
2/5/2008 © 2002-08 Hal Perkins & UW CSE M-1

CSE P 501 – Compilers

Running MiniJava
Basic Code Generation and Bootstrapping

Hal Perkins

Winter 2008

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-2

Agenda

 Enough to get a working project

 Assembler source file format

 A very basic code generation strategy

 Interfacing with the bootstrap program

 Implementing the system interface

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-3

What We Need

 To run a MiniJava program

 Space needs to be allocated for a stack
and a heap

 ESP and other registers need to have
sensible initial values

 We need some way to allocate storage and
communicate with the outside world

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-4

Bootstraping from C

 Idea: take advantage of the existing C
runtime library

 Use a small C main program to call the
MiniJava main method as if it were a C
function

 C‟s standard library provides the execution
environment and we can call C functions from
compiled code for I/O, malloc, etc.

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-5

 Here is a skeleton for the .asm file to be produced by
MiniJava compilers (MASM syntax)

.386 ; use 386 extensions

.model flat,c ; use 32-bit flat address space with
; C linkage conventions for
; external labels

public asm_main ; start of compiled static main
extern put:near,get:near,mjmalloc:near ; external C routines
.code
;; generated code repeat .code/.data as needed
.data
;; generated method tables
…
end

Assembler File Format

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-6

 GNU syntax is roughly the same

.text # code segment

.globl asm_main # start of compiled static main
;; generated code repeat .code/.data as needed
.data
;; generated method tables # repeat .text/.data as needed
…
end

GNU Assembler File Format

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-7

 In a unix enviornment, an external symbol is used
as-is

 In Windows, the convention is that an external
symbol xyzzy appears in the asm code as _xyzzy
(leading underscore)
 True in both VS masm and gnu assembler under

cygwin

External Names

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-8

 The GNU assembler uses AT&T syntax for historical
reasons. Main differences:

Intel vs. GNU Syntax

Intel/Microsoft AT&T/GNU as

Operand order: op a,b a = a op b (dst first) b = a op b (dst last)

Memory address [baseregister+offset] offset(baseregister)

Instruction mnemonics mov, add, push, … movl, addl, pushl [operand size
is added to end]

Register names eax, ebx, ebp, esp, … %eax, %ebx, %ebp, %esp, …

Constants 17, 42 $17, $42

Comments ; to end of line # to end of line or /* … */

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-9

Generating .asm Code

 Suggestion: isolate the actual output
operations in a handful of routines
 Modularity & saves some typing

 Possibilities
// write code string s to .asm output

void gen(String s) { … }

// write “op src,dst” to .asm output

void genbin(String op, String src, String dst) { … }

// write label L to .asm output as “L:”

void genLabel(String L) { … }

 A handful of these methods should do it

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-10

A Simple Code Generation
Strategy

 Goal: quick „n dirty correct code, optimize later if time

 Traverse AST primarily in execution order and emit
code during the traversal
 May need to control the traversal from inside the visitor

methods, or have both bottom-up and top-down visitors

 Treat the x86 as a 1-register stack machine at first

 Alternative strategy: produce lower-level linear IR
and generate from that (after possible optimizations)
 Might be more ambitious than is reasonable for 10 weeks

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-11

x86 as a Stack Machine

 Idea: Use x86 stack for expression evaluation with
eax as the “top” of the stack

 Invariant: Whenever an expression (or part of one) is
evaluated at runtime, the result is in eax

 If a value needs to be preserved while another
expression is evaluated, push eax, evaluate, then pop
when needed
 Remember: always pop what you push

 Will produce lots of redundant, but correct, code

 Examples below follow code shape examples, but
with some details about where code generation fits

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-12

Example: Generate Code for
Constants and Identifiers

 Integer constants, say 17

gen(mov eax,17)

 leaves value in eax

 Variables (whether int, boolean, or
reference type)

gen(mov eax,[appropriate base register+
appropriate offset])

 also leaves value in eax

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-13

Example: Generate Code for
exp1 + exp1

 Visit exp1

 generates code to evaluate exp1 and put result in eax

 gen(push eax)

 generate a push instruction

 Visit exp2

 generates code for exp2; result in eax

 gen(pop edx)

 pop left argument into edx; cleans up stack

 gen(add eax,edx)

 perform the addition; result in eax

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-14

Example: var = exp; (1)

 Assuming that var is a local variable

 visit node for exp

 Generates code that leaves the result of
evaluating exp in eax

 gen(mov [ebp+offset of variable],eax)

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-15

Example: var = exp; (2)

 If var is a more complex expression
(object or array reference, for example)
 visit var

 gen(push eax)
 push reference to variable or object containing

variable onto stack

 visit exp

 gen(pop edx)

 gen(mov [edx+appropriate_offset],eax)

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-16

Example: Generate Code for
obj.f(e1,e2,…en)

