estimate 
average request latency. 
User note: Beware of effects 
of writebacks from 2nd-level 
cache that are quickly 
satisfied from the 3rd-level 
cache (if present). 

BSQ_active_entries 1. REQ_TYPE0| 
REQ_TYPE1|REQ_LEN0|R
EQ_LEN1|MEM_TYPE1|ME
M_TYPE2|REQ_CACHE_T
YPE|REQ_DEM_TYPE

UC Reads 
Chunk 
Underway 
(BSQ)8 

This is an accrued sum of 
the durations of UC read 
transactions. Divide by UC 
Reads Chunk (BSQ) to 
estimate average request 
latency. User note: 
Estimated latency may be 
affected by undercount in 
allocated entries. 

BSQ_active_entries 1.  REQ_LEN0| 
REQ_ORD_TYPE|REQ_DE
M_TYPE

2. Enable edge 
filtering6 in the 
CCCR.

continued
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Write WC 
Partial 
Underway 
(BSQ)8

This is an accrued sum of 
the durations of partial write 
transactions to WC-type 
memory. Divide by Write WC 
Partial (BSQ) to estimate 
average request latency. 
User note: Allocated entries 
of WC partials that originate 
from DWord operands are 
not included. 

BSQ_active_entries 1. REQ_TYPE1| 
REQ_LEN0|MEM_TYPE0|R
EQ_DEM_TYPE

2. Enable edge 
filtering6 in the 
CCCR.

Characterization metrics

x87 Input 
Assists

The number of occurrences 
of x87 input operands 
needing assistance to 
handle an exception 
condition. This stat is often 
used in a per-instruction 
ratio.

X87_assists PREA

x87 Output 
Assists

The number of occurrences 
of x87 operations needing 
assistance to handle an 
exception condition. 

X87_assists POAO, POAU

SSE Input 
Assists

The number of occurrences 
of SSE/SSE2 floating-point 
operations needing 
assistance to handle an 
exception condition. The 
number of occurences 
includes speculative counts.

SSE_input_assist ALL

Packed SP 
Retired3

Non-bogus packed 
single-precision instructions 
retired.

Execution_event; set 
this execution tag: 
Packed_SP_retired

NONBOGUS0

continued
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Packed DP 
Retired3

Non-bogus packed 
double-precision instructions 
retired.

Execution_event; set 
this execution tag:

Packed_DP_retired

NONBOGUS0

Scalar SP 
Retired3

Non-bogus scalar 
single-precision instructions 
retired.

Execution_event; set 
this execution tag:

Scalar_SP_retired

NONBOGUS0

Scalar DP 
Retired3

Non-bogus scalar 
double-precision instructions 
retired.

Execution_event; set 
this execution tag:

Scalar_DP_retired

NONBOGUS0

64-bit MMX 
Instructions 
Retired3

Non-bogus 64-bit integer 
SIMD instruction (MMX 
instructions) retired.

Execution_event; set the 
following  execution tag:

64_bit_MMX_retired

NONBOGUS0

128-bit MMX 
Instructions 
Retired3

Non-bogus 128-bit integer 
SIMD instructions retired.

Execution_event; set 
this execution tag:

128_bit_MMX_
retired

NONBOGUS0

X87 Retired4 Non-bogus x87 floating-point 
instructions retired.

Execution_event; set 
this execution tag: 
X87_FP_retired

NONBOGUS0

x87 SIMD 
Memory 
Moves 
Retired5

Non-bogus x87 and SIMD 
memory operation and move 
instructions retired.

Execution_event; set 
this execution tag:

X87_SIMD_memory_
moves_retired

NONBOGUS0

Machine clear metrics

Machine Clear 
Count

The number of cycles that 
the entire pipeline of the 
machine is cleared for all 
causes.

Machine_clear CLEAR 

(Also Set the following 
CCCR bits:

Compare=1; Edge=1;

Threshold=0)

continued
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1. A memory reference causing 64K aliasing conflict can be counted more than once in this stat. The resulting performance penalty can vary 
from unnoticeable to considerable. Some implementations of the Pentium 4 processor family can incur significant penalties from loads that 
alias to preceding stores.

2. Currently, bugs in this event can cause both overcounting and undercounting by as much as a factor of 2.

3. Most MMX technology instructions, Streaming SIMD Extensions and Streaming SIMD Extensions 2 decode into a single µop. There are 
some instructions that decode into several µops; in these limited cases, the metrics count the number of µops that are actually tagged.

4. Most commonly used x87 instructions (e.g., fmul, fadd, fdiv, fsqrt, fstp, etc.) decode into a singleµop. However, transcendental and 
some x87 instructions decode into several µops; in these limited cases, the metrics will count the number of µops thatare actually tagged.

5. Load and store operations, register-to-register moves for x87 floating-point instructions, MMX™ technology instructions, Streaming SIMD 
Extensions, and Streaming SIMD Extensions 2 are included in this metric. Load and store operations, as well as register-to-register moves for 
integer instruction are not included in this metric. Some instructions decode into several memory/moves µops; for example, movdqu contains 
two separate 64-bit data store operations; in these cases, the metrics count all memory/moves µops that are actually tagged.

6. Set the following CCCR bits to make edge triggered: Compare=1; Edge=1; Threshold=0

7. Must program both MSR_FSB_ESCR0 and MSR_FSB_ESCR1.

8. Must program both MSR_BSU_ESCR0 and MSR_BSU_ESCR1.

Performance Metrics and Tagging Mechanisms
A number of metrics require more tags to be specified in addition to programming a 
counting event; for example, the metric Split Loads Retired requires specifying a 
split_load_retired tag in addition to programming the replay_event to count at 
retirement. This section describes three sets of tags that are used in conjunction with 
three at-retirement counting events: front_end_event, replay_event, and 
execution_event. Please refer to Appendix A of the “IA-32 Intel® Architecture 
Software Developer’s Manual, Volume 3: System Programming” for the description of 
the at-retirement events.

Memory Order 
Machine Clear

The number of times that the 
entire pipeline of the 
machine is cleared due to 
memory-ordering issues.

Machine_clear MOCLEAR

Self-modifying 
Code Clear

The number of times the 
entire pipeline of the 
machine is cleared due to 
self-modifying code issues.

Machine_clear SMCCLEAR
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Tags for replay_event

Table B-2 provides a list of the tags that are used by various metrics in Table B-1. 
These tags enable you to mark µops at earlier stage of execution and count the µops at 
retirement using the replay_event. These tags require at least two MSR’s (see 
Table B-2, column 2 and column 3) to tag the µops so they can be detected at 
retirement. Some tags require additional MSR (see Table B-2, column 4) to select the 
event types for these tagged µops. The event names referenced in column 4 are those 
from the Pentium 4 processor performance monitoring events.

Table B-2 Metrics That Utilize Replay Tagging Mechanism

Replay Metric Tags1

1.  Certain kinds of µops cannot be tagged. These include I/O operations, UC and locked accesses, returns, and far transfers.

Bit field to 
set:

IA32_PEBS_
ENABLE 

Bit field to set: 
MSR_PEBS_
MATRIX_VERT Additional MSR 

See Event 
Mask 
Parameter for 
Replay_event 

1stL_cache_load_
miss_retired

Bit 0, BIT 24, 
BIT 25

Bit 0 None NBOGUS 

2ndL_cache_load_
miss_retired

Bit 1, BIT 24, 
BIT 25

Bit 0 None NBOGUS

DTLB_load_miss_
retired

Bit 2, BIT 24, 
BIT 25

Bit 0 None NBOGUS

DTLB_store_miss_
retired

Bit 2, BIT 24, 
BIT 25

Bit 1 None NBOGUS

DTLB_all_miss_
retired

Bit 2, BIT 24, 
BIT 25

Bit 0, Bit 1 None NBOGUS

MOB_load_
replay_retired

Bit 9, BIT 24, 
BIT 25

Bit 0 Select MOB_load_
replay and set the 
PARTIAL_DATA and 
UNALGN_ADDR bits 

NBOGUS

Split_load_
retired

Bit 10, BIT 
24, BIT 25

Bit 0 Select Load_port_replay 
event on SAAT_CR_ESCR1 
and set SPLIT_LD  bit  

NBOGUS

Split_store_
retired

Bit 10, BIT 
24, BIT 25

Bit 1 Select 
Store_port_replay 
event on SAAT_CR_ESCR0 
and set SPLIT_ST  bit 

NBOGUS
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Tags for front_end_event

Table B-3 provides a list of the tags that are used by various metrics derived from the 
front_end_event. The event names referenced in column 2 can be found from the 
Pentium 4 processor performance monitoring events.

