
1/22/2008 © 2002-08 Hal Perkins & UW CSE H-1

CSE P 501 – Compilers

Implementing ASTs
(in Java)

Hal Perkins

Winter 2008

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-2

Agenda

 Representing ASTs as Java objects

 Parser actions

 Operations on ASTs
 Modularity and encapsulation

 Visitor pattern

 This is a general sketch of the ideas – more
details and sample code online for MiniJava

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-3

Review: ASTs

 An Abstract Syntax Tree
captures the essential
structure of the
program, without the
extra concrete grammar
details needed to guide
the parser

 Example:

while (n > 0) {
n = n – 1;

}

 AST:

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-4

Representation in Java

 Basic idea is simple: use small classes
as records (or structs) to represent
nodes in the AST

 Simple data structures, not too smart

 But also use a bit of inheritance so we
can treat related nodes polymorphically

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-5

AST Nodes - Sketch

// Base class of AST node hierarchy
public abstract class ASTNode {

// constructors (for convenience)
…
// operations
…
// string representation
public abstract String toString() ;
// etc.

}
 Note: In a production compiler, we would put the node

classes into a separate Java package. Use your own
judgment for your project.

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-6

Some Statement Nodes

// Base class for all statements
public abstract class StmtNode extends ASTNode { … }
// while (exp) stmt
public class WhileNode extends StmtNode {

public ExpNode exp;
public StmtNode stmt;
public WhileNode(ExpNode exp, StmtNode stmt) {

this.exp = exp; this.stmt = stmt;
}
public String toString() {

return “While(” + exp + “) ” + stmt;
}

}
(Note on toString: most of the time we’ll want to print the tree in a
separate traversal, so this is mostly useful for limited debugging)

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-7

More Statement Nodes

// if (exp) stmt [else stmt]

public class IfNode extends StmtNode {

public ExpNode exp;

public StmtNode thenStmt, elseStmt;

public IfNode(ExpNode exp,StmtNode thenStmt,StmtNode elseStmt) {

this.exp=exp; this.thenStmt=thenStmt;this.elseStmt=elseStmt;

}

public IfNode(ExpNode exp, StmtNode thenStmt) {

this(exp, thenStmt, null);

}

public String toString() { … }

}

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-8

Java Style Note (1)

 Some “good housekeeping” reminders – use your
own judgement about what to use in your project
 Normally, any significant Java type should be defined by an

interface
interface ASTNode { ... }

 If there are at least some methods that will be used by most
implementations of the interface, provide a default
implementation

public class ASTNodeImpl { ... }

 Similarly for subclasses and subinterfaces
interface Statement implements ASTNode { ... }

public class StatementIMPL implements Statement { ... }

public class StatementIMPL extends ASTNodeIMPL
implements Statement { ... }

or

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-9

Java Style Note (2)

 Method parameters and variables should use the
interface names as types for maximum flexibility
wherever possible

 Implementations of nodes can either extend some
other class or directly implement an interface as
appropriate

 Specific kinds of nodes that will not be extended can
be defined directly – no interface needed

 These slides use inheritance only (historical laziness
and it’s more compact)

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-10

Expressions

// Base class for all expressions

public abstract class ExpNode extends ASTNode { … }

// exp1 op exp2

public class BinExp extends ExpNode {

public ExpNode exp1, exp2; // operands

public int op; // operator (lexical token)

public BinExp(Token op, ExpNode exp1, ExpNode exp2) {

this.op = op; this.exp1 = exp1; this.exp2 = exp2;

}

public String toString() {

…

}

}

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-11

More Expressions

// Method call: id(arguments)

public class MethodExp extends ExpNode {

public ExpNode id; // method

public List args; // list of argument expressions

public BinExp(ExpNode id, List args) {

this.id = id; this.args = args;

}

public String toString() {

…

}

}

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-12

&c

 These examples are meant to give you some
ideas, not necessarily to be used literally

 E.g., you might find it much better to have a
specific AST node for “argument list” that
encapsulates the List of arguments

 You’ll also need nodes for class and method
declarations, parameter lists, and so forth

