
10/27/2009 © 2002-09 Hal Perkins & UW CSE I-1

CSE P 501 – Compilers

Static Semantics

Hal Perkins

Autumn 2009

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-2

Agenda

 Static semantics

 Types

 Attribute grammars

 Representing types

 Symbol tables

 Note: this covers a superset of what we need
for MiniJava

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-3

What do we need to know to
compile this?

class C {

int a;

C(int initial) {

a = initial;

}

void setA(int val) {

a = val;

}

}

class Main {

public static void main(){

C c = new C(17);

c.setA(42);

}

}

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-4

Beyond Syntax

 There is a level of correctness that is not captured by
a context-free grammar
 Has a variable been declared?

 Are types consistent in an expression?

 In the assignment x=y, is y assignable to x?

 Does a method call have the right number and types of
parameters?

 In a selector p.q, is q a method or field of class instance p?

 Is variable x guaranteed to be initialized before it is used?

 Could p be null when p.q is executed?

 Etc. etc. etc.

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-5

What else do we need to
know to generate code?

 Where are fields allocated in an object?

 How big are objects? (i.e., how much storage
needs to be allocated by new)

 Where are local variables stored when a
method is called?

 Which methods are associated with an
object/class?
 In particular, how do we figure out which method

to call based on the run-time type of an object?

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-6

Types

 Classical roles of types in programming
languages

 Run-time safety

 Compile-time error detection

 Improved expressiveness (method or
operator overloading, for example)

 Provide information to optimizer

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-7

Semantic Analysis

 Main tasks:
 Extract types and other information from the

program

 Check language rules that go beyond the context-
free grammar

 Key data structures: symbol tables
 For each identifier in the program, record its

attributes (kind, type, etc.)

 Later: assign storage locations (stack frame
offsets) for variables; other annotations

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-8

Some Kinds of Semantic
Information

Information Generated From Used to process

Symbol tables Declarations Expressions,
statements

Type information Declarations,
expressions

Operations

Constant/variable
information

Declarations,
expressions

Statements,
expressions

Register & memory
locations

Assigned by compiler Code generation

Values Constants Expressions

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-9

Semantic Checks

 For each language construct we want to
know:

 What semantic rules should be checked: specified
by language definition (type compatibility, etc.)

 For an expression, what is its type (used to check
whether the expression is legal in the current
context)

 For declarations in particular, what information
needs to be captured to be used elsewhere

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-10

A Sampling of Semantic
Checks (0)

 Name use: id

 id has been declared and is in scope

 Inferred type of id is its declared type

 Memory location assigned by compiler

 Constant: v

 Inferred type and value are explicit

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-11

A Sampling of Semantic
Checks (1)

 Binary operator: exp1 op exp2

 exp1 and exp2 have compatible types

 Identical, or

 Well-defined conversion to appropriate types

 Inferred type is a function of the operator
and operands

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-12

A Sampling of Semantic
Checks (2)

 Assignment: exp1 = exp2

 exp1 is assignable (not a constant or expression)

 exp1 and exp2 have compatible types

 Identical, or

 exp2 can be converted to exp1 (e.g., char to int), or

 Type of exp2 is a subclass of type of exp1 (can be
decided at compile time)

 Inferred type is type of exp1

 Location where value is stored is assigned by the
compiler

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-13

A Sampling of Semantic
Checks (3)

 Cast: (exp1) exp2

 exp1 is a type

 exp2 either

 Has same type as exp1

 Can be converted to type exp1 (e.g., double to int)

 Is a superclass of exp1 (in general requires a runtime
check to verify that exp2 has type exp1)

 Inferred type is exp1

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-14

A Sampling of Semantic
Checks (4)

 Field reference exp.f

 exp is a reference type (class instance)

 The class of exp has a field named f

 Inferred type is declared type of f

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-15

A Sampling of Semantic
Checks (5)

 Method call exp.m(e1, e2, …, en)

 exp is a reference type (class instance)

 The class of exp has a method named m

 The method has n parameters

 Each argument has a type that can be
assigned to the associated parameter

 Inferred type is given by method
declaration (or is void)

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-16

A Sampling of Semantic
Checks (6)

 Return statement return exp; return;

 The expression can be assigned to a
variable with the declared type of the
method (if the method is not void)

 There’s no expression (if the method is
void)

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-17

Semantic Analysis

 Parser builds abstract syntax tree
 Now need to extract semantic information

and check constraints
 Can sometimes be done during the parse, but

often easier to organize as separate phases
 And some things can’t be done on the fly during the

parse, e.g., information about identifiers that are used
before they are declared (fields, classes)

 Information stored in symbol tables
 Generated by semantic analysis, used there and

later

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-18

Attribute Grammars

 A systematic way to think about
semantic analysis

 Sometimes used directly, but even if
not, AGs are a useful way to think
about the analysis