Tags for execution_event

Table B-4 provides a list of the tags that are used by various metrics derived from the 
execution_event. These tags require programming an upstream ESCR to select event 
mask with its TagUop and TagValue bit fields. The event mask for the downstream 
ESCR is specified in column 4. The event names referenced in column 4 can be found 
in the Pentium 4 processor performance monitoring events.

Table B-3 Table 3 Metrics That Utilize the Front-end Tagging Mechanism

Front-end MetricTags1

1.  There may be some undercounting of front end events when there is an overflow or underflow of the floating point stack.

 Additional MSR
See Event Mask Parameter for 
Front_end_event 

Memory_loads Set the TAGLOADS bit in 
Uop_Type

NBOGUS

Memory_stores Set the TAGSTORES bit in 
Uop_Type

NBOGUS
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Using Performance Metrics with Hyper-Threading Technology
On Intel Xeon processors that support Hyper-Threading Technology, the performance 
metrics listed in Table B-1 may be qualified to associate the counts with a specific 
logical processor, provided the relevant performance monitoring events supports 
qualification by logical processor. Within the subset of those performance metrics that 
support qualification by logical processors, some of them can be programmed with 
parallel ESCRs and CCCRs to collect separate counts for each logical processor 
simultaneously. For some metrics, qualification by logical processor is supported but 
there is not sufficient number of MSRs for simultaneous counting of the same metric 

Table B-4 Metrics That Utilize the Execution Tagging Mechanism

Execution Metric Tags Upstream ESCR

Tag Value in 
Upstream 
ESCR

See Event Mask 
Parameter for 
Execution_event 

Packed_SP_retired Set the ALL bit in the event mask 
and the TagUop bit in the ESCR 
of packed_SP_uop. 

1 NBOGUS0

Scalar_SP_retired Set the ALL bit in the event mask 
and the TagUop bit in the ESCR 
of scalar_SP_uop. 

1 NBOGUS0

Scalar_DP_retired Set the ALL bit in the event mask 
and the TagUop bit in the ESCR 
of scalar_DP_uop. 

1 NBOGUS0

128_bit_MMX_retired Set the ALL bit in the event mask 
and the TagUop bit in the ESCR 
of 128_bit_MMX_uop.

1 NBOGUS0

64_bit_MMX_retired Set the ALL bit in the event mask 
and the TagUop bit in the ESCR 
of 64_bit_MMX_uop.

1 NBOGUS0

X87_FP_retired Set the ALL bit in the event mask 
and the TagUop bit in the ESCR 
of x87_FP_uop. 

1 NBOGUS0 

X87_SIMD_memory_moves_
retired

Set the ALLP0 and ALLP2 bits in 
event mask and the TagUop bit in 
the ESCR of X87_SIMD_ 
moves_uop. 

1 NBOGUS0
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on both logical processors. In both cases, it is also possible to program the relevant 
ESCR for a performance metric that supports qualification by logical processor to 
produce counts that are, typically, the sum of contributions from both logical 
processors. 

A number of performance metrics are based on performance monitoring events that do 
not support qualification by logical processor. Any attempts to program the relevant 
ESCRs to qualify counts by logical processor will not produce different results. The 
results obtained in this manner should not be summed together. 

The performance metrics listed in Table B-1 fall into three categories:

• Logical processor specific and supporting parallel counting

• Logical processor specific but constrained by ESCR limitations

• Logical processor independent and not supporting parallel counting.

Table B-5 lists performance metrics in the first and second category. Table B-6 lists 
performance metrics in the third category.

There are four specific performance metrics related to the trace cache that are 
exceptions to the three categories above. They are:

• Logical Processor 0 Deliver Mode

• Logical Processor 1 Deliver Mode

• Logical Processor 0 Build Mode

• Logical Processor 0 Build Mode.

Each of these four metrics cannot be qualified by programming bit 0 to 4 in the 
respective ESCR. However, it is possible and useful to collect two of these four 
metrics simultaneously.
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Table B-5 Metrics That Support Qualification by Logical Processor and 

Parallel Counting

General Metrics Uops Retired

Instructions Retired

Non-Halted Clockticks

Speculative Uops Retired

Branching Metrics Branches Retired

Mispredicted Branches Retired

All returns

All indirect branches

All calls

All conditionals

Mispredicted returns

Mispredicted indirect branches

Mispredicted calls

Mispredicted conditionals

TC and Front End Metrics Trace Cache Misses

ITLB Misses

TC to ROM Transfers

Speculative TC-Built Uops

Speculative TC-Delivered Uops

Speculative Microcode Uops

continue
B-41
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Memory Metrics Split Load Replays1

Split Store Replays1

MOB Load Replays1

64k Aliasing Conflicts

1st-Level Cache Load Misses Retired

2nd-Level Cache Load Misses Retired

DTLB Load Misses Retired

Split Loads Retired1

Split Stores Retired1

MOB Load Replays Retired

Loads Retired

Stores Retired

DTLB Store Misses Retired

DTLB Load and Store Misses Retired

2nd-Level Cache Read Misses

2nd-Level Cache Read References

3rd-Level Cache Read Misses

3rd-Level Cache Read References

2nd-Level Cache Reads Hit Shared

2nd-Level Cache Reads Hit Modified

2nd-Level Cache Reads Hit Exclusive

3rd-Level Cache Reads Hit Shared

3rd-Level Cache Reads Hit Modified

3rd-Level Cache Reads Hit Exclusive

continue

Table B-5 Metrics That Support Qualification by Logical Processor and 
Parallel Counting (continued)
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Bus Metrics Bus Accesses from the Processor1

Non-prefetch Bus Accesses from the Processor1

Reads from the Processor1

Writes from the Processor1

Reads Non-prefetch from the Processor1

All WC from the Processor1

All UC from the Processor1

Bus Accesses from All Agents1

Bus Accesses Underway from the processor1

Bus Reads Underway from the processor1

Non-prefetch Reads Underway from the processor1

All UC Underway from the processor1

All WC Underway from the processor1

Bus Writes Underway from the processor1

Bus Accesses Underway from All Agents1

Write WC Full (BSQ)1

Write WC Partial (BSQ)1

Writes WB Full (BSQ)1

Reads Non-prefetch Full (BSQ)1

Reads Invalidate Full- RFO (BSQ)1

UC Reads Chunk (BSQ)1

UC Reads Chunk Split (BSQ)1

UC Write Partial (BSQ)1

IO Reads Chunk (BSQ)1

IO Writes Chunk (BSQ)1

WB Writes Full Underway (BSQ)1

UC Reads Chunk Underway (BSQ)1

Write WC Partial Underway(BSQ)1

continue

Table B-5 Metrics That Support Qualification by Logical Processor and 
Parallel Counting (continued)
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Characterization Metrics x87 Input Assists

x87 Output Assists

Machine Clear Count

Memory Order Machine Clear

Self-Modifying Code Clear

Scalar DP Retired

Scalar SP Retired

Packed DP Retired

Packed SP Retired

128-bit MMX Instructions Retired

64-bit MMX Instructions Retired

x87 Instructions Retired

x87 SIMD Memory Moves Retired
1 Parallel counting is not supported due to ESCR restrictions.

