CSE P 501 - Compilers

LR Parser Construction Hal Perkins Autumn 2009

Agenda

- LR(0) state construction
- FIRST, FOLLOW, and nullable - Variations: SLR, LR(1), LALR

LR State Machine

- Idea: Build a DFA that recognizes handles
- Language generated by a CFG is generally not regular, but
- Language of handles for a CFG is regular
- So a DFA can be used to recognize handles
- Parser reduces when DFA accepts

Prefixes, Handles, \&c (review)

- If S is the start symbol of a grammar G,
- If $S=>^{*} \alpha$ then α is a sentential form of G
- γ is a viable prefix of G if there is some derivation $S=>^{*}{ }_{r m} \alpha A \mathrm{w}=>^{*}{ }_{r m} \alpha \beta \mathrm{w}$ and γ is a prefix of $\alpha \beta$.
- The occurrence of β in $\alpha \beta \mathrm{w}$ is a handle of $\alpha \beta \mathrm{w}$
- An item is a marked production (a . at some position in the right hand side)
- [A::= . $X Y$] [A::=X. Y] [$A::=X Y$.]

Building the LR(0) States

- Example grammar

$$
\begin{aligned}
& S^{\prime}::=S \$ \\
& S::=(L) \\
& S::=x \\
& L::=S \\
& L::=L, S
\end{aligned}
$$

- We add a production S^{\prime} with the original start symbol followed by end of file (\$)
- Question: What language does this grammar generate?

Start of LR Parse

0. $S^{\prime}::=S \$$
1. $S::=(L)$
2. $S::=x$
3. $L::=S$
4. $L::=L, S$

- Initially

- Stack is empty
- Input is the right hand side of S^{\prime}, i.e., $S \$$
- Initial configuration is [$\left.S^{\prime}::=. S \$\right]$
- But, since position is just before S, we are also just before anything that can be derived from S

Initial state

0. $\quad S^{\prime}::=S \$$
1. $S::=(L)$
2. $S::=x$
3. $L::=S$
4. $L::=L, S$

$$
\begin{aligned}
& S^{\prime}::=. S \$ \square \text { start } \\
& S::=.(L) \\
& S::=. \mathrm{x} \longleftrightarrow \text { completion }
\end{aligned}
$$

- A state is just a set of items
- Start: an initial set of items
- Completion (or closure): additional productions whose left hand side appears to the right of the dot in some item already in the state

Shift Actions (1)

0. $\quad S^{\prime}::=S \$$
1. $S::=(L)$
2. $S::=x$
3. $L::=S$
4. $L::=L, S$

$$
\begin{aligned}
& S^{\prime}::=. S \$ \\
& S::=\cdot(L) \\
& S::=. x
\end{aligned}
$$

- To shift past the x , add a new state with the appropriate item(s)
- In this case, a single item; the closure adds nothing
- This state will lead to a reduction since no further shift is possible

Shift Actions (2)

0. $\quad S^{\prime}::=S \$$
1. $S::=(L)$
2. $S::=x$
3. $L::=S$
4. $L::=L, S$

$$
\begin{aligned}
& S^{\prime}::=. S \$ \\
& S::=.(L) \\
& S::=. \mathrm{x}
\end{aligned} \quad\left(\begin{array}{l}
S::=(. L) \\
L: \because=. L, S \\
L: \because=. S \\
S: \because=.(L) \\
S: \because=. \mathrm{x}
\end{array}\right.
$$

- If we shift past the (, we are at the beginning of L
- the closure adds all productions that start with L, which requires adding all productions starting with S

Goto Actions

0. $\quad S^{\prime}::=S \$$
1. $S::=(L)$
2. $S::=x$
3. $L::=S$
4. $L::=L, S$
$S^{\prime}::=$. $S \$$
$S::=.(L)$
$S::=$. x

- Once we reduce S, we'll pop the rhs from the stack exposing the first state. Add a goto transition on S for this.