 Starter code on the web for MiniJava

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-13

Position Information in Nodes

 To produce useful error messages, it’s helpful
to record the source program location
corresponding to a node in that node

 Most scanner/parser generators have a hook for
this, usually storing source position information in
tokens

 Would be nice in our projects, but not required
(i.e., get the parser/AST construction working
first)

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-14

AST Generation

 Idea: each time the parser recognizes a
complete production, it produces as its
result an AST node (with links to the
subtrees that are the components of
the production in its instance variables)

 When we finish parsing, the result of
the goal symbol is the complete AST for
the program

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-15

Example: Recursive-Descent
AST Generation

// parse while (exp) stmt

WhileNode whileStmt() {

// skip “while (”

getNextToken();

getNextToken();

// parse exp

ExpNode condition = exp();

…

// skip “)”

getNextToken;

// parse stmt

StmtNode body = stmt();

// return AST node for while

return

new WhileNode

(condition, body);

}

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-16

AST Generation in YACC/CUP

 A result type can be specified for each
item in the grammar specification

 Each parser rule can be annotated with
a semantic action, which is just a piece
of Java code that returns a value of the
result type

 The semantic action is executed when the
rule is reduced

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-17

YACC/CUP Parser Specification

 Specification

non terminal StmtNode stmt, whileStmt;

non terminal ExpNode exp;

…

stmt ::= …

| WHILE LPAREN exp:e RPAREN stmt:s

{: RESULT = new WhileNode(e,s); :}

;

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-18

ANTLR/JavaCC/others

 Integrated tools like these provide tools
to generate syntax trees automatically

 Advantage: saves work, don’t need to
define AST classes and write semantic
actions

 Disadvantage: generated trees might not
have the right level of abstraction for what
you want to do

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-19

Operations on ASTs

 Once we have the AST, we may want to
 Print a readable dump of the tree (pretty printing)

 Do static semantic analysis
 Type checking

 Verify that things are declared and initialized properly

 Etc. etc. etc. etc.

 Perform optimizing transformations on the tree

 Generate code from the tree, or

 Generate another IR from the tree for further
processing (often flatten to a linear IR)

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-20

Where do the Operations Go?

 Pure “object-oriented” style
 Really smart AST nodes

 Each node knows how to perform every operation
on itself

public class WhileNode extends StmtNode {

public WhileNode(…);

public typeCheck(…);

public StrengthReductionOptimize(…);

public generateCode(…);

public prettyPrint(…);

…

}

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-21

Critique

 This is nicely encapsulated – all details about
a WhileNode are hidden in that class

 But it is poor modularity
 What happens if we want to add a new

Optimize operation?
 Have to open up every node class

 Furthermore, it means that the details of any
particular operation (optimization, type
checking) are scattered across the node
classes

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-22

Modularity Issues

 Smart nodes make sense if the set of
operations is relatively fixed, but we
expect to need flexibility to add new
kinds of nodes

 Example: graphics system
 Operations: draw, move, iconify, highlight

 Objects: textbox, scrollbar, canvas, menu,
dialog box, plus new objects defined as the
system evolves

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-23

Modularity in a Compiler

 Abstract syntax does not change frequently
over time
 Kinds of nodes are relatively fixed

 As a compiler evolves, it is common to modify
or add operations on the AST nodes
 Want to modularize each operation (type check,

optimize, code gen) so its components are
together

 Want to avoid having to change node classes
when we modify or add an operation on the tree

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-24

Two Views of Modularity

T
y
p
e
 ch

e
ck

O
p
tim

ize

G
e
n
e
ra

te
 x

8
6

F
la

tte
n

P
rin

t

IDENT X X X X X

exp X X X X X

while X X X X X

if X X X X X

Binop X X X X X

…

d
ra

w

m
o
v
e

ico
n
ify

h
ig

h
lig

h
t

tra
n
sm

o
g
rify

circle X X X X X

text X X X X X

canvas X X X X X

scroll X X X X X

dialog X X X X X

…

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-25

Visitor Pattern

 Idea: Package each operation in a separate class
 One method for each AST node kind

