* CSE P 501 — Compilers

Implementing ASTs

(it Jawa)

Hal Perkins
Autumn 2009

10202009 @ 2002-00 Hal Perkire & Uw C5E

H-1

i Agenda

®)

P

= Representing ASTs as Java objects

= Parser actions

= Operations on ASTs
= Modularity and encapsulation

= Visitor pattern

= This is a general sketch of the ideas — more

details and sample code online for MiniJava

1072042009

(& 2002-09 Hal Perkire & LW CSE

H-2

Review: ASTs

= An Abstract Syntax Tree = AST:
captures the essential

structure of the '
program, without the @
extra concrete grammar =
details needed to guide

the parser P

id:n

= Example:

while(n >0){
h=n-1;

b

1072042009 (& 2002-09 Hal Perkire & LW CSE

H-3

=

i Representation in Java

= Basic idea is simple: use small classes as
records (or structs) to represent nodes in
the AST

= Simple data structures, not too smart

= But also use a bit of inheritance so we can
treat related nodes polymorphically

= Following slides sketch the ideas — not
necessarily what you’ll use in your project

1072042009 (& 2002-09 Hal Perkins & LW CSE H-4

AST Nodes - Sketch

// Base class of AST node hierarchy
— Ppublic abstract class ASTNode {
// constructors (for convenience)

Jint I'M

-

// operations

// string representation
\v public abstract String toString() ;]

// visitor methods, etc.

1072042009 (& 2002-09 Hal Perkire & LW CSE

H-5

Some Statement Nodes

/[Base class for all statements

public abstract class StmthNode extends ASTNode {@ }

/[while (exp) stmt

public class WhileNode extends Stmthode 4

™ public ExpPIToTE xp;

| public StmtNode stmt; e

- public WhileNode(ExpNode exp, StmthNode stmg {
this.exp = exp; this.stmt = stmt;

¥

A public String toString() {
return “While(” + exp + ") " + stmt;

L—
r

b

(Note on toString: most of the time we’'ll want to print the tree in a
separate traversal, so this is mostly useful for limited debugging)

1072042009 (& 2002-09 Hal Perkire & LW CSE

H-6

More Statement Nodes

/[if (exp) stmt [else stmt]
[public class IfNode extends StmtNode {
public ExpNode exp; p
public StmtNode thenstmt, elseStt;
public IfNode(ExpNode exp,Stmthode thenStmt, StmthNode elseStmt)
this.exp=exp; this.thenStmt=thenStmt;this.else Stmt=else Stmt;

1

r
public IfNode(ExpNode exp, StmthNode thenStmt) {
this(exp, thenStmt, null);

h
public String toString() { ... }
b
10/ 20/ 2009 © 2002-09 Hal Perkire & Uw CSE

{

H-7

Expressions

/[Base class for all expressions
public abstract class E;E[\I_gde extends ASTNode { ... }
/] expl op exp2 |
public class BinExp extends Exphode <
public ExpNode expl, exp2; // operands
public int op; - // operator (lexical token)

public BinExp(Token op, ExpNode exp1, ExpNode exp2) {
(this.op = op; this.expl = expl; this.exp2 = exp2;

b
public String toString() {
;
b
10f20/z009 (€ 200Z-09 Hal Perkirs & U CSE

H-g

More Expressions

/] Method call: id(arguments)
public class MethodExp extends ExpNode {
public ExpNode id; [/ method
public List a__r_g_gj_;# /[list of argument expressions
public BinExp(ExpMNode id, List args) {
this.id = id; this.args = args;

1

I
public String toString() {

h

1072042009 (& 2002-09 Hal Perkire & LW CSE

H-3

i &C
= These examples are meant to get across the

ideas, not necessarily to be used literally

= E.g., you might find it much better to have a
specific AST node for “argument list” that
encapsulates the List of arguments

= You'll also need nodes for class and method
declarations, parameter lists, and so forth
= Starter code on the web for MiniJava

1072042009 (& 2002-09 Hal Perkire & LW CSE H-10

10

Position Information in Nodes

= To produce useful error messages, it's helpful

to record the source program location
corresponding to a node in that node
= Most scanner/parser generators have a hook for
this, usually storing source position information in
tokens
= Included in the Minilava starter code we
distributed — useful to take advantage of it in your
code

1072042009 (& 2002-09 Hal Perkins & LW CSE H-11

11

=

A A7 ..r:;/
4

AST Generation

= Idea: each time the parser recognizes a
complete production, it produces as its
result an AST node (with links to the
subtrees that are the components of
the production in its instance variables)

= When we finish parsing, the result of
the goal symbol is the complete AST for

the program

1072042009 (& 2002-09 Hal Perkins & LW CSE H-12

12

Example: Recursive-Descent

AST Generation

/] parse while (exp) stmt

WhileNode whileStmt() {
/1 skip “while ("
getNextToken();
getNextToken();

