
 CSE P 501 Exam 12/3/09

 Sample Solution Page 1 of 11

Question 1. (12 points) For each of the following tasks, identify the stage of the
compiler that performs that task or detects the situation. Assume that the compiler is a
conventional one that generates native code (e.g., x86, MIPS, etc) for a language like
C++ or Java. If more than one stage of the compiler can always perform the check as
part of its usual processing, pick the earliest such stage. Use the following abbreviations
to identify the stages:

 scan – scanner
 parse – parser
 sem – static semantics
 opt – optimization

instr – instruction selection & scheduling
reg – register allocation
run – runtime (i.e., when the program is

executed after compilation)

_Parse__ Operator + is left associative

_Parse__ There is no <=> operator in the language

_Opt____ Move the computation x+y outside a loop since neither x nor y change inside

the loop

_Instr___ Optimize a sequence of additions to use the x86 lea (load effective address)

instruction instead of using several add instructions

_Reg___ Ensure that the function result is returned in the correct register (eax on x86)

_Sem____ int is followed by an identifier that is not previously declared in this scope

_Parse__ Curly brace groupings are properly balanced

_Run___ In the array reference, a[i], the subscript i is within the bounds of the array

_ Reg___ Insert load and store instructions to move values to and from memory if there

are not enough registers available to hold them.

_ Sem___ Determine whether a method in this class overrides one in some superclass

_ Sem*__ An unlabeled break statement appears inside a loop or switch statement.

_ Run___ In the assignment statement p=(t)q, the object referenced by q has type t.

*We also gave credit on this one if you answered “parse”. Typically the actions in
the parser are local and would not detect this, but it is possible that a parser with
sufficient context or sufficient processing could detect whether a break is used
appropriately so we allowed it.

 CSE P 501 Exam 12/3/09

 Sample Solution Page 2 of 11

Question 2. (14 points) In XML, much like HTML, a comment has the form

 <!-- anything not containing two adjacent dashes -->

In other words, a comment starts with the four-character sequence <!-- and ends with
the three-character sequence -->. Except at the beginning and end, the sequence --
cannot appear. So neither of the following lines is a valid comment:

 <!-- not a valid comment -- not in xml -->
 <!-- no good either, two many -'s at the end --->

(a) Give a regular expression or a set of regular expressions that generate legal XML
comments as described above. To simplify things you can assume that the character set
consists only of letters a-z, the characters <, >, !, -, and blank spaces. You do not need
to worry about other whitespace or about comments that span multiple lines. Use to
indicate blank space characters in your regular expressions if you need them.

 <!-- (-? [^-])* -->

 (b) Draw a DFA that accepts XML comments as described above and as generated by
the regular expression(s) in your answer to part (a) of this question. You should just give
a DFA that corresponds to your regular expression(s); you do not need to construct it
using any formal algorithms for deriving DFAs from regular expressions.

 < ! - - - - >

[^-]

[^-]

 CSE P 501 Exam 12/3/09

 Sample Solution Page 3 of 11

 Question 3. (15 points) The (almost) obligatory LR-parsing question. In the C
programming language, the name of a variable in a declaration can be preceded by one or
more *’s to indicate that the variable holds a pointer to a value rather than the value
itself. Here is a grammar for that fragment of C. The symbol id is a terminal symbol
meaning an identifier.

 0. decl′ ::= decl $
 1. decl ::= ptr id
 2. decl ::= id
 3. ptr ::= * ptr
 4. ptr ::= *

(a) (12 points) Draw the LR(0) state machine for this grammar. You do not need to write
out the parser tables or first/follow/nullable sets, although you can do that if it helps you
to answer part (b), below.

(b) (3 points) Is this grammar LR(0)? Why or why not?

No. The state marked ⊕ has a shift-reduce conflict.

decl' ::= . decl $
decl ::= . ptr id
decl ::= . id
ptr ::= . * ptr
ptr ::= . *

ptr ::= * . ptr
ptr ::= * .
ptr ::= . * ptr
ptr ::= . *

decl' ::= decl . $

decl ::= ptr . id

decl ::= id .

decl ::= ptr id .

ptr ::= * ptr .

decl

ptr

ptr

id

id

*

*

⊕

 CSE P 501 Exam 12/3/09

 Sample Solution Page 4 of 11

Question 4. (15 points) The other (mostly) obligatory question.

