
3/11/2008 © 2002-08 Hal Perkins & UW CSE W-1

CSE P 501 – Compilers

Memory Management & Garbage Collection

Hal Perkins

Winter 2008

Agenda

 Dynamic memory – heap storage

 Manual storage management: malloc/free

 Reference counting

 Automatic garbage collection
 Classic mark/sweep collectors

 Copying and compacting collectors

 Generational garbage collection

 Incremental collection

 Garbage collection in hostile environments (C++)

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-2

References

 Appel, ch. 13

 Dragon book 2nd ed, sec. 7.4-7.8

 Garbage Collection by Jones & Lins,
Wiley, 1996

Oh, Garbage! Garbage!

They’re filling the heap with garbage!
(with apologies to Bill Steele and Pete Seeger)

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-3

Storage Classes (Review)

Most languages provide the following:
 Static

 Single copy; lifetime = program execution

 Automatic
 Allocated on procedure entry, released on exit;

lifetimes nest with procedure calls; can usually
be implemented with stacks

 Dynamic
 Allocated and freed at arbitrary times under

program control

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-4

Manual Storage Allocation

 malloc(size), new <type>
 Find a block of storage of (at least) the

requested size and return a pointer to it

 free(p), delete p
 Release the block of storage designated by

p – which must have been acquired with
malloc/new

 Presumably this block of storage will be
reused later by malloc/new if needed

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-5

Some Implications

 Allocated blocks must hold some (meta-)
information describing their size or type
 (Otherwise free/delete doesn’t know what its

got)

 Memory manager maintains a list of free
storage
 Requests satisfied from this list
 free/delete returns storage here
 Overall dynamic storage pool size increased by

memory requests from OS as needed

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-6

Performance Issues

 malloc/new search strategies:
 First-fit

 Best-fit

 free/delete:
 Should combine newly released blocks with

adjacent free blocks to avoid having lots of
small, mostly useless chunks (fragmentation)

 Can use tags at both ends of free blocks to
coalesce adjacent blocks in constant time

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-7

Multiple Free Lists

 Even if we coalesce free blocks, fragmentation
& free-list search is a performance problem

 One widely used solution – keep multiple free
lists with different size blocks
 Generally lots of fixed-size bins (~100 sizes) and

one very large bin for other requests

 Satisfy requests from appropriate list, or split a
block from the next larger list if needed (smallest-
first, best-fit)

 Best known example: Doug Lea’s malloc in glibc
(http://g.oswego.edu/dl/html/malloc.html)

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-8

But…

 Manual memory management is horribly
error-prone

 Memory leaks

 Dangling pointers

 Huge costs for debugging

 So, can we automate it?

 Yes – and we have been for 50 years!

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-9

Reference Counting

 Simple idea: add a field to each block of
storage keeping track of number of live
references to that block

 When executing p=q;

 Decrease reference count of *p

 If reference count is now 0, free the block!

 Increase reference count of *q

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-10

Reference Counting Evaluated

 Two serious problems as a general allocator
 Very high overhead on pointer assignment

(relative to cost of assignment)

 Circular structures will never have reference
counts of 0, even if no external references exist
 Solution is to break manually, but that’s bug-prone

 So not used as a general memory manager
 But is used in applications where these are not

drawbacks – e.g., reclaiming files in file systems

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-11

Automatic Garbage Collection

 Idea: any storage that is not reachable
by a chain of pointers from program
variables is garbage and should be
reclaimed

 General strategy
 Scan storage to find all live data

 Place any heap data not reached during
the scan on the free list (using the usual
coalescing strategies, etc.)