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-19

Attribute Grammars

 Idea: associate attributes with each node in
the (abstract) syntax tree

 Examples of attributes
 Type information
 Storage location
 Assignable (e.g., expression vs variable – lvalue vs

rvalue for C/C++ programmers)
 Value (for constant expressions)
 etc. …

 Notation: X.a if a is an attribute of node X

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-20

Attribute Example

 Assume that each node has an attribute .val

 AST and attribution for (1+2) * (6 / 2)

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-21

Inherited and Synthesized
Attributes

 Given a production X ::= Y1 Y2 … Yn

 A synthesized attribute is X.a is a
function of some combination of
attributes of Yi’s (bottom up)

 An inherited attribute Yi.b is a function
of some combination of attributes X.a
and other Yj.c (top down)

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-22

Informal Example of Attribute
Rules (1)

 Attributes for simple arithmetic
language

 Grammar

program ::= decl stmt

decl ::= int id;

stmt ::= exp = exp ;

exp ::= id | exp + exp | 1

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-23

Informal Example of Attribute
Rules (2)

 Attributes

 env (environment, e.g., symbol table);
synthesized by decl, inherited by stmt

 type (expression type); synthesized

 kind (variable [var, lvalue] vs value [val,
rvalue]); synthesized

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-24

Attributes for Declarations

 decl ::= int id;

 decl.env = {identifier, int, var}

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-25

Attributes for Program

 program ::= decl stmt

 stmt.env = decl.env

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-26

Attributes for Constants

 exp ::= 1

 exp.kind = val

 exp.type = int

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-27

Attributes for Expressions

 exp ::= id

 id.type = exp.env.lookup(id)

 exp.type = id.type

 exp.kind = id.kind

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-28

Attributes for Addition

 exp ::= exp1 + exp2

 exp1.env = exp.env

 exp2.env = exp.env

 error if exp1.type != exp2.type

 (or error if not combatable if rules are move
complex)

 exp.type = exp1.type

 exp.kind = val

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-29

Attribute Rules for Assignment

 stmt ::= exp1 = exp2;

 exp1.env = stmt.env

 exp2.env = stmt.env

 Error if exp2.type is not assignment
compatibile with exp1.type

 error if exp1.kind == val (must be var)

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-30

Example

 int x; x = x + 1;

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-31

Extensions

 This can be extended to handle
sequences of declarations and
statements

 Sequence of declarations builds up
combined environment with information
about all declarations

 Full environment is passed down to
statements and expressions

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-32

Observations

 These are equational (functional)
computations

 This can be automated, provided the attribute
equations are non-circular

 Problems

 Non-local computation

 Can’t afford to literally pass around copies of
large, aggregate structures like environments

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-33

In Practice

 Attribute grammars give us a good way of
thinking about how to structure semantic
checks

 Symbol tables will hold environment
information

 Add fields to AST nodes to refer to
appropriate attributes (symbol table entries
for identifiers, types for expressions, etc.)
 Put in appropriate places in inheritance tree –

most statements don’t need types, for example

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-34

Symbol Tables

 Map identifiers to
<type, kind, location, other properties>

 Operations

 Lookup(id) => information

 Enter(id, information)

 Open/close scopes

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-35

Aside:
Implementing Symbol Tables

 Topic in classical compiler course:
implementing a hashed symbol table

 These days: use the collection classes that
are provided with the standard language
libraries (Java, C#, C++, ML, Haskell, etc.)

 For Java:

 Map (HashMap) will solve most of the problems

 List (ArrayList) for ordered lists (parameters, etc.)

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-36

Symbol Tables for MiniJava (1)

 Global – Per Program Information

 Single global table to map class names to
per-class symbol tables

 Created in a pass over class definitions in AST

 Used in remaining parts of compiler to check
field/method names and extract information
about them

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-37

Symbol Tables for MiniJava (2)

 Global – Per Class Information

 1 Symbol table for each class

 1 entry for each method/field declared in the
class

 Contents: type information, public/private,
parameter types (for methods), storage locations
(later), etc.

 In full Java, multiple symbol tables (or more
complex symbol table) per class since methods
and fields can have the same names in a class

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-38

Symbol Tables for MiniJava (3)

 Global (cont)

 All global tables persist throughout the
compilation

 And beyond in a real Java or C# compiler…

 (e.g., symbolic information in Java .class files)

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-39

Symbol Tables for MiniJava (4)

 Local symbol table for each method

 1 entry for each local variable or parameter

 Contents: type information, storage locations
(later), etc.