Table B-6 Metrics That Are Independent of Logical Processors

General Metrics Non-Sleep Clockticks

TC and Front End Metrics Page Walk Miss ITLB

Memory Metrics Page Walk DTLB All Misses

Bus Metrics Bus Data Ready from the Processor

Characterization Metrics SSE Input Assists

Table B-5 Metrics That Support Qualification by Logical Processor and 
Parallel Counting (continued)
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IA-32 Instruction 
Latency and Throughput
This appendix contains tables of the latency, throughput and execution units that are 
associated with IA-32 instructions. The data in these tables are specific to the Intel 
Pentium 4 and Intel Xeon processors. For detailed discussions of the Intel NetBurst 
micro-architecture and the relevance of instruction throughput and latency information 
for code tuning, see “Execution Core Detail” in Chapter 1 and “Floating Point/SIMD 
Operands” in Chapter 2.

This appendix contains the following sections:

• “Overview”– an overview of issues related to instruction selection and scheduling.

• “Definitions” – the definitions for the primary information presentedin the tables 
in section “Latency and Throughput.”

• “Latency and Throughput” – the listings of IA-32 instruction throughput, latency 
and execution units associated with each instruction.

Overview
The Pentium 4 processor uses out-of-order execution with dynamic scheduling and 
buffering to tolerate poor instruction selection and scheduling that may occur in legacy 
code. It can reorder µops to cover latency delays and to avoid resource conflicts. In 
some cases, the micro-architecture’s ability to avoid such delays can be enhanced by 
arranging IA-32 instructions. While reordering IA-32 instructions may help, the 
execution core determines the final schedule of µops.

This appendix provides information to assembly language programmers and compiler 
writers, to aid in selecting the sequence of instructions which minimizes dependence 
chain latency, and to arrange instructions in an order which assists the hardware in 
processing instructions efficiently while avoiding resource conflicts. The performance 
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impact of applying the information presented in this appendix has been shown to be on 
the order of several percent, for applications which are not completely dominated by 
other performance factors, such as:

• cache miss latencies

• bus bandwidth

• I/O bandwidth.

Instruction selection and scheduling matters when the compiler or assembly 
programmer has already addressed the performance issues discussed in Chapter 2:

• observe store forwarding restrictions

• avoid cache line and memory order buffer splits

• do not inhibit branch prediction.

• minimize the use of xchg instructions on memory locations

While several items on the above list involve selecting the right instruction, this 
appendix focuses on the following issues. These are listed in an expected priority 
order, though which item contributes most to performance will vary by application.

• Maximize the flow of µops into the execution core. IA-32 instructions which 
consist of more than four µops are executed from microcode ROM. These 
instructions with longer µop flows incur a slight overhead for switching between 
the execution trace cache and the microcode ROM. Transfers to microcode ROM 
often reduce how efficiently µops can be packed into the trace cache. Where 
possible, it is advisable to select instructions with four or fewer µops. For example, 
a 32-bit integer multiply with a memory operand fits in the trace cache without 
going to microcode, while a 16-bit integer multiply to memory does not.

• Avoid resource conflicts. Interleaving instructions so that they don’t compete for 
the same port or execution unit can increase throughput. For example, alternating 
PADDQ and PMULUDQ, each have a throughput of one issue per two clock cycles. 
When interleaved, they can achieve an effective throughput of one instruction per 
cycle because they use the same port but different execution units. Selecting 
instructions with fast throughput also helps to preserve issue port bandwidth, hide 
latency and allows for higher software performance.
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• Minimize the latency of dependence chains that are on the critical path. For 

example, an operation to shift left by two bits executes faster when encoded as two 
adds than when it is encoded as a shift. If latency is not an issue, the shift results in 
a denser byte encoding.

In addition to the general and specific rules, coding guidelines and the instruction data 
provided in this manual, you can take advantage of the software performance analysis 
and tuning toolset available at http://developer.intel.com/software/products/index.htm. 
The tools include the VTune Performance Analyzer, with its performance-monitoring 
capabilities.

Definitions
The IA-32 instruction performance data are listed in several tables. The tables contain 
the following information:

Instruction Name:The assembly mnemonic of each instruction.

Latency: The number of clock cycles that are required for the execution core 
to complete the execution of all of the µops that form a IA-32 
instruction. 

Throughput: The number of clock cycles required to wait before the issue ports 
are free to accept the same instruction again. For many IA-32 
instructions, the throughput of an instruction can be significantly less 
than its latency. 

Execution units: The names of the execution units in the execution core that are 
utilized to execute the µops for each instruction. This information is 
provided only for IA-32 instructions that are decoded into no more 
than 4 µops. µops for instructions that decode into more than 4 µops 
are supplied by microcode ROM. Note that several execution units 
may share the same port, such as FP_ADD, FP_MUL, or MMX_SHFT in 
the FP_EXECUTE cluster (see Figure 1-4). 
C-3
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Latency and Throughput

This section presents the latency and throughput information for the IA-32 instruction 
set including the Streaming SIMD Extensions 2, Streaming SIMD Extensions, MMX 
technology, and most of the frequently used general-purpose integer and x87 
floating-point instructions. 

Due to the complexity of dynamic execution and out-of-order nature of the execution 
core, the instruction latency data may not be sufficient to accurately predict realistic 
performance of actual code sequences based on adding instruction latency data.

• The instruction latency data are only meant to provide a relative comparison of 
instruction-level performance of IA-32 instructions based on the Intel NetBurst 
micro-architecture.

• All numeric data in the tables are: 
— approximate and are subject to change in future implementations of the Intel 

NetBurst micro-architecture.
— not meant to be used as reference numbers for comparisons of instruction-level 

performance benchmarks. Comparison of instruction-level performance of 
microprocessors that are based on different micro-architecture is a complex 
subject that requires additional information that is beyond the scope of this 
manual. 

Comparisons of latency and throughput data between the Pentium 4 processor and the 
Pentium III processor can be misleading, because one cycle in the Pentium 4 processor 
is NOT equal to one cycle in the Pentium III processor. The Pentium 4 processor is 
designed to operate at higher clock frequencies than the Pentium III processor. Many 
IA-32 instructions can operate with either registers as their operands or with a 
combination of register/memory address as their operands. The performance of a given 
instruction between these two types is different.

The section that follows, “Latency and Throughput with Register Operands”, gives the 
latency and throughput data for the register-to-register instruction type. Section 
“Latency and Throughput with Memory Operands” discusses how to adjust latency 
and throughput specifications for the register-to-memory and memory-to-register 
instructions.

In some cases, the latency or throughput figures given are just one half of a clock. This 
occurs only for the double-speed ALUs.
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 Latency and Throughput with Register Operands

The IA-32 instruction latency and throughput data are presented in Table C-1 through 
Table C-7. The tables include all instructions of the Streaming SIMD Extension 2, 
Streaming SIMD Extension, MMX technology and most of the commonly used IA-32 
instructions. 