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-12

Liveness and Reachability

 Conservative approximation to liveness:
reachability

 Definition:
 All variables in the root set are reachable

 Root set = all pointers contained in: registers +
active stack frames + static variables

 All data that can be reached transitively
from some reachable variable is also
reachable

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-13

Mark-Sweep Garbage Collector

 Steps. Stop program execution, then

1. (Mark) Starting at the root set, find all
reachable data

2. (Sweep) Scan the heap sequentially and
place any data that is not marked as
reachable on the free list

 During this phase, reset the mark bits on all
marked data to prepare for the next collection

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-14

Mark-Sweep Implementation

 Mark phase

for each root r, dfs(r),

where: dfs(r) =

if r points into the heap

if record r is not marked

mark r

for each field f in r,

dfs(r.f)

 Sweep phase

p := beginning of heap

while p < end of heap

if record p is marked

unmark p

else

add record p to
freelist

p += size of record p

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-15

What the Compiler Must Tell
the Garbage Collector (1)

 Implicit is that, given a heap pointer, the
garbage collector can know the type (&
therefore size) of the referenced object,
and the offsets and types of its fields

 Often almost free – in object-oriented
systems, every object has a reference to a
class vtable anyway, so include type
information in that data structure

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-16

What the Compiler Must Tell
the Garbage Collector (2)

 Harder: the GC must be able to identify every
register, local variable, and temporary that
contains a heap reference – regardless of
where/when the program is stopped for
collection(!)

  Need a pointer map for each point of the
program where a GC might happen
 For sure, every point where allocation is requested
 But also need to worry about finding pointers on

the stack if a GC happens in the middle of a
function call (including pointers in registers saved
on the stack)

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-17

Storage for Mark Phase

 As described, mark phase uses a DFS of
the heap to find reachable storage

 But depth of recursion is potentially
bounded by size of the heap(!)

 And we’re out of storage – which is why we’re
doing a GC in the first place (!!)

 oops!!!

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-18

Pointer Reversal

 Idea: Once we follow a pointer, we
don’t need it again during the mark
phase
 So reverse each pointer as we encounter it

 Keeps track of return path in the heap graph

 Then as DFS function returns, flip the
pointers back to their original state

 Tricky to get right, but allows a mark
phase in (basically) constant space

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-19

Problems with Mark-Sweep

 Storage fragmentation
 Over time, active storage in the heap becomes

fragmented and spread out

 Pauses
 “Stop the world I want to collect” is not great

for animation, user interaction, real-time

 Overhead
 Lots of redundant work rescanning long-lived

objects

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-20

Copying Collectors

 Over time active storage becomes
fragmented

 Not great for virtual memory systems, cache

 Idea: During a GC, copy active objects to
contiguous storage

 Need to fix up pointers as we go

 Two versions: compress in place, or
semispaces – we’ll look at the later

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-21

Semi-Space Copying Collector

 Idea: Divide heap into two halves
 from-space contains the data to be collected/compacted
 to-space is initially empty

 Collection goes through from-space moving all reachable
objects to to-space
 When an object is moved, leave a forwarding pointer in its

location in from-space
 When we encounter a pointer p, if it references a forwarding

pointer, just update p, otherwise recursively copy the
referenced from-space object

 When finished, flip roles of from-space and to-space
 All the data is now in the newly copied/compressed from-

space, and to-space (the old from-space) is empty for the
next collection

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-22

Copying Collector Variables

 Root set (as before)
 GC pointer referencing to-space:

 scan – address of next object moved to to-
space but not yet scanned for pointers to
other objects

 next – address of next available location in to-
space for newly moved objects

 During the collection, scan chases next
until it catches up when the last reachable
object has been copied and processed

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-23

Cheney’s Algorithm (informal)

scan := next :=
start of to-space

for each root r
r := forward(r)

while scan < next
for each field f in

object at scan
scan.f :=

forward(scan.f)
scan += size of

record at scan

forward(p) 
if p points to to-space

then return p
else if *p is a forwarding

pointer to to-space
then return *p
else // copy record p.

for each field f in
record p

next.f := p.f
// store in from-space
// forward ptr to copy.
p := next
next += size of record p
return p

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-24

Would an Example Help?

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-25

Locality of Reference

 Cheny’s algorithm makes a breadth-first
copy, which tends to have poor locality
 (Think about what happens to a linked-list or

tree when it is copied)

 Depth-first copying would be great, but is
a mess (pointer reversal)

 Reasonable compromise: use breadth-first,
but if possible place a child of each copied
object near the object (semi-depth-first)

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-26

Now What?

