
2/12/2008 © 2002-08 Hal Perkins & UW CSE P-1

CSE P 501 – Compilers

Register Allocation

Hal Perkins

Winter 2008

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-2

Agenda

 Register allocation constraints

 Top-down and bottom-up local
allocation

 Global allocation – register coloring

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-3

k

 Intermediate code typically assumes infinite
number of registers

 Real machine has k registers available

 Goals

 Produce correct code that uses k or fewer
registers

 Minimize added loads and stores

 Minimize space needed for spilled values

 Do this efficiently – O(n), O(n log n), maybe O(n2)

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-4

Register Allocation

 Task
 At each point in the code, pick the values

to keep in registers

 Insert code to move values between
registers and memory
 No additional transformations – scheduling

should have done its job

 Minimize inserted code, both dynamically
and statically

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-5

Allocation vs Assignment

 Allocation: deciding which values to
keep in registers

 Assignment: choosing specific registers
for values

 Compiler must do both

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-6

Basic Blocks

 A basic block is a maximal length segment of
straight-line code (i.e., no branches)

 Significance

 If any statement executes, they all execute

 Barring exceptions or other unusual circumstances

 Execution totally ordered

 Many techniques for improving basic blocks –
simplest and strongest methods

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-7

Local Register Allocation

 Transformation on basic blocks

 Produces decent register usage inside a
block

 Need to be careful of inefficiencies at
boundaries between blocks

 Global register allocation can do better,
but is more complex

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-8

Allocation Constraints

 Allocator typically won’t allocate all
registers to IR values

 Generally reserve some minimal set of
registers F used only for spilling (i.e.,
don’t dedicate to a particular value

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-9

Liveness

 A value is live between its definition
and use.

 Find definitions (x = …) and uses
(… = … x …)

 Live range is the interval from definition to
last use

 Can represent live range as an interval [i,j] in
the block

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-10

Top-Down Allocator

 Idea

 Keep busiest values in a dedicated registers

 Use reserved set, F, for the rest

 Algorithm

 Rank values by number of occurrences

 Allocate first k-F values to registers

 Add code to move other values between reserved
registers and memory

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-11

Bottom-Up Allocator

 Idea
 Focus on replacement rather than allocation

 Keep values used “soon” in registers

 Algorithm
 Start with empty register set

 Load on demand

 When no register available, free one

 Replacement
 Spill value whose next use is farthest in the future

 Prefer clean value to dirty value

 Sound familiar?

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-12

Bottom-Up Allocator

 Invented about once per decade

 Sheldon Best, 1955, for Fortran I

 Laslo Belady, 1965, for analyzing paging
algorithms

 William Harrison, 1975, ECS compiler work

 Chris Fraser, 1989, LCC compiler

 Vincenzo Liberatore, 1997, Rutgers

 Will be reinvented again, no doubt

 Many arguments for optimality of this

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-13

Global Register Allocation

 A standard technique is graph coloring
 Use control and dataflow graphs to derive

interference graph
 Nodes are virtual registers (the infinite set)
 Edge between (t1,t2) when t1 and t2 cannot be assigned to

the same register
 Most commonly, t1 and t2 are both live at the same time
 Can also use to express constraints about registers, etc.

 Then color the nodes in the graph
 Two nodes connected by an edge may not have same color
 If more than k colors are needed, insert spill code

 Disclaimer: this works great if there are “enough”
registers – not as good on x86 machines

Coloring by Simplification

 Linear-time approximation that
generally gives good results
1. Build: Construct the interference graph

2. Simplify: Color the graph by repeatedly
simplification

3. Spill: If simplify cannot reduce the graph
completely, mark some node for spilling

4. Select: Assign colors to nodes in the
graph

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-14

1. Build

 Construct the interference graph using
dataflow analysis to compute the set of
temporaries simultaneously live at each
program point

 Add an edge in the graph for each pair of
temporaries in the set

 Repeat for all program points

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-15

2. Simplify

 Heuristic: Assume we have K registers

 Find a node m with fewer than K neighbors

 Remove m from the graph. If the resulting
graph can be colored, then so can the original
graph (the neighbors of m have at most K-1
colors among them)

 Repeat by removing and pushing on a stack all
nodes with degree less than K
 Each simplification decreases other node degrees

– more simplifications possible

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-16

3. Spill

 If simplify stops because all nodes have
degree ≥ k, mark some node for spilling
 This node is in memory during execution

 Spilled node no longer interferes with
remaining nodes, reducing their degree.

 Continue by removing spilled node and
push on the stack (optimistic – hope that
spilled node does not interfer with
remaining nodes)

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-17

4. Select

 Assign nodes to colors in the graph:

 Start with empty graph

 Rebuild original graph by repeatedly
adding node from top of the stack

 (When we do this, there must be a color for it)

 When a potential spill node is popped it
may not be colorable (neighbors may have
k colors already). This is an actual spill –
no color assigned

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-18

5. Start Over

 If Select phase cannot color some node
(must be a potential spill node), add to the
program loads before each use and stores
after each definition

 Creates new temporaries with tiny live ranges

 Repeat from beginning

 Iterate until Simplify succeeds

 In practice a couple of iterations are enough

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-19

Complications

 Need to deal with irregularities in the
register set
 Some operations require dedicated

registers (idiv in x86, split address/data
registers in M68k and othres)

 Register conventions like function results,
use of registers across calls, etc.

 Model by precoloring nodes, adding
constraints in the graph

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-20

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-21

Coming Attractions

 Dataflow and Control flow analysis

 Overview of optimizations