 Create one instance of this visitor class
 Sometimes called a “function object”

 Include a generic “accept visitor” method in
every node class

 To perform the operation, pass the “visitor
object” around the AST during a traversal
 This object contains separate methods to process each

AST node type

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-26

Avoiding instanceof

 Next issue: we’d like to avoid huge if-elseif
nests to check the node type in the visitor

void checkTypes(ASTNode p) {
if (p instanceof WhileNode) { … }
else if (p instanceof IfNode) { … }
else if (p instanceof BinExp) { … } …

 Solution: Include an overloaded “visit”
method for each node type and get the node
to call back to the correct operation for that
node(!)
 “Double dispatch”

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-27

One More Issue

 We want to be able to add new
operations easily, so the nodes
shouldn’t know anything specific about
the actual visitor class(es)

 Solution: an abstract Visitor interface
 AST nodes include “accept visitor” method

for the interface

 Specific operations (type check, code gen)
are implementations of this interface

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-28

Visitor Interface

interface Visitor {

// overload visit for each AST node type

public void visit(WhileNode s);

public void visit(IfNode s);

public void visit(BinExp e);

…

}

 Aside: The result type can be whatever is
convenient, doesn’t have to be void

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-29

Specific class TypeCheckVisitor

// Perform type checks on the AST

public class TypeCheckVisitor implements Visitor {

// override operations for each node type

public void visit(BinExp e) {

e.exp1.accept(this); e.exp2.accept(this);

// do additional processing on e before or after

}

public void visit(WhileNode s) { … }

public void visit(IfNode s) { … }

…

}

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-30

Add Visitor Method to AST
Nodes

 Add a new method to class ASTNode
(base class or interface describing all
AST nodes)

public abstract class ASTNode {

…

// accept a visit from a Visitor object v

public abstract void accept(Visitor v);

…

}

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-31

Override Accept Method in
Each Specific AST Node Class

 Example
public class WhileNode extends StmtNode {

…

// accept a visit from a Visitor object v

public void accept(Visitor v) {

v.visit(this); // dynamic dispatch on “this” (WhileNode)

}

…

}

 Key points
 Visitor object passed as a parameter to WhileNode

 WhileNode calls visit, which dispatches to visit(WhileNode)
automatically – i.e., the correct method for this kind of node

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-32

Encapsulation

 A visitor object often needs to be able
to access state in the AST nodes

 May need to expose more state than we
might do to otherwise

 Overall a good tradeoff – better modularity

 (plus, the nodes are relatively simple data
objects anyway)

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-33

Composite Objects

 If the node contains references to subnodes, we
often visit them first (i.e., pass the visitor along in a
depth-first traversal of the AST)

public class WhileNode extends StmtNode {
…
// accept a visit from Visitor object v
public void accept(Visitor v) {

this.exp.accept(v);
this.stmt.accept(v);
v.visit(this);

}
…

}
 Other traversals can be added if needed

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-34

Visitor Actions

 A visitor function has a reference to the node
it is visiting (the parameter)
 can access subtrees via that node

 It’s also possible for the visitor object to
contain local instance data, used to
accumulate information during the traversal
 Effectively “global data” shared by visit methods
public class TypeCheckVisitor extends NodeVisitor {

public void visit(WhileNode s) { … }
public void visit(IfNode s) { … }
…
private <local state>;

}

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-35

Responsibility for the Traversal

 Possible choices

 The node objects (as done above)

 The visitor object (the visitor has access to
the node, so it can traverse any
substructure it wishes)

 Some sort of iterator object

 In a compiler, the first choice will
handle many common cases

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-36

References

 For Visitor pattern (and many others)

Design Patterns: Elements of Reusable
Object-Oriented Software
Gamma, Helm, Johnson, and Vlissides
Addison-Wesley, 1995

 Specific information for MiniJava AST
and visitors in Appel textbook & online

1/22/2008 © 2002-08 Hal Perkins & UW CSE H-37

Coming Attractions

 Static Analysis

 Type checking & representation of types

 Non-context-free rules (variables and types
must be declared, etc.)

 Symbol Tables

 & more

