
CSE 582 Autumn 2002 Exam 11/26/02

Page 1 of 10

Name ________________________________

There are 8 questions worth a total of 100 points. Please budget your time so you get to all of the
questions. Keep your answers brief and to the point.

You may refer to the following reference materials:

 Course lecture slides & notes
 Your primary compiler textbook (presumably Cooper & Torczon, Appel,

or the dragon book)

 No other books or other materials.

Please wait to turn the page until you are told to begin.

CSE 582 Autumn 2002 Exam 11/26/02

Page 2 of 10

Score __________

_____ _____ _____ _____ _____ _____ _____ _____
 1 2 3 4 5 6 7 8

(Remainder of this page intentionally left blank. Questions start on the next page.)

CSE 582 Autumn 2002 Exam 11/26/02

Page 3 of 10

Question 1. (10 points) Regular expressions.
Describe the set of strings that are generated by the each of the following regular expressions.

a) (a | (bc)* d)+

b) ((0 | 1)* (2 | 3)+) | 0011

Question 2. (10 points) Draw a deterministic finite automata (DFA) that recognizes strings
generated by (a | (bc)* d)+. You do not need to use the formal algorithms for converting regular
expressions to a NFA then a DFA (although those algorithms might provide some insight into
what’s needed). Just draw a suitable diagram.

CSE 582 Autumn 2002 Exam 11/26/02

Page 4 of 10

Question 3. (10 points) A new programming language is being designed that includes decimal
numbers with no exponent. A decimal number has a period to separate the integer and fractional
parts of the number and must have at least one digit both before and after the decimal point.
Furthermore, a decimal number must not have any superfluous leading or trailing 0’s. Some
examples of legal decimal numbers are 3.14, 0.01, 17.0, 0.0, 123.00321. Some examples of
illegal decimal numbers are 00.0, .5, 17, 17., 003.01, 0.0012300 (this last example is illegal
because of the trailing 0’s; the 0 before the decimal point is required).

Write a regular expression (or collection of regular expressions) to generate legal decimal
numbers.

Question 4. (10 points) Suppose we have the following fragment of a Java program (including
some language operators that are not included in JFlat)

 while (xyzzy >= thing) // repeat until thing is big enough

 { x += y;
thing++; }

List in order the tokens that would be produced by a scanner when reading this input. (Use any
reasonable set of token names; just be sure they are clear and descriptive.)

CSE 582 Autumn 2002 Exam 11/26/02

Page 5 of 10

Question 5. (12 points) The standard programming language grammar for statements is
ambiguous because of the dangling else problem.

 stmt ::= if (expr) stmt | if (expr) stmt else stmt | while (expr) stmt | S

Give an unambiguous grammar that defines all of the above statements and correctly handles the
dangling else problem in the grammar. (Hint: introduce multiple productions for statements and
divide the productions into two categories: those that might end in an if statement with no else
clause – a “short if” – and those that definitely do not.)

CSE 582 Autumn 2002 Exam 11/26/02

Page 6 of 10

Question 6. (20 points) Grammars and LR parsing.

Consider the following grammar

 s ::= expr $
 expr ::= a

 | a subs
 subs ::= [expr]

 | [expr] subs

(In the first production, $ represents the end of file)

a) (3 points) What are the terminals and non-terminals of this grammar?

Terminals:

Non-terminals:

b) (3 points) Describe in English the set of strings generated by this grammar

(continued next page)

CSE 582 Autumn 2002 Exam 11/26/02

Page 7 of 10

Question 6. (Cont) LR parsing.

(Grammar repeated for reference)

 s ::= expr $
 expr ::= a | a subs
 subs ::= [expr] | [expr] subs

d) (12 points) Construct (draw) the LR(0) state machine for this grammar. You do not need to
write out the parser GOTO and ACTION tables, or compute FIRST and FOLLOW sets. Just
draw the state machine. Be sure to show the sets of items in each state.

e) (2 points) Is this grammar LR(0)? Why or why not?

CSE 582 Autumn 2002 Exam 11/26/02

Page 8 of 10

Question 7. (18 points) x86 hacking.

Consider the following C main program and function definition:

 int avg(int a, int b) {
 int ans;
 if (a == b) {
 return a/2;
 } else {
 ans = (a + b) / 2;
 return ans;
 }
 }

 void main() {
 int x;
 x = avg(17,42);
 }

(a) (5 points) Draw a picture showing the layouts of the stack frames for methods avg and
main. This should show the stack layout immediately after the prologue code of each function is
executed, just before execution of the first statement of the function body (i.e., after the stack
frame has been allocated). Be sure to show where registers ebp and esp point, and the location
and offsets from ebp of each parameter and local variable.

CSE 582 Autumn 2002 Exam 11/26/02

Page 9 of 10

Question 7. (cont)

(b) (13 points) Translate both functions avg and main into x86 assembly language. You do not
need to slavishly imitate the code shapes described in class – straightforward x86 code is fine as
long as it is correct, uses the registers properly, and obeys the x86 C language conventions for
stack frame layout, function calls, and so on. It will help us grade your answer if you include the
source code as comments near the corresponding x86 instructions. The C code is repeated here to
save some page flipping.

 int avg(int a, int b) { void main() {
 int ans; int x;
 if (a == b) { x = avg(17,42);
 return a/2; }
 } else {
 ans = (a + b) / 2;
 return ans;
 }
 }

CSE 582 Autumn 2002 Exam 11/26/02

Page 10 of 10

Question 8. (10 points) Code Shape

Several languages in the ALGOL family had a loop statement designed strictly for counting
loops. The syntax for a specific example is:

 for var := expr1 to expr2 by expr3 do statement

The semantics of the for statement are to repeatedly execute the statement that is the loop body
with var taking on values starting at expr1, continuing while the value in var is less than or equal
to expr2, and incrementing var by expr3 after each execution of the loop body. All three
expressions (expr1, expr2, and expr3) are evaluated only once before the first iteration of the
loop. If expr1 is initially greater than expr2 then the loop body is not executed. The final by
expr3 clause is optional; if it is omitted, by 1 is assumed instead.

Describe the code shape that could be used to implement this statement on the x86 processor, in
the same style that we’ve used to show code shapes for other programming language constructs.
Include the instructions and labels needed to implement the loop and be sure it is clear where the
compiled code for the various expressions and the loop body would appear. If you introduce any
temporary variables, be sure it is clear where they are stored (where in registers and/or memory).