Table C-1 Streaming SIMD Extension 2 128-bit Integer Instructions

Instruction Latency1 Throughput Execution Unit2

CVTDQ2PS3 xmm, xmm 5 2 FP_ADD

CVTPS2DQ3 xmm, xmm 5 2 FP_ADD

CVTTPS2DQ3 xmm, xmm 5 2 FP_ADD

MOVD xmm, r32 6 2 MMX_MISC,MMX_SHFT

MOVD r32, xmm 10 1 FP_MOVE,FP_MISC

MOVDQA xmm, xmm 6 1 FP_MOVE

MOVDQU xmm, xmm 6 1 FP_MOVE

MOVDQ2Q mm, xmm 8 2 FP_MOVE,MMX_ALU

MOVQ2DQ xmm, mm 8 2 FP_MOVE,MMX_SHFT

MOVQ xmm, xmm 2 2 MMX_SHFT

PACKSSWB/PACKSSDW/
PACKUSWB xmm, xmm

4 2 MMX_SHFT

PADDB/PADDW/PADDD xmm, xmm 2 2 MMX_ALU 

PADDSB/PADDSW/
PADDUSB/PADDUSW 
xmm, xmm

2 2 MMX_ALU

PADDQ/PSUBQ mm, mm 2 1 MMX_ALU

PADDQ/ PSUBQ3 xmm, xmm 6 2 MMX_ALU

PAND xmm, xmm 2 2 MMX_ALU

PANDN xmm, xmm 2 2 MMX_ALU

PAVGB/PAVGW xmm, xmm 2 2 MMX_ALU 

PCMPEQB/PCMPEQD/
PCMPEQW xmm, xmm

2 2 MMX_ALU 

PCMPGTB/PCMPGTD/PCMPGTW 
xmm, xmm

2 2 MMX_ALU

continued
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PEXTRW r32, xmm, imm8 7 2 MMX_SHFT,FP_MISC

PINSRW xmm, r32, imm8 4 2 MMX_SHFT,MMX_MISC

PMADDWD xmm, xmm 8 2 FP_MUL

PMAX xmm, xmm 2 2 MMX_ALU

PMIN xmm, xmm 2 2 MMX_ALU

PMOVMSKB3 r32, xmm 7 2 FP_MISC 

PMULHUW/PMULHW/
PMULLW3 xmm, xmm

8 2 FP_MUL

PMULUDQ mm, mm 8 2 FP_MUL

POR xmm, xmm 2 2 MMX_ALU

PSADBW xmm, xmm 4 2 MMX_ALU

PSHUFD xmm, xmm, imm8 4 2 MMX_SHFT

PSHUFHW xmm, xmm, imm8 2 2 MMX_SHFT

PSHUFLW xmm, xmm, imm8 2 2 MMX_SHFT

PSLLDQ xmm, imm8 4 2 MMX_SHFT

PSLLW/PSLLD/PSLLQ xmm, xmm/imm8 2 2 MMX_SHFT

PSRAW/PSRAD xmm, xmm/imm8 2 2 MMX_SHFT

PSRLDQ xmm, imm8 4 2 MMX_SHFT

PSRLW/PSRLD/PSRLQ xmm, 
xmm/imm8

2 2 MMX_SHFT

PSUBB/PSUBW/PSUBD xmm, xmm 2 2 MMX_ALU 

PSUBSB/PSUBSW/PSUBUSB/PSUBUS
W xmm, xmm

2 2 MMX_ALU 

PUNPCKHBW/PUNPCKHWD/PUNPCK
HDQ/PUNPCKHQDQ xmm, xmm

4 2 MMX_SHFT 

PUNPCKLBW/PUNPCKLWD/PUNPCKL
DQ xmm, xmm

2 2 MMX_SHFT

PUNPCKLQDQ3 xmm, xmm 4 1 FP_MISC

PXOR xmm, xmm 2 2 MMX_ALU

Table C-1 Streaming SIMD Extension 2 128-bit Integer Instructions (continued)

Instruction Latency1 Throughput Execution Unit2
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Table C-2 Streaming SIMD Extension 2 Double-precision Floating-point 

Instructions 

Instruction Latency1 Throughput Execution Unit2

ADDPD xmm, xmm 4 2 FP_ADD

ADDSD xmm, xmm 4 2 FP_ADD

ANDNPD3 xmm, xmm 4 2 MMX_ALU

ANDPD3 xmm, xmm 4 2 MMX_ALU

CMPPD xmm, xmm 4 2 FP_ADD

CMPSD xmm, xmm, imm8 4 2 FP_ADD

COMISD xmm, xmm 6 2 FP_ADD, FP_MISC

CVTDQ2PD xmm, xmm 8 3 FP_ADD, MMX_SHFT

CVTPD2PI mm, xmm 11 3 FP_ADD, MMX_SHFT,MMX_ALU

CVTPD2DQ xmm, xmm 9 2 FP_ADD, MMX_SHFT

CVTPD2PS3 xmm, xmm 10 2 FP_ADD, MMX_SHFT

CVTPI2PD xmm, mm 11 4 FP_ADD, MMX_SHFT,MMX_ALU

CVTPS2PD3 xmm, xmm 10 4 FP_ADD, MMX_SHFT,MMX_ALU

CVTSD2SI r32, xmm 8 2 FP_ADD, FP_MISC

CVTSD2SS3 xmm, xmm 16 4 FP_ADD, MMX_SHFT

CVTSI2SD3 xmm, r32 15 3 FP_ADD, MMX_SHFT, MMX_MISC

CVTSS2SD3 xmm, xmm 14 3

CVTTPD2PI mm, xmm 11 3 FP_ADD, MMX_SHFT,MMX_ALU

CVTTPD2DQ xmm, xmm 9 2 FP_ADD, MMX_SHFT

CVTTSD2SI r32, xmm 8 2 FP_ADD, FP_MISC

DIVPD xmm, xmm 69 69 FP_DIV

DIVSD xmm, xmm 38 38 FP_DIV

MAXPD xmm, xmm 4 2 FP_ADD

MAXSD xmm, xmm 4 2 FP_ADD

MINPD xmm, xmm 4 2 FP_ADD

MINSD xmm, xmm 4 2 FP_ADD

MOVAPD xmm, xmm 6 1 FP_MOVE

MOVMSKPD r32, xmm 6 2 FP_MISC

continued
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MOVSD xmm, xmm 6 2 MMX_SHFT

MOVUPD xmm, xmm 6 1 FP_MOVE

MULPD xmm, xmm 6 2 FP_MUL

MULSS xmm, xmm 6 2 FP_MUL

ORPD3 xmm, xmm 4 2 MMX_ALU

SHUFPD3 xmm, xmm, imm8 6 2 MMX_SHFT

SQRTPD xmm, xmm 69 69 FP_DIV

SQRTSD xmm, xmm 38 38 FP_DIV

SUBPD xmm, xmm 4 2 FP_ADD

SUBSD xmm, xmm 4 2 FP_ADD

UCOMISD xmm, xmm 6 2 FP_ADD, FP_MISC

UNPCKHPD3 xmm, xmm 6 2 MMX_SHFT

UNPCKLPD3 xmm, xmm 4 2 MMX_SHFT

XORPD3 xmm, xmm 4 2 MMX_ALU

Table C-3 Streaming SIMD Extension Single-precision Floating-point 
Instructions 

Instruction Latency1 Throughput Execution Unit2

ADDPS xmm, xmm 4 2 FP_ADD

ADDSS xmm, xmm 4 2 FP_ADD

ANDNPS3 xmm, xmm 4 2 MMX_ALU

ANDPS3 xmm, xmm 4 2 MMX_ALU

CMPPS xmm, xmm 4 2 FP_ADD

CMPSS xmm, xmm 4 2 FP_ADD

COMISS xmm, xmm 6 2 FP_ADD,FP_MISC

CVTPI2PS xmm, mm 11 4 MMX_ALU,FP_ADD,MMX_SHFT

continued

Table C-2 Streaming SIMD Extension 2 Double-precision Floating-point 
Instructions  (continued)

Instruction Latency1 Throughput Execution Unit2
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CVTPS2PI mm, xmm 7 2 FP_ADD,MMX_ALU