/[parse exp
ExpNode condition = exp();

h

l"f Skip "L'l).f.i'
gethlextToken;

/[parse stmt
Stmthode body = stmt();

/{ return AST node for while
return
new WhileNode

(condition, bﬂy);

1020/ 2009 @ 2002-09 Hal Perkirs & W CSE H-13

13

i AST Generation in YACC/CUP

= A result type can be specified for each
item in the grammar specification

{ = Each parser rule can be annotated with

a semantic action, which is just a piece
of Java code that returns a value of the

result type

= 1he semantic action is executed when
the rule is reduced

1072042009 & 2002-09 Hal Perkire & LW CSE H-14

14

YACC/CUP Parser Specification

= Specification

non terminal StmtNode stmt, whileStmt:
s — i
non terminal ExpNode exp;
~ stmt:
| WHILE LPAREN exp: ‘e RPAREN stmt:s 5
{ RESULT = new Whllewode(e 5) }

e e il

"
i

= See the starter code for version with line numbers

1072042009 & 2002-09 Hal Perkire & LW CSE H-15

15

ANTLR/JavaCC/others

= Integrated tools like these provide tools to
generate syntax trees automatically

= Advantage: saves work, don't need to define
AST classes and write semantic actions

= Disadvantage: generated trees might not have
the right level of abstraction for what you
want to do

= For our project, do-it-yourself with CUP

= The (revised) starter code contains the AST
classes from the minijava web site

1072042009 (& 2002-09 Hal Perkire & LW CSE H-16

16

Operations on ASTS

= Once we have the AST, we may want to
= Print a readable dump of the tree (pretty printing)

= Do static semantic analysis
= Type checking
= Verify that things are declared and initialized properly
= Efc. etc, etc, efc,

s Perform optimizing transformations on the tree
= Generate code from the tree, or

s Generate another IR from the tree for further
processing

1072042009 (& 2002-09 Hal Perkire & LW CSE H-17

17

Where do the Operations Go?

= Pure "object-oriented” style
= Really smart AST nodes

= Each node knows how to perform every operation
on itself

public class WhileNode extends StmtiNode <
public WhileNode(...);
public type Check(...);
public StrengthReductionOptimize(...);
public generateCode(...);
public prettyPrint(...);

1072042009 (& 200E-09 Hal Perking & LW CSE H-15

18

Critique

This is nicely encapsulated — all details about
a WhileNode are hidden in that class

But it is poor modularity

What happens if we want to add a new
Optimize operation?

s Have to open up every node class

Furthermore, it means that the details of any
particular operation (optimization, type
checking) are scattered across the node
classes

1072042009 (& 200E-09 Hal Perking & LW CSE H-19

19

Modularity Issues

= Smart nodes make sense if the set of
operations is relatively fixed, but we
expect to need flexibility to add new
kinds of nodes

= Example: graphics system

=« Operations: draw, move, iconify, highlight

= Objects: textbox, scrollbar, canvas, menu,
dialog box, plus new objects defined as the
system evolves

1072042009 (& 2002-09 Hal Perkins & LW CSE H-20

20

i Modularity in a Compiler

= Abstract syntax does not change frequently
over time

= .. Kinds of nodes are relatively fixed
= As a compiler evolves, it is common to modify
or add operations on the AST nodes

= Want to modularize each operation (type check,
optimize, code gen) so its components are
together

= Want to avoid having to change node classes
when we modify or add an operation on the tree

1072042009 (& 2002-09 Hal Perkins & LW CSE H-21

21

Two Views of Modularity

A \’, £
_;:‘| _B) i 1?-"
o iy
HEEIHE
i R E
T
|I o7
\
oenT Lt x Wxl [x [ix
(=3i8) ft{ LA . I I |
while ‘x v fwl 1w [
if Jf w [e (e
Binop >\ A IEE

=
""-..._____‘_-_

| —

—

/

10202009

!

S

Crvenhi(s
a3 g' = g
22222
= (9_ =
* |
=
circle [X % X ¥ |X
text O B G I O I ¢
canvas | X [X X | X | X
g e I Y
.
lalog (X [X [X X |X

€ 2002-09 Hal Perkins & Uw CSE

H-22

22

cless Typeghech 1

i Visitor Pattern ,

-
= Idea: Package each operation in a separate class
= One operation method for each AST node kind

s Create one instance of this visitor class
= Sometimes called a "function object”

= Include a generic "accept visitor” method in
every node class

= [0 perform the operation, pass the “visitor
object” around the AST during a traversal

= This object contains separate methods to process each
AST node type

1072042009 (& 2002-09 Hal Perkins & LW CSE H-23

23

i Avoiding instanceof

s Next issue: we'd like to avoid huge if-elseif

-

nests to check the node type in the visitor
— void checkTypes(ASTNode p) {

if (p instanceof WhileNode) { ... }

else if (p instanceof IfNode) { ... }
_ else if (p instanceof BinExp) { ... } ...

