
11/3/2009 © 2002-09 Hal Perkins & UW CSE M-1

CSE P 501 – Compilers

Running MiniJava
Basic Code Generation and Bootstrapping

Hal Perkins

Autumn 2009

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-2

Agenda

 Enough to get a working project

 Assembler source file format

 A very basic code generation strategy

 Interfacing with the bootstrap program

 Implementing the system interface

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-3

What We Need

 To run a MiniJava program

 Space needs to be allocated for a stack
and a heap

 ESP and other registers need to have
sensible initial values

 We need some way to allocate storage
(new) and communicate with the outside
world

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-4

Bootstraping from C

 Idea: take advantage of the existing C
runtime library

 Use a small C main program to call the
MiniJava main method as if it were a C
function

 C‟s standard library provides the execution
environment and we can call C functions from
compiled code for I/O, malloc, etc.

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-5

 Here is a skeleton for the .asm file to be produced by
MiniJava compilers (MASM syntax)

.386 ; use 386 extensions

.model flat,c ; use 32-bit flat address space with
; C linkage conventions for
; external labels

public asm_main ; start of compiled static main
extern put:near,get:near,mjmalloc:near ; external C routines
.code
;; generated code repeat .code/.data as needed
.data
;; generated method tables
…
end

Assembler File Format

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-6

 GNU syntax is roughly the same

.text # code segment

.globl asm_main # start of compiled static main
;; generated code repeat .code/.data as needed
.data
;; generated method tables # repeat .text/.data as needed
…
end

GNU Assembler File Format

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-7

 In a unix enviornment, an external symbol is used
as-is

 In Windows, the convention is that an external
symbol xyzzy appears in the asm code as _xyzzy
(leading underscore)
 True in both VS masm and gnu assembler under

cygwin
 Also true on Intel OS X systems?

 You should adapt to whatever environment
you‟re using

External Names

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-8

 The GNU assembler uses AT&T syntax for historical
reasons. Main differences:

Intel vs. GNU Syntax

Intel/Microsoft AT&T/GNU as

Operand order: op a,b a = a op b (dst first) b = a op b (dst last)

Memory address [baseregister+offset] offset(baseregister)

Instruction mnemonics mov, add, push, … movl, addl, pushl [operand size
is added to end]

Register names eax, ebx, ebp, esp, … %eax, %ebx, %ebp, %esp, …

Constants 17, 42 $17, $42

Comments ; to end of line # to end of line or /* … */

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-9

Generating .asm Code

 Suggestion: isolate the actual compiler output
operations in a handful of routines
 Modularity & saves some typing

 Possibilities
// write code string s to .asm output

void gen(String s) { … }

// write “op src,dst” to .asm output

void genbin(String op, String src, String dst) { … }

// write label L to .asm output as “L:”

void genLabel(String L) { … }

 A handful of these methods should do it

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-10

A Simple Code Generation
Strategy

 Goal: quick „n dirty correct code, optimize later if time

 Traverse AST primarily in execution order and emit
code during the traversal
 May need to control the traversal from inside the visitor

methods, or have both bottom-up and top-down visitors

 Treat the x86 as a 1-register stack machine at first

 Alternative strategy: produce lower-level linear IR
and generate from that (after possible optimizations)
 Usually more ambitious than is reasonable for 10 weeks

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-11

x86 as a Stack Machine

 Idea: Use x86 stack for expression evaluation with
eax as the “top” of the stack

 Invariant: Whenever an expression (or part of one) is
evaluated at runtime, the result is in eax

 If a value needs to be preserved while another
expression is evaluated, push eax, evaluate, then pop
when needed
 Remember: always pop what you push

 Will produce lots of redundant, but correct, code

 Examples below follow code shape examples, but
with some details about where code generation fits

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-12

Example: Generate Code for
Constants and Identifiers

 Integer constants, say 17

gen(mov eax,17)

 leaves value in eax

 Variables (whether int, boolean, or
reference type)

gen(mov eax,[appropriate base register+
appropriate offset])

 also leaves value in eax

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-13

Example: Generate Code for
exp1 + exp1

 Visit exp1

 generates code to evaluate exp1 and put result in eax

 gen(push eax)

 generate a push instruction

 Visit exp2

 generates code for exp2; result in eax

 gen(pop edx)

 pop left argument into edx; cleans up stack

 gen(add eax,edx)

 perform the addition; result in eax

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-14

Example: var = exp; (1)

 Assuming that var is a local variable

 visit node for exp

 Generates code that leaves the result of
evaluating exp in eax

 gen(mov [ebp+offset of variable],eax)

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-15

Example: var = exp; (2)

 If var is a more complex expression
(object or array reference, for example)
 visit var

 gen(push eax)
 push reference to variable or object containing

variable onto stack

 visit exp

 gen(pop edx)

 gen(mov [edx+appropriate_offset],eax)