CVTSI2SS3 xmm, r32 11 2 FP_ADD,MMX_SHFT, MMX_MISC

CVTSS2SI r32, xmm 8 2 FP_ADD,FP_MISC

CVTTPS2PI mm, xmm 7 2 FP_ADD,MMX_ALU

CVTTSS2SI r32, xmm 8 2 FP_ADD,FP_MISC

DIVPS xmm, xmm 39 39 FP_DIV

DIVSS xmm, xmm 23 23 FP_DIV

MAXPS xmm, xmm 4 2 FP_ADD

MAXSS xmm, xmm 4 2 FP_ADD

MINPS xmm, xmm 4 2 FP_ADD

MINSS xmm, xmm 4 2 FP_ADD

MOVAPS xmm, xmm 6 1 FP_MOVE

MOVHLPS3 xmm, xmm 6 2 MMX_SHFT

MOVLHPS3 xmm, xmm 4 2 MMX_SHFT

MOVMSKPS r32, xmm 6 2 FP_MISC

MOVSS xmm, xmm 4 2 MMX_SHFT

MOVUPS xmm, xmm 6 1 FP_MOVE

MULPS xmm, xmm 6 2 FP_MUL

MULSS xmm, xmm 6 2 FP_MUL

ORPS3 xmm, xmm 4 2 MMX_ALU

RCPPS3 xmm, xmm 6 4 MMX_MISC

RCPSS3 xmm, xmm 6 2 MMX_MISC,MMX_SHFT

RSQRTPS3 xmm, xmm 6 4 MMX_MISC

RSQRTSS3 xmm, xmm 6 4 MMX_MISC,MMX_SHFT

SHUFPS3 xmm, xmm, imm8 6 2 MMX_SHFT

SQRTPS xmm, xmm 39 39 FP_DIV

SQRTSS xmm, xmm 23 23 FP_DIV

SUBPS xmm, xmm 4 2 FP_ADD

continued

Table C-3 Streaming SIMD Extension Single-precision Floating-point 
Instructions  (continued)

Instruction Latency1 Throughput Execution Unit2
C-9



Intel Pentium 4 and Intel Xeon Processor Optimization IA-32 Instruction Latency and Throughput C
See “Table Footnotes”

 

See “Table Footnotes”

 

SUBSS xmm, xmm 4 2 FP_ADD

UCOMISS xmm, xmm 6 2 FP_ADD, FP_MISC

UNPCKHPS3 xmm, xmm 6 2 MMX_SHFT

UNPCKLPS3 xmm, xmm 4 2 MMX_SHFT

XORPS3 xmm, xmm 4 2 MMX_ALU

FXRSTOR 150

FXSAVE 100

Table C-4 Streaming SIMD Extension 64-bit Integer Instructions 

Instruction Latency1 Throughput Execution Unit

PAVGB/PAVGW mm, mm 2 1 MMX_ALU

PEXTRW r32, mm, imm8 7 2 MMX_SHFT,FP_MISC

PINSRW mm, r32, imm8 4 1 MMX_SHFT,MMX_MISC

PMAX mm, mm 2 1 MMX_ALU

PMIN mm, mm 2 1 MMX_ALU

PMOVMSKB3 r32, mm 7 2 FP_MISC

PMULHUW3 mm, mm 8 1 FP_MUL

PSADBW mm, mm 4 1 MMX_ALU

PSHUFW mm, mm, imm8 2 1 MMX_SHFT

Table C-3 Streaming SIMD Extension Single-precision Floating-point 
Instructions  (continued)

Instruction Latency1 Throughput Execution Unit2
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Table C-5 MMX Technology 64-bit Instructions 

Instruction Latency1 Throughput Execution Unit2

MOVD mm, r32 2 1 MMX_ALU

MOVD3 r32, mm 5 1 FP_MISC

MOVQ mm, mm 6 1 FP_MOV

PACKSSWB/PACKSSDW/PACKUS
WB mm, mm

2 1 MMX_SHFT

PADDB/PADDW/PADDD mm, mm 2 1 MMX_ALU 

PADDSB/PADDSW
/PADDUSB/PADDUSW mm, mm

2 1 MMX_ALU

PAND mm, mm 2 1 MMX_ALU

PANDN mm, mm 2 1 MMX_ALU 

PCMPEQB/PCMPEQD
PCMPEQW mm, mm

2 1 MMX_ALU 

PCMPGTB/PCMPGTD/
PCMPGTW mm, mm

2 1 MMX_ALU

PMADDWD3 mm, mm 8 1 FP_MUL

PMULHW/PMULLW3 mm, mm 8 1 FP_MUL

POR mm, mm 2 1 MMX_ALU

PSLLQ/PSLLW/
PSLLD mm, mm/imm8

2 1 MMX_SHFT

PSRAW/PSRAD mm, mm/imm8 2 1 MMX_SHFT

PSRLQ/PSRLW/PSRLD mm, 
mm/imm8 

2 1 MMX_SHFT

PSUBB/PSUBW/PSUBD mm, mm     2 1 MMX_ALU 

PSUBSB/PSUBSW/PSUBUSB/PSU
BUSW mm, mm     

2 1 MMX_ALU 

PUNPCKHBW/PUNPCKHWD/PUN
PCKHDQ mm, mm 

2 1 MMX_SHFT 

PUNPCKLBW/PUNPCKLWD/PUNP
CKLDQ mm, mm 

2 1 MMX_SHFT

PXOR mm, mm 2 1 MMX_ALU

EMMS1 12 12
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See “Table Footnotes”

 

Table C-6 IA-32 x87 Floating-point Instructions 

Instruction Latency1 Throughput Execution Unit2

FABS 2 1 FP_MISC

FADD 5 1 FP_ADD

FSUB 5 1 FP_ADD

FMUL 7 2 FP_MUL

FCOM 2 1 FP_MISC

FCHS 2 1 FP_MISC

FDIV  Single Precision 23 23 FP_DIV

FDIV  Double Precision 38 38 FP_DIV

FDIV  Extended Precision 43 43 FP_DIV

FSQRT SP 23 23 FP_DIV

FSQRT DP 38 38 FP_DIV

FSQRT EP 43 43 FP_DIV

F2XM14 90-150 60

FCOS4 190-240 130

FPATAN4 150-300 140

FPTAN4 225-250 170

FSIN4 160-180 130

FSINCOS4 160-220 140

FYL2X4 140-190 85

FYL2XP14 140-190 85

FSCALE4 60 7

FRNDINT4 30 11

FXCH5 0 1 FP_MOVE

FLDZ6 0

FINCSTP/FDECSTP6 0
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Table C-7 IA-32 General Purpose Instructions 

Instruction Latency1 Throughput Execution Unit2

ADC/SBB reg, reg 8 3

ADC/SBB reg, imm 6 2 ALU

ADD/SUB 0.5 0.5 ALU     

AND/OR/XOR 0.5 0.5 ALU     

BSWAP 7 1 ALU

CLI 26

CMP/TEST 0.5 0.5 ALU     

DEC/INC 1 0.5 ALU     

IMUL r32 14 3 FP_MUL

IMUL imm32 14 3 FP_MUL

IMUL 15-18 5

IDIV 56-70 23

IN/OUT1 <225 40

Jcc7 Not Applicable 0.5 ALU

LOOP 8 1.5 ALU

MOV 0.5 0.5 ALU

MOVSB/MOVSW 0.5 0.5 ALU

MOVZB/MOVZW 0.5 0.5 ALU

NEG/NOT/NOP 0.5 0.5 ALU

POP r32 1.5 1 MEM_LOAD,ALU

PUSH 1.5 1 MEM_STORE,ALU

RCL/RCR reg, 18 4 1

RCL/RCR reg, 18 4 1

ROL/ROR 4 1

RET 8 1 MEM_LOAD,ALU

SAHF 0.5 0.5 ALU

SAL/SAR/SHL/SHR 4 1

SCAS 4 1.5 ALU,MEM_LOAD

SETcc 5 1.5 ALU

continued
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Table Footnotes

The following footnotes refer to all tables in this appendix.

1. Latency information for many of instructions that are complex (> 4 µops) are 
estimates based on conservative and worst-case estimates. Actual performance of 
these instructions by the out-of-order core execution unit can range from 
somewhat faster to significantly faster than the nominal latency data shown in 
these tables.

