
2/12/2008 © 2002-08 Hal Perkins & UW CSE O-1

CSE P 501 – Compilers

Instruction Scheduling

Hal Perkins

Winter 2008



2/12/2008 © 2002-08 Hal Perkins & UW CSE O-2

Agenda

 Instruction scheduling issues – latencies

 List scheduling



2/12/2008 © 2002-08 Hal Perkins & UW CSE O-3

Issues (1)

 Many operations have non-zero latencies
 Modern machines can issue several operations per 

cycle
 Want to take advantage of multiple function units on chip

 Loads & Stores may or may not block
 may be slots after load/store for other useful work



2/12/2008 © 2002-08 Hal Perkins & UW CSE O-4

Issues (2)

 Branch costs vary
 Branches on some processors have delay slots
 Modern processors have heuristics to predict whether 

branches are taken and try to keep pipelines full

 GOAL: Scheduler should reorder instructions to hide 
latencies, take advantage of multiple function units 
and delay slots, and help the processor effectively 
pipeline execution



2/12/2008 © 2002-08 Hal Perkins & UW CSE O-5

Some Idealized Latencies

Operation Cycles

LOAD 3

STORE 3

ADD 1

MULT 2

SHIFT 1

BRANCH 0 TO 8



2/12/2008 © 2002-08 Hal Perkins & UW CSE O-6

Example:  w = w*2*x*y*z;

 Simple schedule
1  LOAD  r1 <- w

4  ADD r1 <- r1,r1

5  LOAD r2 <- x

8  MULT r1 <- r1,r2

9  LOAD r2 <- y

12 MULT r1 <- r1,r2

13 LOAD r2 <- z

16 MULT r1 <- r1,r2

18 STORE w <- r1

21 r1 free

2 registers, 20 cycles

 Loads early
1 LOAD r1 <- w

2 LOAD r2 <- x

3 LOAD r3 <- y

4 ADD r1 <- r1,r1

5 MULT r1 <- r1,r2

6 LOAD r2 <- z

7 MULT r1 <- r1,r3

9 MULT r1 <- r1,r2

11 STORE w <- r1

14 r1 is free

3 registers, 13 cycles



2/12/2008 © 2002-08 Hal Perkins & UW CSE O-7

Instruction Scheduling

 Problem

 Given a code fragment for some machine and 
latencies for each operation, reorder to minimize 
execution time

 Constraints

 Produce correct code

 Minimize wasted cycles

 Avoid spilling registers

 Do this efficiently



2/12/2008 © 2002-08 Hal Perkins & UW CSE O-8

Precedence Graph

 Nodes n are operations 

 Attributes of each node 

 type – kind of operation

 delay – latency 

 If node n2 uses the result of node n1, 
there is an edge e = (n1,n2) in the 
graph



2/12/2008 © 2002-08 Hal Perkins & UW CSE O-9

Example Graph

 Code

a  LOAD  r1 <- w

b  ADD r1 <- r1,r1

c  LOAD r2 <- x

d  MULT r1 <- r1,r2

e  LOAD r2 <- y

f   MULT r1 <- r1,r2

g  LOAD r2 <- z

h  MULT r1 <- r1,r2

i   STORE w <- r1



2/12/2008 © 2002-08 Hal Perkins & UW CSE O-10

Schedules  (1)

 A correct schedule S maps each node n 
into a non-negative integer 
representing its cycle number, and
 S (n ) >= 0 for all nodes n (obvious)

 If (n1,n2) is an edge, then 
S(n1)+delay(n1) <= S(n2)

 For each type t there are no more 
operations of type t in any cycle than the 
target machine can issue



2/12/2008 © 2002-08 Hal Perkins & UW CSE O-11

Schedules  (2)

 The length of a schedule S, denoted 
L(S) is

L(S) = maxn ( S(n )+delay(n ) )

 The goal is to find the shortest possible 
correct schedule

 Other possible goals: minimize use of 
registers, power, space, …



2/12/2008 © 2002-08 Hal Perkins & UW CSE O-12

Constraints

 Main points
 All operands must be available

 Multiple operations can be ready at any given point

 Moving operations can lengthen register lifetimes

 Moving uses near definitions can shorten register lifetimes

 Operations can have multiple predecessors

 Collectively this makes scheduling NP-complete

 Local scheduling is the simpler case
 Straight-line code

 Consistent, predictable latencies



2/12/2008 © 2002-08 Hal Perkins & UW CSE O-13

Algorithm Overview

 Build a precedence graph P
 Compute a priority function over the nodes in 

P (typical: longest latency-weighted path)
 Use list scheduling to construct a schedule, 

one cycle at a time
 Use queue of operations that are ready
 At each cycle

 Chose a ready operation and schedule it
 Update ready queue

 Rename registers to avoid false dependencies 
and conflicts



2/12/2008 © 2002-08 Hal Perkins & UW CSE O-14

List Scheduling Algorithm

Cycle = 1;  Ready = leaves of P;  Active = empty;
while (Ready and/or Active are not empty)

if (Ready is not empty)
remove an op from Ready;
S(op) = Cycle;
Active = Active  op;

Cycle++;
for each op in Active

if (S(op) + delay(op) <= Cycle)
remove op from Active;
for each successor s of op in P

if (s is ready – i.e., all operands available)
add s to Ready



2/12/2008 © 2002-08 Hal Perkins & UW CSE O-15

Example

 Code

a  LOAD  r1 <- w

b  ADD r1 <- r1,r1

c  LOAD r2 <- x

d  MULT r1 <- r1,r2

e  LOAD r2 <- y

f   MULT r1 <- r1,r2

g  LOAD r2 <- z

h  MULT r1 <- r1,r2

i   STORE w <- r1



2/12/2008 © 2002-08 Hal Perkins & UW CSE O-16

Variations

 Backward list scheduling
 Work from the root to the leaves

 Schedules instructions from end to beginning of 
the block

 In practice, try both and pick the result that 
minimizes costs
 Little extra expense since the precedence graph 

and other information can be reused

 Global scheduling and loop scheduling
 Extend basic idea in more aggressive compilers


