
2/5/2008 © 2002-08 Hal Perkins & UW CSE L-1

CSE P 501 – Compilers

Code Shape II – Objects & Classes

Hal Perkins

Winter 2008

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-2

Agenda

 Object representation and layout

 Field access

 What is this?

 Object creation - new

 Method calls
 Dynamic dispatch

 Method tables

 Super

 Runtime type information

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-3

What does this program print?

class One {
int tag;
int it;
void setTag() { tag = 1; }
int getTag() { return tag; }
void setIt(int it) {this.it = it;}
int getIt() { return it; }

}
class Two extends One {

int it;
void setTag() {

tag = 2; it = 3;
}
int getThat() { return it; }
void resetIt() { super.setIt(42); }

}

public static void main(String[] args) {
Two two = new Two();
One one = two;

one.setTag();
System.out.println(one.getTag());

one.setIt(17);
two.setTag();
System.out.println(two.getIt());
System.out.println(two.getThat());
two.resetIt();
System.out.println(two.getIt());
System.out.println(two.getThat());

}

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-4

Your Answer Here

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-5

Object Representation

 The naïve explanation is that an object
contains
 Fields declared in its class and in all superclasses

 Redeclaration of a field hides superclass instance

 Methods declared in its class and in all
superclasses
 Redeclaration of a method overrides (replaces)

 But overridden methods can still be accessed by super.…

 When a method is called, the method “inside”
that particular object is called
 But we don’t want to really implement it this way

– we only want one copy of each method’s code

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-6

Actual representation

 Each object contains

 An entry for each field (variable)

 A pointer to a runtime data structure describing
the class

 Key component: method dispatch table

 Basically a C/C++ struct

 Fields hidden by declarations in extended
classes are still allocated in the object and are
accessible from superclass methods

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-7

Method Dispatch Tables

 Often known as “vtables”

 One pointer per method – points to first
instruction in method code

 Dispatch table offsets fixed at compile
time

 One instance of this per class, not per
object

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-8

Method Tables and
Inheritance

 Simple implementation
 Method table for extended class has pointers to

methods declared in it
 Method table also contains a pointer to parent

class method table
 Method dispatch

 Look in current table and use it if method declared
locally

 Look in parent class table if not local
 Repeat

 Actually used in some dynamic systems (e.g.
SmallTalk, etc.)

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-9

O(1) Method Dispatch

 Idea: First part of method table for extended
class has pointers in same order as parent
class
 BUT pointers actually refer to overriding methods

if these exist
 Method dispatch is indirect using fixed offsets

known at compile time – O(1)
 In C: *(object->vtbl[offset])(parameters)

 Pointers to additional methods in extended
class are included in the table following
inherited/overridden ones

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-10

Method Dispatch Footnotes

 Still want pointer to parent class
method table for other purposes

 Casts and instanceof

 Multiple inheritance requires more
complex mechanisms

 Also multiple interfaces

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-11

Perverse Example Revisited

class One {
int tag;
int it;
void setTag() { tag = 1; }
int getTag() { return tag; }
void setIt(int it) {this.it = it;}
int getIt() { return it; }

}
class Two extends One {

int it;
void setTag() {

tag = 2; it = 3;
}
int getThat() { return it; }
void resetIt() { super.setIt(42); }

}

public static void main(String[] args) {
Two two = new Two();
One one = two;

one.setTag();
System.out.println(one.getTag());

one.setIt(17);
two.setTag();
System.out.println(two.getIt());
System.out.println(two.getThat());
two.resetIt();
System.out.println(two.getIt());
System.out.println(two.getThat());

}

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-12

Implementation

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-13

Now What?

 Need to explore

 Object layout in memory

 Compiling field references

 Implicit and explicit use of “this”

 Representation of vtables

 Object creation – new

 Code for dynamic dispatch

 Including implementing “super.f”

 Runtime type information – instanceof and casts

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-14

Object Layout

 Typically, allocate fields sequentially

 Follow processor/OS alignment
conventions when appropriate

 Use first word of object for pointer to
method table/class information

 Objects are allocated on the heap
 No actual bits in the generated code

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-15

Local Variable Field Access

 Source
int n = obj.fld;

 X86

 Assuming that obj is a local variable in the
current method

mov eax,[ebp+offsetobj] ; load obj

mov eax,[eax+offsetfld] ; load fld

mov [ebp+offsetn],eax ; store n

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-16

Local Fields

 A method can refer to fields in the receiving
object either explicitly as “this.f” or implicitly
as “f”

 Both compile to the same code – an implicit “this.”
is assumed if not present

 Mechanism: a reference to the current object
is an implicit parameter to every method

 Can be in a register or on the stack

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-17

Source Level View

 When you write

void setIt(int it) {

this.it = it;

}

…

obj.setIt(42);