"= Solution: Include an overloaded “visit”

method in each AST node type and get the

AST node to call back to the correct operation

for that node(!)
= "Double dispatch”

1072042009 & 2002-09 Hal Perkire & LW CSE

H-24

24

One More Issue

= We want to be able to add new
operations easily, so the nodes
shouldn’t know anything specific about
the actual visitor class(es)

= Solution: an abstract Visitor interface

= AST nodes include “accept visitor” method
for the interface

= Specific operations (type check, code gen)
are implementations of this interface

1072042009 (& 2002-09 Hal Perkire & LW CSE H-25

25

Actalude
VL vlel (‘”)

$ Visitor Interface

interface Visitor {
[// overload visit for each AST node type
public void visit(WhileNode s);
public void visit(IfNode s);
public void visit(BinExp e);

o f

s Aside: The result type can be whatever is
convenient, doesn’t have to be void

1072042009 (& 2002-09 Hal Perkire & LW CSE H-26

26

i Specific class TypeCheckVisitor

/| Perform type checks on the AST
public class TypeCheckVisitor implements Visitor {
e ————
jarboact 7] override operations for each node type
v public void visit(BinExp &) {

/[visit-subexpre sions — pass this visitor object
is9; e.exp2.accept(this);
ohal processing on e before or after

T do-ada
¥
public void visit(Wj_i_lgﬂode s){ ..}

public void visit(IfNode s) { ... }

h

1072042009 (& 2002-09 Hal Perkins & LW CSE

H-27

27

Add Visitor Method to AST
Nodes

= Add a new method to class ASTNode
(base class or interface describing all
AST nodes)

public abstract class ASTNode {

/[accept a visit from a Visitor object v
C public abstract void accept(Visitor v);

}

1020/ 2009 @ 2002-09 Hal Perkirs & W CSE H-28

28

ortasde bypt victs e yisi+ (w‘hl_#l!h‘{‘ Hypechech)

Override Accept Method in
Each Specific AST Node Class

= Example
public class WhileNode extends StmthNode {

/[accept a visit from a Visitor object v
public void accept(Visitor v) {
: v.visit(this); // dynamic dispatch on “this” (WhileNode)

b
= Key points
= Visitor object passed as a parameter to WhileNode

= WhileNode calls visit, which dispatches to visit(\While Node)
automatically — i.e., the correct method for this kind of node

1020/ 2009 @ 2002-09 Hal Perkirs & W CSE

H-29

29

Encapsulation

= A visitor object often needs to be able
to access state in the AST nodes

= .. May need to expose more state than we
might do to otherwise

= Overall a good tradeoff — better modularity

= (plus, the nodes are relatively simple data
objects anyway — not hiding much of anything)

1072042009 & 2002-09 Hal Perkire & LW CSE H-30

30

Composite Objects

= If the node contains references to subnodes, we
often visit them first (i.e., pass the visitor along in a
depth-first traversal of the AST)
public class WhileNode extends StmthNode {

—

;’}.accept a visit from Visitor object v
— public void accept(Visitor v) {

this.exp.accept(v);
this.stmt.accept(v);
v.visit(this);
-
h

= Other traversals can be added if needed

1072042009 (& 2002-09 Hal Perkire & LW CSE H-31

31

Visitor Actions

= A visitor function has a reference to the node
it is visiting (the parameter)
s .. can access subtrees via that node

s It's also possible for the visitor object to

contain local state (data), used to accumulate
information during the traversal

s Effectively “global data” shared by visit methods

public class TypeCheckVisitor extends NodeVisitor {
public void visit(WhileNode s) { ... }
public void visit(IfNode s) { ... }

private <local state>;

L
!

1072042009 (& 2002-09 Hal Perkins & LW CSE H-32

32

Responsibility for the Traversal

= Possible choices
(= The node objects (as done above)

= The visitor object (the visitor has access to
the node, so it can traverse any
substructure it wishes)

= Some sort of iterator object

= In a compiler, the first choice will
handle many common cases

1072042009 (& 2002-09 Hal Perkins & LW CSE H-33

33

References

+

i

= For Visitor pattern (and many others)

— Design Patterns: Elements of Reusable
Object-Oriented Software

Gamma, Helm, Johnson, and Vlissides
— Addison-Wesley, 1995

s Specific information for MiniJava AST
and visitors in Appel textbook & online

1072042009 (& 2002-09 Hal Perkire & LW CSE H-34

34

i Coming Attractions

= Static Analysis
= Type checking & representation of types

= Non-context-free rules (variables and types

must be declared, etc.)
= Symbol Tables
s & more

1072042009 (& 2002-09 Hal Perkins & LW CSE

H-35

35