2. The names of execution units include: ALU, FP_EXECUTE, FPMOVE, MEM_LOAD, 
MEM_STORE. See Figure 1-4 for execution units and ports in the out-of-order core. 
Note the following:
• The FP_EXECUTE unit is actually a cluster of execution units, roughly 

consisting of seven separate execution units. 
• The FP_ADD unit handles x87 and SIMD floating-point add and subtract 

operation. 
• The FP_MUL unit handles x87 and SIMD floating-point multiply operation. 
• The FP_DIV unit handles x87 and SIMD floating-point divide square-root 

operations. 
• The MMX_SHFT unit handles shift and rotate operations. 
• The MMX_ALU unit handles SIMD integer ALU operations. 
• The MMX_MISC unit handles reciprocal MMX computations and some integer 

operations.

STI 36

STOSB 5 2 ALU,MEM_STORE

XCHG 1.5 1 ALU

CALL 5 1 ALU,MEM_STORE

MUL 14-18 5

DIV 56-70 23

Table C-7 IA-32 General Purpose Instructions  (continued)

Instruction Latency1 Throughput Execution Unit2
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• The FP_MISC designates other execution units in port 1 that are separated from 

the six units listed above.

3. It may be possible to construct repetitive calls to some IA-32 instructions in code 
sequences to achieve latency that is one or two clock cycles faster than the more 
realistic number listed in this table.

4. Latency and Throughput of transcendental instructions can vary substantially in a 
dynamic execution environment. Only an approximate value or a range of values 
are given for these instructions.

5. The FXCH instruction has 0 latency in code sequences. However, it is limited to 
an issue rate of one instruction per clock cycle. 

6. The load constant instructions, FINCSTP, and FDECSTP have 0 latency in code 
sequences.

7. Selection of conditional jump instructions should be based on the 
recommendation of section “Branch Prediction” to improve the predictability of 
branches. When branches are predicted successfully, the latency of jcc is 
effectively zero.

8. RCL/RCR with shift count of 1 are optimized. Using RCL/RCR with shift count 
other than 1 will be executed more slowly.

Latency and Throughput with Memory Operands

Typically, instructions with a memory address as the source operand, add one more 
µop to the “reg, reg” instructions type listed in Table C-1 through C-7. However, the 
throughput in most cases remains the same because the load operation utilizes port 2 
without affecting port 0 or port 1. 

Many IA-32 instructions accept a memory address as either the source operand or as 
the destination operand. The former is commonly referred to as a load operation, while 
the latter a store operation.

The latency for IA-32 instructions that perform either a load or a store operation are 
typically longer than the latency of corresponding register-to-register type of the IA-32 
instructions. This is because load or store operations require access to the cache 
hierarchy and, in some cases, the memory sub-system. 
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For the sake of simplicity, all data being requested is assumed to reside in the first level 
data cache (cache hit). In general, IA-32 instructions with load operations that execute 
in the integer ALU units require two more clock cycles than the corresponding 
register-to-register flavor of the same instruction. Throughput of these instructions 
with load operation remains the same with the register-to-register flavor of the 
instructions.

Floating-point, MMX technology, Streaming SIMD Extensions and Streaming SIMD 
Extension 2 instructions with load operations require 6 more clocks in latency than the 
register-only version of the instructions, but throughput remains the same. 

When store operations are on the critical path, their results can generally be forwarded 
to a dependent load in as few as zero cycles. Thus, the latency to complete and store 
isn’t relevant here.
C-16



D-1
D
Stack Alignment
This appendix details on the alignment of the stacks of data for Streaming SIMD 
Extensions and Streaming SIMD Extensions 2.

Stack Frames
This section describes the stack alignment conventions for both esp-based (normal), 
and ebp-based (debug) stack frames. A stack frame is a contiguous block of memory 
allocated to a function for its local memory needs. It contains space for the function’s 
parameters, return address, local variables, register spills, parameters needing to be 
passed to other functions that a stack frame may call, and possibly others. It is typically 
delineated in memory by a stack frame pointer (esp) that points to the base of the 
frame for the function and from which all data are referenced via appropriate offsets. 
The convention on IA-32 is to use the esp register as the stack frame pointer for 
normal optimized code, and to use ebp in place of esp when debug information must 
be kept. Debuggers use the ebp register to find the information about the function via 
the stack frame.

It is important to ensure that the stack frame is aligned to a 16-byte boundary upon 
function entry to keep local __m128 data, parameters, and xmm register spill locations 
aligned throughout a function invocation.The Intel C++ Compiler for Win32* Systems 
supports conventions presented here help to prevent memory references from incurring 
penalties due to misaligned data by keeping them aligned to 16-byte boundaries. In 
addition, this scheme supports improved alignment for __m64 and double type data 
by enforcing that these 64-bit data items are at least eight-byte aligned (they will now 
be 16-byte aligned). 

For variables allocated in the stack frame, the compiler cannot guarantee the base of 
the variable is aligned unless it also ensures that the stack frame itself is 16-byte 
aligned. Previous IA-32 software conventions, as implemented in most compilers, only 
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ensure that individual stack frames are 4-byte aligned. Therefore, a function called 
from a Microsoft-compiled function, for example, can only assume that the frame 
pointer it used is 4-byte aligned.

Earlier versions of the Intel C++ Compiler for Win32 Systems have attempted to 
provide 8-byte aligned stack frames by dynamically adjusting the stack frame pointer 
in the prologue of main and preserving 8-byte alignment of the functions it compiles. 
This technique is limited in its applicability for the following reasons:

• The main function must be compiled by the Intel C++ Compiler.

• There may be no functions in the call tree compiled by some other compiler (as 
might be the case for routines registered as callbacks). 

• Support is not provided for proper alignment of parameters.

The solution to this problem is to have the function’s entry point assume only 4-byte 
alignment. If the function has a need for 8-byte or 16-byte alignment, then code can be 
inserted to dynamically align the stack appropriately, resulting in one of the stack 
frames shown in Figure D-1.
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As an optimization, an alternate entry point can be created that can be called when 
proper stack alignment is provided by the caller. Using call graph profiling of the 
VTune analyzer, calls to the normal (unaligned) entry point can be optimized into calls 
to the (alternate) aligned entry point when the stack can be proven to be properly 
aligned. Furthermore, a function alignment requirement attribute can be modified 
throughout the call graph so as to cause the least number of calls to unaligned entry 
points. As an example of this, suppose function F has only a stack alignment 
requirement of 4, but it calls function G at many call sites, and in a loop. If G’s 
alignment requirement is 16, then by promoting F’s alignment requirement to 16, and 
making all calls to G go to its aligned entry point, the compiler can minimize the 
number of times that control passes through the unaligned entry points. Example D-1 
and Example D-2 in the following sections illustrate this technique. Note the entry 
points foo and foo.aligned, the latter is the alternate aligned entry point.

Figure D-1 Stack Frames Based on Alignment Type
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Aligned esp-Based Stack Frames

This section discusses data and parameter alignment and the declspec(align) 
extended attribute, which can be used to request alignment in C and C++ code. In 
creating esp-based stack frames, the compiler adds padding between the return address 
and the register save area as shown in Example 3-9. This frame can be used only when 
debug information is not requested, there is no need for exception handling support, 
inlined assembly is not used, and there are no calls to alloca within the function. 

If the above conditions are not met, an aligned ebp-based frame must be used. When 
using this type of frame, the sum of the sizes of the return address, saved registers, 
local variables, register spill slots, and parameter space must be a multiple of 16 bytes. 
This causes the base of the parameter space to be 16-byte aligned. In addition, any 
space reserved for passing parameters for stdcall functions also must be a multiple of 
16 bytes. This means that the caller needs to clean up some of the stack space when the 
size of the parameters pushed for a call to a stdcall function is not a multiple of 16. If 
the caller does not do this, the stack pointer is not restored to its pre-call value.