Basic Operations

- Closure (S)
- Adds all items implied by items already in S
- $\operatorname{Goto}(I, X)$
- I is a set of items
- X is a grammar symbol (terminal or nonterminal)
- Goto moves the dot past the symbol X in all appropriate items in set I

Closure Algorithm

- Closure (S) = repeat
for any item $[\mathrm{A}::=\alpha, X \beta]$ in S
for all productions $X::=\gamma$
add $[X::=, \gamma]$ to S
until S does not change return S

Goto Algorithm

- $\operatorname{Goto}(I, X)=$
set new to the empty set
for each item $[\mathrm{A}::=\alpha, X \beta]$ in I

$$
\operatorname{add}[\mathrm{A}::=\alpha X . \beta] \text { to new }
$$

return Closure (new)

- This may create a new state, or may return an existing one

LR(0) Construction

- First, augment the grammar with an extra start production $S^{\prime}::=S \$$
- Let T be the set of states
- Let E be the set of edges
- Initialize T to Closure ($\left[S^{\prime}::=. S \$\right]$)
- Initialize E to empty

LR(0) Construction Algorithm

repeat for each state I in T for each item $[A::=\alpha . X \beta]$ in I

Let new be Goto (I, X)
Add new to T if not present
Add $I \xrightarrow{X}$ new to E if not present
until E and T do not change in this iteration

- Footnote: For symbol \$, we don't compute goto (I, \$); instead, we make this an accept action.

LR(0) Reduce Actions

- Algorithm:

Initialize R to empty
for each state I in T
for each item $[A::=\alpha$.] in I
add $(I, A::=\alpha)$ to R

Building the Parse Tables (1)

- For each edge $I \xrightarrow{\mathrm{X}} J$
- if X is a terminal, put $\mathrm{s} j$ in column X , row I of the action table (shift to state j)
- If X is a non-terminal, put $\mathrm{g} j$ in column X , row I of the goto table

Building the Parse Tables (2)

- For each state I containing an item [$\left.S^{\prime}::=S . \$\right]$, put accept in column \$ of row I
- Finally, for any state containing [$A::=\gamma$.] put action r n in every column of row I in the table, where n is the production number

0. $S^{\prime}::=S \$$
 1. $S::=(L)$
 2. $S::=x$
 Example: States for
 3. $L::=S$
 4. $L::=L, S$

0. $S^{\prime}::=S \$$
 1. $S::=(L)$
 2. $S::=x$
 Example: Tables for
 3. $L::=S$
 4. $L::=L, S$

Where Do We Stand?

- We have built the $\operatorname{LR}(0)$ state machine and parser tables
- No lookahead yet
- Different variations of LR parsers add lookahead information, but basic idea of states, closures, and edges remains the same

A Grammar that is not $\mathrm{LR}(0)$

- Build the state machine and parse tables for a simple expression grammar

$$
\begin{aligned}
& S::=E \$ \\
& E::=T+E \\
& E::=T \\
& T::=\mathrm{x}
\end{aligned}
$$

LR(0) Parser for

$$
\begin{aligned}
& \text { 0. } S::=E \$ \\
& \text { 1. } E::=T+E \\
& \text { 2. } E::=T \\
& \text { 3. } T::=\mathrm{x}
\end{aligned}
$$

	x	+	S	E	T
1	s 5			g 2	G 3
2			acc		
3	r2	$\mathrm{s} 4, \mathrm{r} 2$	r 2		
4	s5			g6	G 3
5	r3	r3	r3		
6	r1	r1	r1		

- State 3 is has two possible actions on +
- shift 4, or reduce 2
- \therefore Grammar is not LR(0)

SLR Parsers

- Idea: Use information about what can follow a non-terminal to decide if we should perform a reduction
- Easiest form is SLR - Simple LR
- So we need to be able to compute $\operatorname{FOLLOW}(A)$ - the set of symbols that can follow A in any possible derivation
- But to do this, we need to compute FIRST (γ) for strings γ that can follow A

Calculating FIRST (γ)

- Sounds easy... If $\gamma=X Y Z$, then $\operatorname{FIRST}(\gamma)$ is $\operatorname{FIRST}(X)$, right?
- But what if we have the rule $X::=\varepsilon$?
- In that case, FIRST(γ) includes anything that can follow an X - i.e. $\operatorname{FOLLOW}(X)$

