
3/11/2008 © 2002-08 Hal Perkins & UW CSE V-1

CSE P 501 – Compilers

Java Implementation – JVMs, JITs &c

Hal Perkins

Winter 2008

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-2

Agenda

 Java virtual machine architecture

 .class files

 Class loading

 Execution engines

 Interpreters & JITs – various strategies

 Exception Handling

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-3

Java Implementation
Overview

 Java compiler (javac et al) produces
machine-independent .class files
 Target architecture is Java Virtual Machine

(JVM) – simple stack machine

 Java execution engine (java)
 Loads .class files (often from libraries)

 Executes code
 Either interprets stack machine code or

compiles to native code (JIT)

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-4

JVM Architecture

 Abstract stack machine

 Implementation not required to use
JVM specification literally
 Only requirement is that execution of .class

files has specified effect

 Multiple implementation strategies
depending on goals
 Compilers vs interpreters

 Optimizing for servers vs workstations

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-5

JVM Data Types

 Primitive types

 byte, short, int, long, char, float, double,
boolean

 Reference types

 Non-generic only (more on this later)

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-6

JVM Runtime Data Areas (1)

 Semantics defined by the JVM
Specification
 Implementer may do anything that

preserves these semantics

 Per-thread data
 pc register

 Stack
 Holds frames (details below)

 May be a real stack or may be heap allocated

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-7

JVM Runtime Data Areas (2)

 Per-VM data – shared by all threads

 Heap – objects allocated here

 Method area – per-class data

 Runtime constant pool

 Field and method data

 Code for methods and constructors

 Native method stacks

 Regular C-like stacks or equivalent

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-8

Frames

 Created when method invoked; destroyed
when method completes

 Allocated on stack of creating thread

 Contents

 Local variables

 Operand stack for JVM instructions

 Reference to runtime constant pool

 Symbolic data that supports dynamic linking

 Anything else the implementer wants

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-9

Representation of Objects

 Implementer's choice

 JVM spec 3.7: “The Java virtual machine
does not mandate any particular internal
structure for objects”

 Likely possibilities

 Data + pointer to Class object

 Pair of pointers: one to heap-allocated data,
one to Class object

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-10

JVM Instruction Set

 Stack machine

 Byte stream

 Instruction format

 1 byte opcode

 0 or more bytes of operands

 Instructions encode type information

 Verified when class loaded

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-11

Instruction Sampler (1)

 Load/store

 Transfer values between local variables
and operand stack

 Different opcodes for int, float, double,
addresses

 Load, store, load immediate

 Special encodings for load0, load1, load2, load3
to get compact code for first few local vars

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-12

Instruction Sampler (2)

 Arithmetic
 Again, different opcodes for different types

 byte, short, char & boolean use int instructions

 Pop operands from operand stack, push
result onto operand stack

 Add, subtract, multiply, divide, remainder,
negate, shift, and, or, increment, compare

 Stack management
 Pop, dup, swap

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-13

Instruction Sampler (3)

 Type conversion

 Widening – int to long, float, double; long
to float, double, float to double

 Narrowing – int to byte, short, char;
double to int, long, float, etc.

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-14

Instruction Sampler (4)

 Object creation & manipulation

 New class instance

 New array

 Static field access

 Array element access

 Array length

 Instanceof, checkcast

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-15

Instruction Sampler (5)

 Control transfer

 Unconditional branch – goto, jsr (originally
used to implement finally blocks)

 Conditional branch – ifeq, iflt, ifnull, etc.

 Compound conditional branches - switch

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-16

Instruction Sampler (6)

 Method invocation

 invokevirtual

 invokeinterface

 invokespecial (constructors, superclass, private)

 invokestatic

 Method return

 Typed value-returning instructions

 Return for void methods

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-17

Instruction Sampler (7)

 Exceptions: athrow

 Synchronication

 Model is monitors (cf any standard
operating system textbook)

 monitorenter, monitorexit

 Memory model greatly cleaned up in Java 5

JVM and Generics

 Surprisingly, JVM has no knowledge of generic
types
 Not checked at runtime, not available for

reflection, etc.

 Compiler erases all generic type info
 Resulting code is pre-generics Java
 Objects are class Object in resulting code &

appropriate casts are added

 Only one instance of each type-erased class –
no code expansion/duplication (as in C++
templates)

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-18

Generics and Type Erasure

 Why did they do that?
 Compatibility: need to interop with existing code

that doesn’t use generics
 Existing non-generic code and new generic libraries, or
 Newly written code and older non-generic classes

 Tradeoffs: only reasonable way to add generics
given existing world, but
 Generic type information unavailable at runtime

(casts, instanceof, reflection)
 Can’t create new instance or array of generic type

 C#/CLR is different – generics reflected in CLR

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-19

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-20

Class File Format

 Basic requirements are tightly specified

 Implementations can extend
 Examples: data to support debugging or profiling

 JVMs must ignore extensions they don’t recognize

 Very high-level, symbolic, lots of metadata –
much of the symbol table/type/other attribute
data produced by a compiler front end
 Supports dynamic class loading

 Allows runtime compilation (JITs), etc.

