
3/11/2008 © 2002-08 Hal Perkins & UW CSE W-1

CSE P 501 – Compilers

Memory Management & Garbage Collection

Hal Perkins

Winter 2008



Agenda

 Dynamic memory – heap storage

 Manual storage management: malloc/free

 Reference counting

 Automatic garbage collection
 Classic mark/sweep collectors

 Copying and compacting collectors

 Generational garbage collection

 Incremental collection

 Garbage collection in hostile environments (C++)

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-2



References

 Appel, ch. 13

 Dragon book 2nd ed, sec. 7.4-7.8

 Garbage Collection by Jones & Lins, 
Wiley, 1996

Oh, Garbage! Garbage!

They’re filling the heap with garbage!
(with apologies to Bill Steele and Pete Seeger)

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-3



Storage Classes (Review)

Most languages provide the following:
 Static

 Single copy; lifetime = program execution

 Automatic
 Allocated on procedure entry, released on exit; 

lifetimes nest with procedure calls; can usually 
be implemented with stacks

 Dynamic
 Allocated and freed at arbitrary times under 

program control

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-4



Manual Storage Allocation

 malloc(size), new <type>
 Find a block of storage of (at least) the 

requested size and return a pointer to it

 free(p), delete p
 Release the block of storage designated by 

p – which must have been acquired with 
malloc/new

 Presumably this block of storage will be 
reused later by malloc/new if needed

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-5



Some Implications

 Allocated blocks must hold some (meta-) 
information describing their size or type
 (Otherwise free/delete doesn’t know what its 

got)

 Memory manager maintains a list of free 
storage
 Requests satisfied from this list
 free/delete returns storage here
 Overall dynamic storage pool size increased by 

memory requests from OS as needed

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-6



Performance Issues

 malloc/new search strategies:
 First-fit

 Best-fit

 free/delete:
 Should combine newly released blocks with 

adjacent free blocks to avoid having lots of 
small, mostly useless chunks (fragmentation)

 Can use tags at both ends of free blocks to 
coalesce adjacent blocks in constant time

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-7



Multiple Free Lists 

 Even if we coalesce free blocks, fragmentation 
& free-list search is a performance problem

 One widely used solution – keep multiple free 
lists with different size blocks
 Generally lots of fixed-size bins (~100 sizes) and 

one very large bin for other requests

 Satisfy requests from appropriate list, or split a 
block from the next larger list if needed (smallest-
first, best-fit)

 Best known example: Doug Lea’s malloc in glibc 
(http://g.oswego.edu/dl/html/malloc.html)

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-8



But…

 Manual memory management is horribly 
error-prone

 Memory leaks

 Dangling pointers

 Huge costs for debugging

 So, can we automate it?

 Yes – and we have been for 50 years!

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-9



Reference Counting

 Simple idea: add a field to each block of 
storage keeping track of number of live 
references to that block

 When executing  p=q;

 Decrease reference count of *p

 If reference count is now 0, free the block!

 Increase reference count of *q

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-10



Reference Counting Evaluated

 Two serious problems as a general allocator
 Very high overhead on pointer assignment 

(relative to cost of assignment)

 Circular structures will never have reference 
counts of 0, even if no external references exist
 Solution is to break manually, but that’s bug-prone

 So not used as a general memory manager
 But is used in applications where these are not 

drawbacks – e.g., reclaiming files in file systems

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-11



Automatic Garbage Collection

 Idea: any storage that is not reachable 
by a chain of pointers from program 
variables is garbage and should be 
reclaimed

 General strategy
 Scan storage to find all live data

 Place any heap data not reached during 
the scan on the free list (using the usual 
coalescing strategies, etc.)