Consider the following C function:

 int xyzzy(int x, int y) {
 int n;
 n = x+1;
 if (y < 0)
 return n;
 else
 return xyzzy(y, n);
 }

(a) (4 points) Draw the stack frame for function xyzzy as it would appear in an x86
program using the standard C calling conventions. Your picture should show the layout
of function parameters, local variables, and the esp and ebp registers as they exist after
the function prologue has executed and has allocated the stack frame, but before any of
the statements in the body of the function have been executed. Be sure to show the
numeric offsets from register ebp to each parameter and local variable.

 +12 y

 +8 x

 return address

 ebp -> old ebp

 esp -> -4 n

(continued next page)

 CSE P 501 Exam 12/3/09

 Sample Solution Page 5 of 11

Question 4. (cont). (b) (11 points) Translate function xyzzy to x86 assembly
language. Your translation should not omit any statements, for example, it should not
optimize away the assignment to variable n, but otherwise it can be any reasonable x86
code that follows the C stack layout and calling conventions. You may use either the
Intel/Microsoft or GNU conventions for assembly language syntax and layout. (Just be
sure you pick one or the other and don’t mix them.)

Function definition repeated here for convenience:

 int xyzzy(int x, int y) {
 int n;
 n = x+1;
 if (y < 0)
 return n;
 else
 return xyzzy(y, n);
 }

xyzzy: push ebp ; function prologue
 mov ebp,esp
 sub esp,4
 mov eax,[ebp+8] ; n = x+1
 inc eax
 mov [ebp-4],eax;
 mov eax,[ebp+12] ; compare y < 0
 cmp eax,0
 jnl else ; jump false
 mov eax,[ebp-4] ; return n in eax
 jmp exit
else: mov eax,[ebp-4] ; call xyzzy(y,n)
 push eax ; push n
 mov eax,[ebp+12]
 push eax ; push y
 call xyzzy
 add esp,8 ; pop args, result in eax
exit: mov esp,ebp ; pop locals
 pop ebp ; restore old ebp
 ret ; return

[There are obviously many ways to do this; this is a simple version that mostly
translates each individual part of the function in isolation.]

 CSE P 501 Exam 12/3/09

 Sample Solution Page 6 of 11

Question 5. (15 points) To deal with security issues, several programming languages
have a notion of “tainted” data. The idea is that any value read from the outside
environment is marked as being tainted, i.e., potentially dangerous. The results of any
operations that use tainted data are also marked tainted. There is also a way of marking a
value as “not-tainted”, presumably to be used only after verifying that it is “safe”,
whatever that may mean.

For this problem, assume that the available operations in our intermediate language are:

 x = y ⊕ z binary operation: x is tainted if either y or z or both are tainted
 x = y assignment: x is tainted if y is tainted
 x = read() input: result x is tainted
 x = clean(y) clean: assign y to x, but mark x as not tainted

Now we would like to use dataflow analysis on this low-level code to discover tainted
variables. A variable that might contain a tainted value is marked as tainted. Only if we
know that the value is guaranteed not to be tainted do we mark it so.

To discover tainted variables we define the following sets for each basic block b:

 IN[b] = set of all possibly tainted variables on entry to block b
 OUT[b] = set of all possibly tainted variable on exit from block b
 GEN[b] = set of all variables marked tainted in block b and not cleaned before exit
 CLEAN[b]= set of all variables cleaned in block b and not later tainted before exit

The sets GEN[b] and CLEAN[b] can be computed once based on the static contents of
each block b. The IN[b] and OUT[b] sets need to be computed iteratively during the
analysis.

(a) Give appropriate dataflow equations for the IN and OUT sets for a block b in terms of
the IN, OUT, GEN, and CLEAN sets. As usual, these equations will involve some
combination of local information about the block itself as well as information about the
block’s predecessors and successors.

IN[b] = ∪x∈ preds(b) OUT[x]

OUT[b] = GEN[b] ∪ (IN[b] – CLEAN[b])

[The question could have been worded a bit better. It is mostly true that GEN[b]
can be computed once for each block. But it is a conditional function of the form “if
a or b is tainted than c is tainted”. So we know by looking at a block which
variables might be tainted depending on other variables, and that set of potentially
tainted variables does not change. Fortunately this didn’t seem to cause any real
problems answering the dataflow part of the question on the next page.]

 CSE P 501 Exam 12/3/09

 Sample Solution Page 7 of 11

Question 5. (cont) Now consider the following flowgraph.