 Needed only while compiling the method;
can discard when done

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-40

Beyond MiniJava

 What we aren’t dealing with: nested scopes

 Inner classes

 Nested scopes in methods – reuse of identifiers in
parallel or (if allowed) inner scopes

 Basic idea: new symbol table for inner
scopes, linked to surrounding scope’s table

 Look for identifier in inner scope; if not found look
in surrounding scope (recursively)

 Pop back up on scope exit

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-41

Engineering Issues

 In practice, want to retain O(1) lookup

 Use hash tables with additional information
to get the scope nesting right

 Scope entry/exit operations

 In multipass compilers, symbol table
info needs to persist after analysis of
inner scopes for use on later passes

 See a compiler textbook for details

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-42

Error Recovery

 What to do when an undeclared identifier is
encountered?

 Only complain once (Why?)

 Can forge a symbol table entry for it once you’ve
complained so it will be found in the future

 Assign the forged entry a type of “unknown”

 “Unknown” is the type of all malformed
expressions and is compatible with all other types
to avoid redundant error messages

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-43

“Predefined” Things

 Many languages have some
“predefined” items

 Include code in the compiler to
manually create symbol table entries for
these when the compiler starts up

 Rest of compiler generally doesn’t need to
know the difference between “predeclared”
items and ones found in the program

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-44

Type Systems

 Base Types

 Fundamental, atomic types

 Typical examples: int, double, char

 Compound/Constructed Types

 Built up from other types (recursively)

 Constructors include arrays, records/
structs/classes, pointers, enumerations,
functions, modules, …

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-45

Type Representation

 Create a shallow class hierarchy

abstract class Type { … } // or interface

class ClassType extends Type { … }

class BaseType extends Type { … }

 Should not need too many of these

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-46

Base Types

 For each base type (int, boolean, others in other
languages), create a single object to represent it
 Symbol table entries and AST nodes for expressions refer to

these to represent type info

 Usually create at compiler startup

 Useful to create a “void” type object to tag functions
that do not return a value (if you implement these)

 Also useful to create an “unknown” type object for
errors
 (Having “void” and “unknown” type objects reduces the

need for special case code for these in various places.)

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-47

Compound Types

 Basic idea: represent with a “type
constructor” object that refers to
component types

 Limited number of these – correspond
directly to type constructors in the
language (record/struct, array, function,…)

 A compound type is a graph

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-48

Class Types

 class Id { fields and methods }
class ClassType extends Type {

Type baseClassType; // ref to base class

Map fields; // type info for fields

Map methods; // type info for methods

}

 (Note: may not want to do this literally, depending on how
class symbol tables are represented; i.e., class symbol tables
might be useful as the representation of the class type.)

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-49

Array Types

 For regular Java this is simple: only
possibility is # of dimensions and
element type

class ArrayType extends Type {

int nDims;

Type elementType;

}

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-50

Array Types for Pascal &c.

 Pascal allows arrays to be indexed by
any discrete type

 array[indexType] of elementType

 Element type can be any other type,
including an array

class GeneralArrayType extends Type {

Type indexType;

Type elementType;

}

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-51

Methods/Functions

 Type of a method is its result type plus an
ordered list of parameter types

class MethodType extends Type {

Type resultType; // type or “void”

List parameterTypes;

}

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-52

Type Equivalance

 For base types this is simple

 Types are the same if they are identical

 Normally there are well defined rules for
coercions between arithmetic types

 Compiler inserts these automatically or when
requested by programmer (casts)

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-53

Type Equivalence for
Compound Types

 Two basic strategies
 Structural equivalence: two types are the

same if they are the same kind of type and
their component types are equivalent,
recursively

 Name equivalence: two types are the same
only if they have the same name, even if
their structures match

 Different language design philosophies

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-54

Type Equivalence and
Inheritance

 Suppose we have
class Base { … }
class Extended extends Base { … }

 A variable declared with type Base has a
compile-time type of Base

 During execution, that variable may refer to
an object of class Base or any of its
subclasses like Extended (or can be null,
which is compatible with all class types)
 Sometimes called the runtime type

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-55

Useful Compiler Functions

 Create a handful of methods to decide
different kinds of type compatibility:
 Types are identical

 Type t1 is assignment compatibile with t2

 Parameter list is compatible with types of
expressions in the call

 Normal modularity reasons: isolates these
decisions in one place and hides the actual
type representation from the rest of the
compiler

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-56

Implementing Type Checking
for MiniJava

 Create multiple visitors for the AST

 First passe(s): gather information
 Collect global type information for classes

 Could do this in one pass, or might want to do one
pass to collect class information, then a second
one to collect per-class information about fields,
methods

 Next set of passes: go through method
bodies to check types, other semantic
constraints

10/27/2009 © 2002-09 Hal Perkins & UW CSE I-57

Coming Attractions

 Need to start thinking about translating to
object code (actually x86 assembly language,
the default for this project)

 Next:

 x86 overview (as a target for simple compilers)

 Runtime representation of classes, objects, data,
and method stack frames

 Assembly language code for higher-level language
statements