FIRST, FOLLOW, and nullable

- nullable (X) is true if X can derive the empty string
- Given a string γ of terminals and nonterminals, $\operatorname{FIRST}(\gamma)$ is the set of terminals that can begin strings derived from γ.
- FOLLOW (X) is the set of terminals that can immediately follow X in some derivation
- All three of these are computed together

Computing FIRST, FOLLOW, and nullable (1)

- Initialization
set FIRST and FOLLOW to be empty sets set nullable to false for all non-terminals set FIRST[a] to a for all terminal symbols a

Computing FIRST, FOLLOW, and nullable (2)

repeat

for each production $X:=Y_{1} Y_{2} \ldots Y_{k}$ if $Y_{1} \ldots Y_{\mathrm{k}}$ are all nullable (or if $k=0$) set nullable $[X]=$ true for each i from 1 to k and each j from $i+1$ to k if $Y_{1} \ldots Y_{i-1}$ are all nullable (or if $i=1$) add FIRST[Y_{i}] to FIRST[X] if $Y_{i+1} \ldots Y_{\mathrm{k}}$ are all nullable (or if $i=k$) add FOLLOW[X] to FOLLOW $\left[Y_{i}\right]$
if $Y_{i+1} \ldots Y_{\mathrm{j}-1}$ are all nullable (or if $\mathrm{i}+1=\mathrm{j}$) add FIRST $\left[Y_{\mathrm{j}}\right]$ to FOLLOW $\left[Y_{\mathrm{i}}\right]$ Until FIRST, FOLLOW, and nullable do not change

Example

- Grammar

$$
\begin{aligned}
& Z::=\mathrm{d} \\
& Z::=X Y Z \\
& Y::=\varepsilon \\
& Y::=\mathrm{c} \\
& X::=Y \\
& X::=\mathrm{a}
\end{aligned}
$$

Y
Z

x
FIRST FOLLOW
nullable

.

FRT

SLR Construction

- This is identical to LR(0) - states, etc., except for the calculation of reduce actions
- Algorithm:

Initialize R to empty
for each state I in T
for each item [$A::=\alpha$.] in I
for each terminal a in $\operatorname{FOLLOW}(A)$ add (I, a, $A::=\alpha$) to R

- i.e., reduce α to A in state I only on lookahead a

$$
\begin{aligned}
& \text { 0. } \mathrm{S}::=\mathrm{E} \$ \\
& \text { 1. } \mathrm{E}::=\mathrm{T}+\mathrm{E} \\
& \text { 2. } \mathrm{E}::=\mathrm{T} \\
& \text { 3. } \mathrm{T}::=\mathrm{x}
\end{aligned}
$$

On To LR(1)

- Many practical grammars are SLR
- $\mathrm{LR}(1)$ is more powerful yet
- Similar construction, but notion of an item is more complex, incorporating lookahead information

LR(1) Items

- An $\operatorname{LR}(1)$ item $[A::=\alpha \cdot \beta, a]$ is
- A grammar production ($A::=\alpha \beta$)
- A right hand side position (the dot)
- A lookahead symbol (a)
- Idea: This item indicates that α is the top of the stack and the next input is derivable from β a.
- Full construction: see the book

LR(1) Tradeoffs

- LR(1)
- Pro: extremely precise; largest set of grammars
- Con: potentially very large parse tables with many states

LALR(1)

- Variation of LR(1), but merge any two states that differ only in lookahead
- Example: these two would be merged

$$
\begin{aligned}
& {[A::=\mathrm{x}, \mathrm{a}]} \\
& {[A::=\mathrm{x} ., \mathrm{b}]}
\end{aligned}
$$

$\operatorname{LALR}(1)$ vs $\operatorname{LR}(1)$

- LALR(1) tables can have many fewer states than LR(1)
- LALR(1) may have reduce conflicts where LR(1) would not (but in practice this doesn't happen often)

Language Heirarchies

Coming Attractions

- LL(k) Parsing - Top-Down
- Recursive Descent Parsers
- What you can do if you need a parser in a hurry