 You really get

void setIt(ObjType this,

int it) {

this.it = it;

}

…

setIt(obj,42);

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-18

x86 Conventions (C++)

 ecx is traditionally used as “this”

 Add to method call
mov ecx,receivingObject ; ptr to object

 Do this after arguments are evaluated and
pushed, right before dynamic dispatch code that
actually calls the method

 Need to save ecx in a temporary or on the stack in
methods that call other non-static methods

 One possibility: add to prologue

 Following examples aren’t careful about this

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-19

x86 Local Field Access

 Source
int n = fld; or int n = this.fld;

 X86
mov eax,[ecx+offsetfld] ; load fld

mov [ebp+offsetn],eax ; store n

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-20

x86 Method Tables (vtbls)

 We’ll generate these in the assembly language
source program

 Need to pick a naming convention for method labels;
suggestion:
 For methods, classname$methodname

 Would need something more sophisticated for overloading

 For the vtables themselves, classname$$

 First method table entry points to superclass table

 Also useful: second entry points to default (0-
argument) constructor (if you have constructors)
 Makes implementation of super() particularly simple

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-21

Method Tables For Perverse
Example

class One {
void setTag() { … }
int getTag() { … }
void setIt(int it) {…}
int getIt() { … }

}

class Two extends One {
void setTag() { … }
int getThat() { … }
void resetIt() { … }

}

.data
One$$ dd 0 ; no superclass

dd One$One
dd One$setTag
dd One$getTag
dd One$setIt
dd One$getIt

Two$$ dd One$$; parent
dd Two$Two
dd Two$setTag
dd One$getTag
dd One$setIt
dd One$getIt
dd Two$getThat
dd Two$resetIt

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-22

Method Table Footnotes

 Key point: First four non-constructor
method entries in Two’s method table
are pointers to methods declared in
One in exactly the same order
 Compiler knows correct offset for a

particular method regardless of whether
that method is overridden

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-23

Object Creation – new

 Steps needed
 Call storage manager (malloc or similar) to

get the raw bits

 Store pointer to method table in the first 4
bytes of the object

 Call a constructor (pointer to new object,
this, in ecx)

 Result of new is pointer to the constructed
object

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-24

Object Creation

 Source
One one = new One(…);

 X86
push nBytesNeeded ; obj size + 4
call mallocEquiv ; addr of bits returned in eax
add esp,4 ; pop nBytesNeeded
lea edx,One$$; get method table address
mov [eax],edx ; store vtab ptr at beginning of object
mov ecx,eax ; set up “this” for constructor
push ecx ; save ecx (constructor might clobber it)
<push constructor arguments> ; arguments (if needed)
call One$One ; call constructor (no vtab lookup needed)
<pop constructor arguments> ; (if needed)
pop eax ; recover ptr to object
mov [ebp+offsetone],eax ; store object reference in variable one

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-25

Constructor

 Only special issue here is generating
call to superclass constructor

 Same issues as super.method(…) calls –
we’ll defer for now

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-26

Method Calls

 Steps needed

 Push arguments as usual

 Put pointer to object in ecx (new this)

 Get pointer to method table from first 4 bytes of
object

 Jump indirectly through method table

 Restore ecx to point to current object (if needed)

 Useful hack: push it in the function prologue so it is
always in the stack frame at a known location

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-27

Method Call

 Source
obj.meth(…);

 X86
<push arguments from right to left> ; (as needed)

mov ecx,[ebp+offsetobj] ; get pointer to object

mov eax,[ecx] ; get pointer to method table

call dword ptr [eax+offsetmeth] ; call indirect via method tbl

<pop arguments> ; (if needed)

mov ecx,[ebp+offsetecxtemp] ; (if needed)

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-28

Handling super

 Almost the same as a regular method call
with one extra level of indirection

 Source
super.meth(…);

 X86
<push arguments from right to left> ; (if needed)
mov ecx,[ebp+offsetobj] ; get pointer to object
mov eax,[ecx] ; get method tbl pointer
mov eax,[eax] ; get parent’s method tbl pointer
call dword ptr [eax+offsetmeth] ; indirect call
<pop arguments> ; (if needed)

Runtime Type Checking

 Use the method table for the class as a
“runtime representation” of the class

 The test for “o instanceof C” is
 Is o’s method table pointer == &C$$?

 If so, result is “true”

 Recursively, get the superclass’s method table
pointer from the method table and check that

 Stop when you reach Object (or a null pointer,
depending on how you represent things)
 If no match when you reach the top of the chain, result

is “false”

 Same test as part of check for legal downcast

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-29

2/5/2008 © 2002-08 Hal Perkins & UW CSE L-30

Coming Attractions

 Code generation: register allocation,
instruction selection & scheduling

 Industrial-strength versions plus a simpler
“get it to work” scheme for the project

 Code optimization