Complete the following table using iterative dataflow analysis to identify the tainted
variables in the IN and OUT sets for each block in the above graph. You should first fill
in the GEN and CLEAN entries for each block, then iteratively solve for IN and OUT.
Choose whichever direction (forward or backward) you wish to solve the equations. You
should assume that there are no tainted variables in the IN set for block B1.

Block GEN CLEAN IN 1 OUT 1 IN 2 OUT 2 IN 3 OUT 3

B1 -- -- -- -- -- -- same same

B2 x -- -- x x, z x, z same same

B3 -- x x -- x, z z same same

B4 z*
(if x or y) -- x x, z x, z x, z same same

B5 y*
(if x) -- x, z x, y, z x, z x, y, z same same

*No penalty if these GEN sets were left empty.

y := 17 B1

x := read() B2

x := clean(x) B3

z := x + y B4

y := x + 1 B5

 CSE P 501 Exam 12/3/09

 Sample Solution Page 8 of 11

Question 6. (14 points) SSA. Consider the following flowgraph.

On the next page, redraw this flowgraph in SSA (static single-assignment) form.
Appropriate Φ-functions should be inserted as needed to merge versions of variables at
join points.

You do not need to compute dominators or use a specific algorithm to place the Φ-
functions, but be sure that you have Φ-functions where they are required. There is no
extra credit for inserting additional Φ-functions where they are not really needed,
although that won’t be penalized if it is done correctly.

i = 1
j = 2

i < 10

i = i + 1
j = j * 2

i < j

i = j

print i

T F

T
F

 CSE P 501 Exam 12/3/09

 Sample Solution Page 9 of 11

Question 6. (cont.) Draw your answer below.

i1 = 1
j1 = 2

i2 = Φ(i1, i3)
j2 = Φ(j1,j3)

i2 < 10

i3 = i2 + 1
j3 = j2 * 2

i2 < j2

i4 = j2

i5 = Φ(i2, i4)
print i5

T F

T
F

 CSE P 501 Exam 12/3/09

 Sample Solution Page 10 of 11

Question 7. (15 points) Suppose we have a hypothetical machine like the one from
lecture with the following instructions and latency times:

Operation Cycles
LOAD 3
STORE 3
ADD 1

Now, consider the following instructions that copy two consecutive words of storage.

 (a) LOAD r3 ← *r1
 (b) STORE *r2 ← r3
 (c) ADD r1 ← r1 + 1
 (d) ADD r2 ← r2 + 1
 (e) LOAD r4 ← *r1
 (f) STORE *r2 ← r4

The notation *rn for a LOAD or a STORE address means to use the address in register rn
as the source or destination of the memory operation. In a LOAD or STORE instruction,
the address register and, in the case of STORE, the source register, are free after 1 cycle
and can be changed by subsequent instructions without interfering with the LOAD or
STORE. However LOAD and STORE themselves require 3 cycles to finish, and the
result value fetched by a LOAD is not available until then.

(a) (6 points) Draw a precedence graph showing the dependencies between these
instructions. Label each node (instruction) in the graph with both the letter identifying
the instruction (a-f) and its latency – the number of cycles between the beginning of that
instruction and the end of the graph.

(continued next page)

a

c

e

f

d

b

8

7

6

3

5

4

 CSE P 501 Exam 12/3/09

 Sample Solution Page 11 of 11

Question 7 (cont.) (b) (6 points) Rewrite the instructions in the order they would be
chosen by forward list scheduling (i.e., choosing at each step an instruction that is not
dependent on any other instruction that has not yet been issued or is still executing). If
there is a tie at any step when selecting the best instruction to be scheduled next, pick one
of them arbitrarily. You do not need to show your bookkeeping or trace the algorithm,
although if you leave these clues around it could be useful if we need to figure out how to
assign partial credit.

Label each instruction with its letter from the original sequence on the previous page and
the cycle number on which it begins execution. The first instruction in the sequence
begins on cycle 1.

 1 (a) LOAD r3 ← *r1

 2 (c) ADD r1 ← r1 + 1

 3 (e) LOAD r4 ← *r1

 4 (b) STORE *r2 ← r3

 5 (d) ADD r2 ← r2 + 1

 6 (f) STORE *r2 ← r4

(c) (3 points) How many cycles were required by the original instruction schedule? How
many cycles are required by the new schedule you created in part (b)?

 Original: 12 cycles
 New: 8 cycles