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-12



Liveness and Reachability

 Conservative approximation to liveness: 
reachability

 Definition:
 All variables in the root set are reachable

 Root set = all pointers contained in: registers + 
active stack frames + static variables

 All data that can be reached transitively 
from some reachable variable is also 
reachable

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-13



Mark-Sweep Garbage Collector

 Steps.  Stop program execution, then

1. (Mark) Starting at the root set, find all 
reachable data

2. (Sweep) Scan the heap sequentially and 
place any data that is not marked as 
reachable on the free list

 During this phase, reset the mark bits on all 
marked data to prepare for the next collection

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-14



Mark-Sweep Implementation

 Mark phase

for each root r, dfs(r),

where: dfs(r) =

if r points into the heap

if record r is not marked

mark r

for each field f in r,

dfs(r.f)

 Sweep phase

p := beginning of heap

while p < end of heap

if record p is marked

unmark p

else

add record p to
freelist

p += size of record p

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-15



What the Compiler Must Tell 
the Garbage Collector (1)

 Implicit is that, given a heap pointer, the 
garbage collector can know the type (& 
therefore size) of the referenced object, 
and the offsets and types of its fields

 Often almost free – in object-oriented 
systems, every object has a reference to a 
class vtable anyway, so include type 
information in that data structure

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-16



What the Compiler Must Tell 
the Garbage Collector (2)

 Harder: the GC must be able to identify every 
register, local variable, and temporary that 
contains a heap reference – regardless of 
where/when the program is stopped for 
collection(!)

  Need a pointer map for each point of the 
program where a GC might happen
 For sure, every point where allocation is requested
 But also need to worry about finding pointers on 

the stack if a GC happens in the middle of a 
function call (including pointers in registers saved 
on the stack)

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-17



Storage for Mark Phase

 As described, mark phase uses a DFS of 
the heap to find reachable storage

 But depth of recursion is potentially 
bounded by size of the heap(!)

 And we’re out of storage – which is why we’re 
doing a GC in the first place (!!)

 oops!!!

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-18



Pointer Reversal

 Idea: Once we follow a pointer, we 
don’t need it again during the mark 
phase
 So reverse each pointer as we encounter it

 Keeps track of return path in the heap graph

 Then as DFS function returns, flip the 
pointers back to their original state

 Tricky to get right, but allows a mark 
phase in (basically) constant space

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-19



Problems with Mark-Sweep

 Storage fragmentation
 Over time, active storage in the heap becomes 

fragmented and spread out

 Pauses
 “Stop the world I want to collect” is not great 

for animation, user interaction, real-time

 Overhead
 Lots of redundant work rescanning long-lived 

objects

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-20



Copying Collectors

 Over time active storage becomes 
fragmented

 Not great for virtual memory systems, cache

 Idea: During a GC, copy active objects to 
contiguous storage

 Need to fix up pointers as we go

 Two versions: compress in place, or 
semispaces – we’ll look at the later

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-21



Semi-Space Copying Collector

 Idea: Divide heap into two halves
 from-space contains the data to be collected/compacted
 to-space is initially empty

 Collection goes through from-space moving all reachable 
objects to to-space
 When an object is moved, leave a forwarding pointer in its 

location in from-space
 When we encounter a pointer p, if it references a forwarding 

pointer, just update p, otherwise recursively copy the 
referenced from-space object

 When finished, flip roles of from-space and to-space
 All the data is now in the newly copied/compressed from-

space, and to-space (the old from-space) is empty for the 
next collection

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-22



Copying Collector Variables

 Root set (as before)
 GC pointer referencing to-space:

 scan – address of next object moved to to-
space but not yet scanned for pointers to 
other objects

 next – address of next available location in to-
space for newly moved objects

 During the collection, scan chases next 
until it catches up when the last reachable 
object has been copied and processed

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-23



Cheney’s Algorithm  (informal)

scan := next := 
start of to-space

for each root r
r := forward(r)

while scan < next
for each field f in 

object at scan
scan.f :=

forward(scan.f)
scan += size of 

record at scan

forward(p) 
if p points to to-space

then return p
else if *p is a forwarding 

pointer to to-space
then return *p
else // copy record p.

for each field f in 
record p

next.f := p.f
// store in from-space 
//    forward ptr to copy.
p := next
next += size of record p
return p

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-24



Would an Example Help?

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-25



Locality of Reference

 Cheny’s algorithm makes a breadth-first 
copy, which tends to have poor locality
 (Think about what happens to a linked-list or 

tree when it is copied)

 Depth-first copying would be great, but is 
a mess (pointer reversal)

 Reasonable compromise: use breadth-first, 
but if possible place a child of each copied 
object near the object (semi-depth-first)

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-26



Now What?