 We’ve done a fair amount about
fragmentation, but still haven’t
addressed overhead or pauses

 Solutions

 Overhead: Generational Collection

 Pauses: Incremental Collection

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-27

Object Lifetimes

 Functional and object-oriented
programs, in particular, allocate lots of
short-lived and often small objects

 So if we can concentrate our GC efforts
on recently allocated objects, we’re
likely to reclaim a larger percentage of
what we scan

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-28

Generational Garbage
Collection

 Idea: divide the heap into “generations” G0, G1,
… (typically no more than 3 or 4 total).

 All objects in G1 are older than any objects in
G0; same is true for Gi+1 and Gi

 New objects are created in G0, often called the
nursery.

 Collect G0 frequently; other generations less so

 Objects in G0 that survive several collections
should be promoted to G1 (and so forth)

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-29

Generational GC

 Pretty much the same as mark-sweep
or copying collector

 Difference: when collecting G0, root set
also includes all objects in G1, G2, … .

 In general, when we collect Gi:

 Root set includes Gi+1, Gi+2, …

 Collect Gi and all younger generations back
to G0 at the same time

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-30

But That’s a Huge Root Set!

 Yes and no
 Yes, we need to worry about all references

from older objects to new ones
 No, there aren’t many of these

 So need an efficient strategy to detect
references to new objects stored in old
objects
 Preferably without having to scan the old

generations (which would loose most of the
efficiency)

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-31

Remembered Sets (1)

 To avoid searching old generations,
compiler must arrange for program to
remember pointers from old objects to
new ones

 Basic idea is for compiler to generate
code to flag objects or parts of storage
that might contain old objects with
pointers to new space

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-32

Remembered Sets (2)

 Common strategies:
 Compiler generates code to set a per-object flag

bit whenever it stores a pointer that might point to
a newer object; flagged objects are in the root set

 Compiled code sets a flag bit whenever an object
in some region of memory is changed (i.e., use
some higher-order bits of the object address); all
objects in that region are part of the root set

 Use paging hardware to mark pages with old
objects “read-only”; if a write is intercepted, mark
that page as part of the root set before letting the
write proceed

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-33

Incremental Collection

 Still haven’t solved the “stop the world I want to
collect” problem

 Solution: an exercise in concurrent programming.
Actors:
 Mutator – the user program that is altering memory

and creating garbage
 Collector – the GC algorithms

 These run in separate threads
 Basic idea is to be sure the mutator can proceed

even while the GC is doing work
 See the literature & don’t try to debug this stuff

without proving your theorems first

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-34

Garbage Collection for Unsafe
Languages

 What about C, C++, and others?

 Basic problem: program can compute
addresses

 A program can fabricate addresses from
arbitrary collections of bits: (int*)1234 = 17;

  we have no guarantees over where the
pointers are stored or what kinds of things
they point to – so GC can’t do a precise job

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-35

Conservative GC (1)

 But most C/C++ programs are not that
nasty, so we can do (a lot) better than
nothing at all

 Idea: Conservative GC assumes
anything that looks like a pointer to an
address in the heap might be one

 Memory manager keeps track of types
of objects it has allocated

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-36

Conservative GC (2)

 Root set is scanned to find any bit pattern that
looks like a pointer to the heap

 Data map is used to find starting address of
corresponding chunk of heap storage

 This is scanned under the assumption we know
its type

 This should find all reachable storage (under
reasonable sanity assumptions) but also gets
more
 Yet another conservative analysis

 Best known example: Boehm/Wieser collector

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-37

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-38

A Bit of Perspective

 Automatic garbage collection has been around
since LISP I in 1958

 Ubiquitous in the functional programming
community ever since

 Some appearance in mainstream languages over
the years (e.g., Ada in the 80s)

 Widely used in object-oriented languages (e.g.,
Smalltalk, self, many others)

 Finally hit the mainstream with Java, mid-90s

 Now conventional wisdom in many settings