 Visit en
 leaves argument in eax

 gen(push eax)
 … Repeat until all arguments pushed
 Visit obj

 leaves reference to object in eax
 Note: this isn‟t quite right if evaluating obj has side effects –

ignore for simplicity for now

 gen(mov ecx,eax)
 copy “this” pointer to ecx

 generate code to load method table pointer
 generate call instruction with indirect jump
 gen(add esp,numberOfBytesOfArguments)

 Pop arguments

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-17

Method Definitions

 Generate label for method

 Generate method prologue

 Visit statements in order

 Method epilogue will be generated as part
of each return statement (next)

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-18

Example: return exp;

 Visit exp; leaves result in eax where it
should be

 Generate method epilogue to unwind
the stack frame; end with ret
instruction

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-19

Control Flow: Unique Labels

 Needed: a String-valued method that
returns a different label each time it is
called (e.g., L1, L2, L3, …)
 Variation: a set of methods that generate

different kinds of labels for different
constructs (can really help readability of
the generated code)
 (while1, while2, while3, …; if1, if2, …; else1,

else2, …; fi1, fi2, … .)

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-20

Control Flow: Tests

 Recall that the context for compiling a
boolean expression is

 Jump target

 Whether to jump if true or false

 So visitor for a boolean expression
needs this information from parent
node

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-21

Example: while(exp) body

 Assuming we want the test at the
bottom of the generated loop…

 gen(jmp testLabel)

 gen(bodyLabel:)

 visit body

 gen(testLabel:)

 visit exp (condition) with target=bodyLabel
and sense=“jump if true”

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-22

Example exp1 < exp2

 Similar to other binary operators

 Difference: context is a target label and whether to
jump if true or false

 Code
 visit exp1

 gen(push eax)

 visit exp2

 gen(pop edx)

 gen(cmp eax,edx)

 gen(condjump targetLabel)
 appropriate conditional jump depending on sense of test

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-23

Boolean Operators

 && and ||

 Create label needed to skip around second
operand when appropriate

 Generate subexpressions with appropriate
target labels and conditions

 !exp

 Generate exp with same target label, but
reverse the sense of the condition

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-24

Join Points

 Loops and conditional statements have join points
where execution paths merge

 Generated code must ensure that machine state will
be consistent regardless of which path is taken to
reach a join point
 i.e., the paths through an if-else statement must not leave a

different number of bytes pushed onto the stack
 If we want a particular value in a particular register at a join

point, both paths must put it there, or we need to generate
additional code to get value in the right register

 With a simple 1-accumulator model of code
generation, this should generally be true without
needing extra work; with better use of registers this
becomes an issue

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-25

Bootstrap Program

 The bootstrap will be a tiny C program that
calls your compiled code as if it were an
ordinary C function

 It also contains some functions that compiled
code can call as needed

 Mini “runtime library”

 You can add to this if you like

 Sometimes simpler to generate a call to a newly written
library routine instead of generating in-line code –
implementor tradeoff

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-26

Example Bootstrap Program

#include <stdio.h>

extern void asm_main(); /* compiled code */

/* execute compiled program */

void main() { asm_main(); }

/* return next integer from standard input */

int get() { … }

/* write x to standard output */

void put(int x) { … }

/* return a pointer to a block of memory at least nBytes
large (or null if insufficient memory available) */

void * runtimealloc(int nBytes) { return malloc(nBytes); }

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-27

Interfacing to External Code

 Recall that the .asm file includes these declarations
at the top

public asm_main ; start of compiled static main

extern put:near,get:near,mjmalloc:near
; external C routines

 “public” means that the label is defined in the .asm
file and can be linked from external files
 Jargon: also known as an entry point

 “extern” declares labels used in the .asm file that
must be found in another file at link time
 “near” means in same segment (as opposed to multi-

segment MS-DOS programs of ancient times)

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-28

Main Program Label

 Compiler needs special handling for the
static main method
 Label must be the same as the one

declared extern in the C bootstrap program
and declared public in the .asm file

 asm_main used above
 Can be changed if you wish

 Why not “main”? (Hint: what is/where is the
real main function?)

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-29

Interfacing to “Library” code

 To call “behind the scenes” library
routines:

 Must be declared extern in generated code

 Call using normal C language conventions

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-30

System.out.println(exp)

 Can handle in an ad-hoc way
 (particularly since this is a “reserved word” in MiniJava)

<compile exp; result in eax>
push eax ; push parameter
call put ; call external put routine
add esp,4 ; pop parameter

 A more general solution if System.out were a real
class:
 Hand-code (in asm) classes to act as a bridge between

compiled code and the C runtime
 Put information about these classes in the symbol table at

compiler initialization
 Calls to these routines compile normally – no other special

case code needed in the compiler(!)

2/5/2008 © 2002-08 Hal Perkins & UW CSE M-31

And That‟s It…

 We‟ve now got enough on the table to
complete the compiler project

 Coming Attractions

 Lower-level IR

 Back end (instruction selection and
scheduling, register allocation)

 Middle (optimizations)