 We’ve done a fair amount about 
fragmentation, but still haven’t 
addressed overhead or pauses

 Solutions

 Overhead: Generational Collection

 Pauses: Incremental Collection

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-27



Object Lifetimes

 Functional and object-oriented 
programs, in particular, allocate lots of 
short-lived and often small objects

 So if we can concentrate our GC efforts 
on recently allocated objects, we’re 
likely to reclaim a larger percentage of 
what we scan

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-28



Generational Garbage 
Collection

 Idea: divide the heap into “generations” G0, G1, 
… (typically no more than 3 or 4 total).

 All objects in G1 are older than any objects in 
G0; same is true for Gi+1 and Gi

 New objects are created in G0, often called the 
nursery.

 Collect G0 frequently; other generations less so

 Objects in G0 that survive several collections 
should be promoted to G1 (and so forth)

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-29



Generational GC

 Pretty much the same as mark-sweep 
or copying collector

 Difference: when collecting G0, root set 
also includes all objects in G1, G2, … .

 In general, when we collect Gi:

 Root set includes Gi+1, Gi+2, …

 Collect Gi and all younger generations back 
to G0 at the same time

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-30



But That’s a Huge Root Set!

 Yes and no
 Yes, we need to worry about all references 

from older objects to new ones
 No, there aren’t many of these

 So need an efficient strategy to detect 
references to new objects stored in old 
objects
 Preferably without having to scan the old 

generations (which would loose most of the 
efficiency)

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-31



Remembered Sets (1)

 To avoid searching old generations, 
compiler must arrange for program to 
remember pointers from old objects to 
new ones

 Basic idea is for compiler to generate 
code to flag objects or parts of storage 
that might contain old objects with 
pointers to new space

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-32



Remembered Sets (2)

 Common strategies:
 Compiler generates code to set a per-object flag 

bit whenever it stores a pointer that might point to 
a newer object; flagged objects are in the root set

 Compiled code sets a flag bit whenever an object 
in some region of memory is changed (i.e., use 
some higher-order bits of the object address); all 
objects in that region are part of the root set

 Use paging hardware to mark pages with old 
objects “read-only”; if a write is intercepted, mark 
that page as part of the root set before letting the 
write proceed

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-33



Incremental Collection

 Still haven’t solved the “stop the world I want to 
collect” problem

 Solution: an exercise in concurrent programming.  
Actors:
 Mutator – the user program that is altering memory 

and creating garbage
 Collector – the GC algorithms

 These run in separate threads
 Basic idea is to be sure the mutator can proceed 

even while the GC is doing work
 See the literature & don’t try to debug this stuff 

without proving your theorems first

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-34



Garbage Collection for Unsafe 
Languages

 What about C, C++, and others?

 Basic problem: program can compute 
addresses

 A program can fabricate addresses from 
arbitrary collections of bits: (int*)1234 = 17;

  we have no guarantees over where the 
pointers are stored or what kinds of things 
they point to – so GC can’t do a precise job

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-35



Conservative GC (1)

 But most C/C++ programs are not that 
nasty, so we can do (a lot) better than 
nothing at all

 Idea: Conservative GC assumes 
anything that looks like a pointer to an 
address in the heap might be one

 Memory manager keeps track of types 
of objects it has allocated

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-36



Conservative GC (2)

 Root set is scanned to find any bit pattern that 
looks like a pointer to the heap

 Data map is used to find starting address of 
corresponding chunk of heap storage

 This is scanned under the assumption we know 
its type

 This should find all reachable storage (under 
reasonable sanity assumptions) but also gets 
more
 Yet another conservative analysis

 Best known example: Boehm/Wieser collector

3/11/2008 © 2002-08 Hal Perkins & UW CSE W-37



3/11/2008 © 2002-08 Hal Perkins & UW CSE W-38

A Bit of Perspective

 Automatic garbage collection has been around 
since LISP I in 1958

 Ubiquitous in the functional programming 
community ever since

 Some appearance in mainstream languages over 
the years (e.g., Ada in the 80s)

 Widely used in object-oriented languages (e.g., 
Smalltalk, self, many others)

 Finally hit the mainstream with Java, mid-90s

 Now conventional wisdom in many settings


