
1/29/2008 © 2002-08 Hal Perkins & UW CSE K-1

CSE P 501 – Compilers

Code Shape I – Basic Constructs

Hal Perkins

Winter 2008

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-2

Agenda

 Mapping source code to x86

 Mapping for other common architectures
follows same basic pattern

 Now: basic statements and expressions

 Next: Object representation, method
calls, and dynamic dispatch

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-3

Review: Variables

 For us, all data will be in either:
 A stack frame for method local variables

 An object for instance variables

 Local variables accessed via ebp
mov eax,[ebp+12]

 Instance variables accessed via an
object address in a register
 Details later

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-4

Conventions for Examples

 Examples show code snippets in isolation

 Real code generator needs to worry about things like
 Which registers are busy at which point in the program

 Which registers to spill into memory when a new register is
needed and no free ones are available
 (x86: temporaries are often pushed on the stack, but can also

be stored in a stack frame)

 Register eax used below as a generic example
 Rename as needed for more complex code involving multiple

registers

 A few peephole optimizations shown

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-5

Constants

 Source
17

 x86
mov eax,17

 Idea: realize constant value in a register

 Optimization: if constant is 0
xor eax,eax

 Machine instructions from a compiler writer’s perspective: “I don’t
care what it was designed to do, I care what it can do!”

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-6

Assignment Statement

 Source
var = exp;

 x86
<code to evaluate exp into, say, eax>

mov [ebp+offsetvar],eax

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-7

Unary Minus

 Source
-exp

 x86
<code evaluating exp into eax>

neg eax

 Optimization
 Collapse -(-exp) to exp

 Unary plus is a no-op

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-8

Binary +

 Source
exp1 + exp2

 x86
<code evaluating exp1 into eax>

<code evaluating exp2 into edx>

add eax,edx

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-9

Binary +

 Optimizations

 If exp2 is a simple variable or constant

add eax,exp2

 Change exp1 + -exp2 into exp1-exp2

 If exp2 is 1

inc eax

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-10

Binary -, *

 Same as +

 Use sub for – (but not commutative!)

 Use imul for *

 Optimizations

 Use left shift to multiply by powers of 2

 (If your multiplier is really slow or you’ve got free scalar
units and multiplier is busy, 10*x = (8*x)+(2*x)

 Use x+x instead of 2*x, etc. (faster)

 Use dec for x-1

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-11

Integer Division

 Ghastly on x86
 Only works on 64 bit int divided by 32-bit int

 Requires use of specific registers

 Source
exp1 / exp2

 x86
<code evaluating exp1 into eax ONLY>

<code evaluating exp2 into ebx>

cdq ; extend to edx:eax, clobbers edx

idiv ebx ; quotient in eax; remainder in edx

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-12

Control Flow

 Basic idea: decompose higher level operation
into conditional and unconditional gotos

 In the following, jfalse is used to mean jump
when a condition is false
 No such instruction on x86

 Will have to realize with appropriate sequence of
instructions to set condition codes followed by
conditional jumps

 Normally won’t actually generate the value “true”
or “false” in a register

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-13

While

 Source
while (cond) stmt

 x86
test: <code evaluating cond>

jfalse done
<code for stmt>
jmp test

done:

 Note: In generated asm code we’ll need to
generate unique label for each loop,
conditional statement, etc.

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-14

Optimization for While

 Put the test at the end
jmp test

loop: <code for stmt>
test: <code evaluating cond>

jtrue loop

 Why bother?
 Pulls one instruction (jmp) out of the loop
 Avoids a pipeline stall on jmp on each iteration

 Although modern processors will often predict control flow and
avoid the stall

 Easy to do from AST or other IR; not so easy if
generating code on the fly (e.g., recursive descent 1-
pass compiler)

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-15

Do-While

 Source
do stmt while(cond);

 x86
loop: <code for stmt>

<code evaluating cond>

jtrue loop

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-16

If

 Source
if (cond) stmt

 x86
<code evaluating cond>

jfalse skip

<code for stmt>

skip:

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-17

If-Else

 Source
if (cond) stmt1 else stmt2

 x86
<code evaluating cond>

jfalse else

<code for stmt1>

jmp done

else: <code for stmt2>

done:

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-18

Jump Chaining

 Observation: naïve implementation can
produce jumps to jumps

 Optimization: if a jump has as its target
an unconditional jump, change the
target of the first jump to the target of
the second

 Repeat until no further changes

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-19

Boolean Expressions

 What do we do with this?
x > y

 It is an expression that evaluates to
true or false
 Could generate the value (0/1 or whatever

the local convention is)

 But normally we don’t want/need the
value; we’re only trying to decide whether
to jump

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-20

Code for exp1 > exp2

 Basic idea: designate jump target, and
whether to jump if the condition is true
or if it is false

 Example: exp1 > exp2, target L123,
jump on false

<evaluate exp1 to eax>

<evaluate exp2 to edx>

cmp eax,edx

jng L123

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-21

Boolean Operators: !