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-21

Contents of Class Files (1)

 Starts with magic number (0xCAFEBABE)

 Constant pool - symbolic information
 String constants

 Class and interface names

 Field names

 All other operands and references in the class
file are referenced via a constant pool offset

 Constant pool is essentially a “symbol table”
for the class

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-22

Contents of Class Files (2)

 Class and superclass info
 Index into constant pool

 Interface information
 Index into constant pool for every interface this

class implements

 Fields declared in this class proper, but not
inherited ones (includes type info)

 Methods (includes type info)
 Includes byte code instructions for methods that

are not native or abstract

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-23

Constraints on Class Files (1)

 Long list; verified at class load time
  execution engine can assume valid, safe code

 Some examples of static constraints
 Target of each jump must be an opcode

 No jumps to the middle of an instruction or out of bounds

 Operands of load/store instructions must be valid index into
constant pool

 new is only used to create objects; anewarray is only used
to create arrays

 Only invokespecial can call a constructor

 Index value in load/store must be in bounds

 Etc. etc. etc.

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-24

Constraints on Class Files (2)

 Some examples of structural constraints
 Instructions must have appropriate type and number of

arguments

 If instruction can be executed along several paths, operand
stack must have same depth at that point along all paths

 No local variable access before being assigned a value

 Operand stack never exceeds limit on size

 No pop from empty operand stack

 Execution cannot fall off the end of a method

 Method invocation arguments must be compatible with
method descriptor

 Etc. etc. etc. etc.

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-25

Class Loaders

 One or more class loader (instances of
ClassLoader or its derived classes) is
associated with each JVM

 Responsible for loading the bits and preparing
them

 Different class loaders may have different
policies
 Eager vs lazy class loading, cache binary

representations, etc.

 May be user-defined, or the initial built-in
bootstrap class loader

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-26

Readying .class Files for
Execution

 Several distinct steps

 Loading

 Linking

 Verification

 Preparation

 Resolution of symbolic references

 Initialization

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-27

Loading

 Class loader locates binary representation of
the class and reads it (normally a .class file,
either in the local file system, or in a .jar file,
or on the net)

 Once loaded, a class is identified in the JVM
by its fully qualified name + class loader id
 A good class loader should always return the same

class object given the same name

 Different class loaders generally create different
class objects even given the same class name

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-28

Linking

 Combines binary form of a class or interface
type with the runtime state of the JVM

 Always occurs after loading
 Implementation has flexibility on timing

 Example: can resolve references to other classes
during verification (static) or only when actually
used (lazy)

 Requirement is that verification must precede
initialization, and semantics of language must be
respected
 No exceptions thrown at unexpected places, for example

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-29

Linking: Verification

 Checks that binary representation is
structurally correct
 Verifies static and structural constraints

(see above for examples)

 Goal is to prevent any subversion of the
Java type system

 May causes additional classes and
interfaces to be loaded, but not
necessarily prepared or verified

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-30

Linking: Preparation

 Creation of static fields & initialization to
default values

 Implementations can optionally
precompute additional information

 Method tables, for example

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-31

Linking: Resolution

 Check symbolic references and, usually,
replace with direct references that can
be executed more efficiently

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-32

Initialization

 Execute static initializers and initializers
for static fields

 Direct superclass must be initialized first

 Constructor(s) not executed here

 Done by a separate instruction as part of
new, etc.

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-33

Virtual Machine Startup

 Initial class specified in implementation-
defined manner
 Command line, IDE option panel, etc.

 JVM uses bootstrap class loader to load,
link, and initialize that class

 public static void main(String[])

method of initial class is executed to
drive all further execution

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-34

Execution Engines

 Basic Choices

 Interpret JVM bytecodes directly

 Compile bytecodes to native code, which
then executes on the native processor

 Just-In-Time compiler (JIT)

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-35

Hybrid Implementations

 Interpret or use very simple compiler most of
the time

 Identify “hot spots” by dynamic profiling
 Often per-method counter incremented on each

call
 Timer-based sampling, etc.

 Run optimizing JIT on hot code
 Data-flow analysis, standard compiler middle-end

optimizations, back-end instruction selection/
scheduling & register allocation

 Need to balance compilation cost against
responsiveness, expected benefits
 Different tradeoffs for desktop vs server JVMs

Memory Management

 JVM includes instructions for creating objects
and arrays, but not deleting

 Garbage collection used to reclaim no-longer
needed storage (objects, arrays, classes, …)

 Strong type system means GC can have exact
information
 .class file includes type information

 GC can have exact knowledge of layouts since
these are internal to the JVM

 More details next hour

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-36

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-37

Escape Analysis

 Another optimization based on
observation that many methods allocate
local objects as temporaries

 Idea: Compiler tries to prove that no
reference to a locally allocated object
can “escape”
 Not stored in a global variable or object

 Not passed as a parameter

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-38

Using Escape Analysis

 If all references to an object are local, it
doesn’t need to be allocated on the
heap in the usual manner

 Can allocate storage for it in local stack
frame

 Essentially zero cost

 Still need to preserve the semantics of
new, constructor, etc.

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-39

Exception Handling

 Goal: should have zero cost if no
exceptions are thrown

 Otherwise programmers will subvert
exception handling with the excuse of
“performance”

 Corollary: cannot execute any exception
handling code on entry/exit from
individual methods or try blocks

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-40

Implementing Exception
Handling

 Idea: Original compiler generates table of
exception handler information in the .class file
 Entries include start and end of section of code

array protected by this handler; argument type

 Order of entries is significant

 When exception is thrown, JVM searches
exception table for first matching argument
type that has a pc range that includes the
current execution location

Summary

 That’s the overview – many more details,
obviously, if you want to implement a JVM

 Primary reference: Java Virtual Machine
Specification, 2nd ed, A-W, 1999.
Available online:
http://java.sun.com/docs/books/jvms/

 Many additional research papers & studies
all over the web and in conference
proceedings

3/11/2008 © 2002-08 Hal Perkins & UW CSE V-41