In Example D-1, we have 12 bytes on the stack after the point of alignment from the 
caller: the return pointer, ebx and edx. Thus, we need to add four more to the stack 
pointer to achieve alignment. Assuming 16 bytes of stack space are needed for local 
variables, the compiler adds 16 + 4 = 20 bytes to esp, making esp aligned to a 0 mod 
16 address.
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Example D-1 Aligned esp-Based Stack Frames

void  _cdecl foo (int k)

{

 int j;

 foo:                             // See Note A

 push      ebx

 mov       ebx, esp

 sub       esp, 0x00000008

 and       esp, 0xfffffff0

 add       esp, 0x00000008

 jmp       common

foo.aligned:

push      ebx

mov       ebx, esp

common:                          // See Note B

push      edx

sub       esp, 20

j = k;

mov       edx, [ebx + 8]

mov       [esp + 16], edx

foo(5);

mov       [esp], 5

call      foo.aligned

return j;

mov       eax, [esp + 16]

add       esp, 20

pop       edx

mov       esp, ebx

pop       ebx

ret
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Aligned ebp-Based Stack Frames

In ebp-based frames, padding is also inserted immediately before the return address. 
However, this frame is slightly unusual in that the return address may actually reside in 
two different places in the stack. This occurs whenever padding must be added and 
exception handling is in effect for the function. Example D-2 shows the code generated 
for this type of frame. The stack location of the return address is aligned 12 mod 16. 
This means that the value of ebp always satisfies the condition (ebp & 0x0f) == 
0x08. In this case, the sum of the sizes of the return address, the previous ebp, the 
exception handling record, the local variables, and the spill area must be a multiple of 
16 bytes. In addition, the parameter passing space must be a multiple of 16 bytes. For a 
call to a stdcall function, it is necessary for the caller to reserve some stack space if 
the size of the parameter block being pushed is not a multiple of 16.

NOTE.  A. Aligned entry points assume that parameter block 
beginnings are aligned. This places the stack pointer at a 12 mod 
16 boundary, as the return pointer has been pushed. Thus, the 
unaligned entry point must force the stack pointer to this 
boundary.
            B. The code at the common label assumes the stack is at an 
8 mod 16 boundary, and adds sufficient space to the stack so that 
the stack pointer is aligned to a 0 mod 16 boundary.
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Example D-2 Aligned ebp-based Stack Frames

void _stdcall foo (int k)
{

 int j;

 foo:

 push ebx

mov ebx, esp

sub esp, 0x00000008

and esp, 0xfffffff0

add esp, 0x00000008 // esp is (8 mod 16) after add 

jmp common

 foo.aligned:

push ebx // esp is (8 mod 16) after push

mov ebx, esp

 common: 

 push ebp // this slot will be used for 
// duplicate return pt

push    ebp // esp is (0 mod 16) after push  
// (rtn,ebx,ebp,ebp)

mov     ebp, [ebx + 4] // fetch return pointer and store 

mov     [esp + 4], ebp // relative to ebp 
// (rtn,ebx,rtn,ebp)

mov ebp, esp // ebp is (0 mod 16)

sub esp, 28 // esp is (4 mod 16) 

//see Note A

push edx // esp is (0 mod 16) after push

// the goal is to make esp and ebp

// (0 mod 16) here

continued
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Example D-2 Aligned ebp-based Stack Frames (continued)

j = k;

mov edx, [ebx + 8] // k is (0 mod 16) if caller aligned
// its stack

mov [ebp - 16], edx // J is (0 mod 16)

foo(5);

add esp, -4 // normal call sequence to
 // unaligned entry

mov     [esp],5

call    foo // for stdcall, callee 
// cleans up stack

foo.aligned(5);

add     esp,-16 // aligned entry, this should
 // be a multiple of 16

mov     [esp],5

call    foo.aligned

add     esp,12 // see Note B

return j;

mov     eax,[ebp-16]

pop     edx

mov     esp,ebp

pop     ebp

mov     esp,ebx

pop     ebx

ret 4

}
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Stack Frame Optimizations

The Intel C++ Compiler provides certain optimizations that may improve the way 
aligned frames are set up and used. These optimizations are as follows:

• If a procedure is defined to leave the stack frame 16-byte-aligned and it calls 
another procedure that requires 16-byte alignment, then the callee’s aligned entry 
point is called, bypassing all of the unnecessary aligning code.

• If a static function requires 16-byte alignment, and it can be proven to be called 
only by other functions that require 16-byte alignment, then that function will not 
have any alignment code in it. That is, the compiler will not use ebx to point to the 
argument block and it will not have alternate entry points, because this function 
will never be entered with an unaligned frame.

Inlined Assembly and ebx
When using aligned frames, the ebx register generally should not be modified in 
inlined assembly blocks since ebx is used to keep track of the argument block. 
Programmers may modify ebx only if they do not need to access the arguments and 
provided they save ebx and restore it before the end of the function (since esp is 
restored relative to ebx in the function’s epilog). 

NOTE.  A. Here we allow for local variables. However, this value 
should be adjusted so that, after pushing the saved registers, esp is 
0 mod 16.
           B. Just prior to the call, esp is 0 mod 16. To maintain 
alignment, esp should be adjusted by 16. When a callee uses the 
stdcall calling sequence, the stack pointer is restored by the callee. 
The final addition of 12 compensates for the fact that only 4 bytes 
were passed, rather than 16, and thus the caller must account for 
the remaining adjustment. 
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For additional information on the use of ebx in inline assembly code and other related 
issues, see relevant application notes in the Intel Architecture Performance Training 
Center.

CAUTION.  Do not use the ebx register in inline assembly functions 
that use dynamic stack alignment for double, __m64, and __m128 
local variables unless you save and restore ebx each time you use it. 
The Intel C++ Compiler uses the ebx register to control alignment of 
variables of these types, so the use of ebx, without preserving it, will 
cause unexpected program execution.
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E

Mathematics
of Prefetch Scheduling 
Distance
This appendix discusses how far away to insert prefetch instructions. It presents a 
mathematical model allowing you to deduce a simplified equation which you can use 
for determining the prefetch scheduling distance (PSD) for your application. 

For your convenience, the first section presents this simplified equation; the second 
section provides the background for this equation: the mathematical model of the 
calculation.

Simplified Equation
A simplified equation to compute PSD is as follows:

 

where

psd is prefetch scheduling distance.

Nlookup is the number of clocks for lookup latency. This parameter is 
system-dependent. The type of memory used and the chipset 
implementation affect its value.

Nxfer is the number of clocks to transfer a cache-line. This parameter is 
implementation-dependent.

Npref and Nst are the numbers of cache lines to be prefetched and stored.

CPI is the number of clocks per instruction. This parameter is 
implementation-dependent.

Ninst is the number of instructions in the scope of one loop iteration.

psd
Nlookup Nxfer Npref Nst+( )⋅+

CPI Ninst⋅
-------------------------------------------------------------------------------=
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Consider the following example of a heuristic equation assuming that parameters have 
the values as indicated:

where 60 corresponds to Nlookup, 25 to Nxfer, and 1.5 to CPI.

The values of the parameters in the equation can be derived from the documentation 
for memory components and chipsets as well as from vendor datasheets. 

Mathematical Model for PSD
The parameters used in the mathematics discussed are as follows:

psd prefetch scheduling distance (measured in number of iterations)

il iteration latency

Tc computation latency per iteration with prefetch caches

Tl memory leadoff latency including cache miss latency, chip set 
latency, bus arbitration, etc.

Tb data transfer latency which is equal to number of lines per iteration * 
line burst latency

Note that the potential effects of µop reordering are not factored into the estimations 
discussed.