 Source
! exp

 Context: evaluate exp and jump to L123
if false (or true)

 To compile !, reverse the sense of the
test: evaluate exp and jump to L123 if
true (or false)

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-22

Boolean Operators: && and ||

 In C/C++/Java/C#, these are short-
circuit operators

 Right operand is evaluated only if needed

 Basically, generate the if statements
that jump appropriately and only
evaluate operands when needed

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-23

Example: Code for &&

 Source
if (exp1 && exp2) stmt

 x86
<code for exp1>

jfalse skip

<code for exp2>

jfalse skip

<code for stmt>

skip:

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-24

Example: Code for ||

 Source
if (exp1 || exp2) stmt

 x86
<code for exp1>

jtrue doit

<code for exp2>

jfalse skip

doit: <code for stmt>

skip:

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-25

Realizing Boolean Values

 If a boolean value needs to be stored in a
variable or method call parameter, generate
code needed to actually produce it

 Typical representations: 0 for false, +1 or -1
for true

 C uses 0 and 1; we’ll use that

 Best choice can depend on machine architecture;
normally some convention is established during
the primeval history of the architecture

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-26

Boolean Values: Example

 Source
var = bexp ;

 x86
<code for bexp>

jfalse genFalse

mov eax,1

jmp storeIt

genFalse:

mov eax,0

storeIt: mov [ebp+offsetvar],eax ; generated by asg stmt

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-27

Faster, If Enough Registers

 Source
var = bexp ;

 x86
xor eax,eax

<code for bexp>

jfalse storeIt

inc eax

storeIt: mov [ebp+offsetvar],eax ; generated by asg stmt

 Or use conditional move (movecc) instruction if available –
avoids pipeline stalls due to conditional jumps

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-28

Other Control Flow: switch

 Naïve: generate a chain of nested if-else if
statements

 Better: switch is designed to allow an O(1)
selection, provided the set of switch values is
reasonably compact

 Idea: create a 1-D array of jumps or labels
and use the switch expression to select the
right one
 Need to generate the equivalent of an if statement

to ensure that expression value is within bounds

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-29

Switch

 Source
switch (exp) {

case 0: stmts0;
case 1: stmts1;
case 2: stmts2;

}

 X86
<put exp in eax>
“if (eax < 0 || eax > 2)

jmp defaultLabel”
mov eax,swtab[eax*4]
jmp eax

.data
swtab dd L0

dd L1
dd L2
.code

L0: <stmts0>
L1: <stmts1>
L2: <stmts2>

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-30

Arrays

 Several variations

 C/C++/Java
 0-origin; an array with n elements contains

variables a[0]…a[n-1]

 1 or more dimensions; row major order

 Key step is to evaluate a subscript
expression and calculate the location of
the corresponding element

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-31

0-Origin 1-D Integer Arrays

 Source
exp1[exp2]

 x86
<evaluate exp1 (array address) in eax>

<evaluate exp2 in edx>

address is [eax+4*edx] ; 4 bytes per element

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-32

2-D Arrays

 Subscripts start with 1 (default)
 C, etc. use row-major order

 E.g., an array with 3 rows and 2 columns is stored in
this sequence: a(1,1), a(1,2), a(2,1), a(2,2), a(3,1),
a(3,2)

 Fortran uses column-major order
 Exercises: What is the layout? How do you calculate

location of a(i,j)? What happens when you pass array
references between Fortran and C/etc. code?

 Java does not have “real” 2-D arrays. A 2-D array
is a pointer to a vector of pointers to the array
rows

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-33

a(i,j) in C/C++/etc.

 To find a(i,j), we need to know
 Values of i and j

 How many columns the array has

 Location of a(i,j) is
Location of a + (i-1)*(#of columns) + (j-1)

 Can factor to pull out load-time constant part
and evaluate that at load time – no
recalculating at runtime

1/29/2008 © 2002-08 Hal Perkins & UW CSE K-34

Coming Attractions

 Code Generation for Objects

 Representation

 Method calls

 Inheritance and overriding

 Strategies for implementing code
generators

 Code improvement – optimization