CAUTION.  The values in this example are for illustration only and do 
not represent the actual values for these parameters. The example is 
provided as a “starting point approximation” of calculating the 
prefetch scheduling distance using the above formula. Experimenting 
with the instruction around the “starting point approximation” may 
be required to achieve the best possible performance.

psd
60 25 Npref Nst+( )⋅+

1.5 Ninst⋅-----------------------------------------------------=
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Examine Example E-1 that uses the prefetchnta instruction with a prefetch 
scheduling distance of 3, that is, psd = 3. The data prefetched in iteration i, will 
actually be used in iteration i+3. Tc represents the cycles needed to execute top_loop - 
assuming all the memory accesses hit L1 while il (iteration latency) represents the 
cycles needed to execute this loop with actually run-time memory footprint. Tc can be 
determined by computing the critical path latency of the code dependency graph. This 
work is quite arduous without help from special performance characterization tools or 
compilers. A simple heuristic for estimating the Tc value is to count the number of 
instructions in the critical path and multiply the number with an artificial CPI. A 
reasonable CPI value would be somewhere between 1.0 and 1.5 depending on the 
quality of code scheduling.

Example E-1 Calculating Insertion for Scheduling Distance of 3

top_loop:

  prefetchnta [edx+esi+32*3]

  prefetchnta [edx*4+esi+32*3]

  . . . . .

  movaps xmm1, [edx+esi]

  movaps xmm2, [edx*4+esi]

  movaps xmm3, [edx+esi+16]

  movaps xmm4, [edx*4+esi+16]

  . . . . .

  . . .

  add esi, 32

  cmp esi, ecx

  jl top_loop

Memory access plays a pivotal role in prefetch scheduling. For more understanding of 
a memory subsystem, consider Streaming SIMD Extensions and Streaming SIMD 
Extensions 2 memory pipeline depicted in Figure E-1.
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Assume that three cache lines are accessed per iteration and four chunks of data are 
returned per iteration for each cache line. Also assume these 3 accesses are pipelined in 
memory subsystem. Based on these assumptions,
Tb = 3 * 4 = 12 FSB cycles. 

Tl varies dynamically and is also system hardware-dependent. The static variants 
include the core-to-front-side-bus ratio, memory manufacturer and memory controller 
(chipset). The dynamic variants include the memory page open/miss occasions, 
memory accesses sequence, different memory types, and so on.

To determine the proper prefetch scheduling distance, follow these steps and formulae:

• Optimize Tc as much as possible

Figure E-1 Pentium II, Pentium III and Pentium 4 Processors Memory Pipeline Sketch

 1 2 3 4 1 

1 2 3 4 1 

1 2 3 4 1 

T l T b 

:  L2 lookup miss latency 

:  Memory page access leadoff latency 

:  Latency for 4 chunks returned per line 2 3 1 4 
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• Use the following set of formulae to calculate the proper prefetch scheduling 

distance: 

• Schedule the prefetch instructions according to the computed prefetch scheduling 
distance.

• For optimized memory performance, apply techniques described in “Memory 
Optimization Using Prefetch” in Chapter 6.

The following sections explain and illustrate the architectural considerations involved 
in the prefetch scheduling distance formulae above.

No Preloading or Prefetch

The traditional programming approach does not perform data preloading or prefetch. It 
is sequential in nature and will experience stalls because the memory is unable to 
provide the data immediately when the execution pipeline requires it. Examine 
Figure E-2.
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As you can see from Figure E-2, the execution pipeline is stalled while waiting for data 
to be returned from memory. On the other hand, the front side bus is idle during the 
computation portion of the loop. The memory access latencies could be hidden behind 
execution if data could be fetched earlier during the bus idle time.

Further analyzing Figure E-2,

• assume execution cannot continue till last chunk returned and

• δf indicates flow data dependency that stalls the execution pipelines

With these two things in mind the iteration latency (il) is computed as follows:

The iteration latency is approximately equal to the computation latency plus the 
memory leadoff latency (includes cache miss latency, chipset latency, bus arbitration, 
and so on.) plus the data transfer latency where

 transfer latency= number of lines per iteration * line burst latency. 

This means that the decoupled memory and execution are ineffective to explore the 
parallelism because of flow dependency. That is the case where prefetch can be useful 
by removing the bubbles in either the execution pipeline or the memory pipeline. 

Figure E-2 Execution Pipeline, No Preloading or Prefetch
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With an ideal placement of the data prefetching, the iteration latency should be either 
bound by execution latency or memory latency, that is

 il = maximum(Tc, Tb).

Compute Bound (Case:Tc >= Tl + Tb)

Figure E-3 represents the case when the compute latency is greater than or equal to the 
memory leadoff latency plus the data transfer latency. In this case, the prefetch 
scheduling distance is exactly 1; i.e., prefetch data one iteration ahead is good enough. 
The data for loop iteration i can be prefetched during loop iteration i-1, the δf symbol 
between front-side bus and execution pipeline indicates the data flow dependency.

The following formula shows the relationship among the parameters:

It can be seen from this relationship that the iteration latency is equal to the 
computation latency, which means the memory accesses are executed in background 
and their latencies are completely hidden.

Figure E-3 Compute Bound Execution Pipeline
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Compute Bound (Case: Tl + Tb > Tc > Tb)

Now consider the next case by first examining Figure E-4.

For this particular example the prefetch scheduling distance is greater than 1. Data 
being prefetched for iteration i will be consumed in iteration i+2. 
Figure E-4 represents the case when the leadoff latency plus data transfer latency is 
greater than the compute latency, which is greater than the data transfer latency. The 
following relationship can be used to compute the prefetch scheduling distance.

In consequence, the iteration latency is also equal to the computation latency, that is, 
compute bound program.

Figure E-4 Another Compute Bound Execution Pipeline
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Memory Throughput Bound (Case: Tb >= Tc)

When the application or loop is memory throughput bound, the memory latency is no 
way to be hidden. Under such circumstances, the burst latency is always greater than 
the compute latency. Examine Figure E-5.

The following relationship calculates the prefetch scheduling distance (or prefetch 
iteration distance) for the case when memory throughput latency is greater than the 
compute latency.

Apparently, the iteration latency is dominant by the memory throughput and you 
cannot do much about it. Typically, data copy from one space to another space, for 
example, graphics driver moving data from writeback memory to you cannot do much 

Figure E-5 Memory Throughput Bound Pipeline
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about it. Typically, data copy from one space to another space, for example, graphics 
driver moving data from writeback memory to write-combining memory, belongs to 
this category, where performance advantage from prefetch instructions will be 
marginal.

Example

As an example of the previous cases consider the following conditions for computation 
latency and the memory throughput latencies. Assume Tl = 18 and Tb = 8 (in front side 
bus cycles).

Now for the case Tl =18, Tb =8 (2 cache lines are needed per iteration) examine the 
following graph. Consider the graph of accesses per iteration in example 1, Figure E-6.
E-10
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The prefetch scheduling distance is a step function of Tc, the computation latency. The 
steady state iteration latency (il) is either memory-bound or compute-bound depending 
on Tc if prefetches are scheduled effectively.

The graph in example 2 of accesses per iteration in Figure E-7 shows the results for 
prefetching multiple cache lines per iteration. The cases shown are for 2, 4, and 6 
cache lines per iteration, resulting in differing burst latencies. (Tl=18, Tb =8, 16, 24).

Figure E-6 Accesses per Iteration, Example 1
E-11
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In reality, the front-side bus (FSB) pipelining depth is limited, that is, only four 
transactions are allowed at a time in the Pentium III and Pentium 4 processors. Hence a 
transaction bubble or gap, Tg, (gap due to idle bus of imperfect front side bus 
pipelining) will be observed on FSB activities. This leads to consideration of the 
transaction gap in computing the prefetch scheduling distance. The transaction gap, Tg, 
must be factored into the burst cycles, Tb, for the calculation of prefetch scheduling 
distance.

The following relationship shows computation of the transaction gap.

where Tl is the memory leadoff latency, c is the number of chunks per cache line and n 
is the FSB pipelining depth.

Figure E-7 Accesses per Iteration, Example 2
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