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-16

Example: Generate Code for
obj.f(e1,e2,…en)

 Visit en
 leaves argument in eax

 gen(push eax)
 … Repeat until all arguments pushed
 Visit obj

 leaves reference to object in eax
 Note: this isn‟t quite right if evaluating obj has side effects –

ignore for simplicity for now

 gen(mov ecx,eax)
 copy “this” pointer to ecx

 generate code to load method table pointer
 generate call instruction with indirect jump
 gen(add esp,numberOfBytesOfArguments)

 Pop arguments

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-17

Method Definitions

 Generate label for method

 Generate method prologue

 Visit statements in order

 Method epilogue will be generated as part
of each return statement (next)

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-18

Example: return exp;

 Visit exp; leaves result in eax where it
should be

 Generate method epilogue to unwind
the stack frame; end with ret
instruction

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-19

Control Flow: Unique Labels

 Needed: a String-valued method that
returns a different label each time it is
called (e.g., L1, L2, L3, …)
 Variation: a set of methods that generate

different kinds of labels for different
constructs (can really help readability of
the generated code)
 (while1, while2, while3, …; if1, if2, …; else1,

else2, …; fi1, fi2, … .)

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-20

Control Flow: Tests

 Recall that the context for compiling a
boolean expression is

 Jump target

 Whether to jump if true or false

 So visitor for a boolean expression
needs this information from parent
node

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-21

Example: while(exp) body

 Assuming we want the test at the
bottom of the generated loop…

 gen(jmp testLabel)

 gen(bodyLabel:)

 visit body

 gen(testLabel:)

 visit exp (condition) with target=bodyLabel
and sense=“jump if true”

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-22

Example exp1 < exp2

 Similar to other binary operators

 Difference: context is a target label and whether to
jump if true or false

 Code
 visit exp1

 gen(push eax)

 visit exp2

 gen(pop edx)

 gen(cmp eax,edx)

 gen(condjump targetLabel)
 appropriate conditional jump depending on sense of test

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-23

Boolean Operators

 && and ||

 Create label needed to skip around second
operand when appropriate

 Generate subexpressions with appropriate
target labels and conditions

 !exp

 Generate exp with same target label, but
reverse the sense of the condition

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-24

Join Points

 Loops and conditional statements have join points
where execution paths merge

 Generated code must ensure that machine state will
be consistent regardless of which path is taken to
reach a join point
 i.e., the paths through an if-else statement must not leave a

different number of bytes pushed onto the stack
 If we want a particular value in a particular register at a join

point, both paths must put it there, or we need to generate
additional code to get value in the right register

 With a simple 1-accumulator model of code
generation, this should generally be true without
needing extra work; with better use of registers this
becomes an issue

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-25

Bootstrap Program

 The bootstrap will be a tiny C program that
calls your compiled code as if it were an
ordinary C function

 It also contains some functions that compiled
code can call as needed

 Mini “runtime library”

 You can add to this if you like

 Sometimes simpler to generate a call to a newly written
library routine instead of generating in-line code –
implementor tradeoff

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-26

Example Bootstrap Program

#include <stdio.h>

extern void asm_main(); /* compiled code */

/* execute compiled program */

void main() { asm_main(); }

/* return next integer from standard input */

int get() { … }

/* write x to standard output */

void put(int x) { … }

/* return a pointer to a block of memory at least nBytes
large (or null if insufficient memory available) */

void * runtimealloc(int nBytes) { return malloc(nBytes); }

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-27

Interfacing to External Code

 Recall that the .asm file includes these declarations
at the top

public asm_main ; start of compiled static main

extern put:near,get:near,mjmalloc:near
; external C routines

 “public” means that the label is defined in the .asm
file and can be linked from external files
 Jargon: also known as an entry point

 “extern” declares labels used in the .asm file that
must be found in another file at link time
 “near” means in same segment (as opposed to multi-

segment MS-DOS programs of ancient times)

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-28

Main Program Label

 Compiler needs special handling for the
static main method
 Label must be the same as the one

declared extern in the C bootstrap program
and declared public in the .asm file

 asm_main used above
 Can be changed if you wish

 Why not “main”? (Hint: what is / where is the
real main function?)

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-29

Interfacing to “Library” code

 To call “behind the scenes” library
routines:

 Must be declared extern in generated code

 Call using normal C language conventions

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-30

System.out.println(exp)

 Can handle in an ad-hoc way
 (particularly since this is a “reserved word” in MiniJava)

<compile exp; result in eax>
push eax ; push parameter
call put ; call external put routine
add esp,4 ; pop parameter

 A more general solution if System.out were a real
class:
 Hand-code (in asm) classes to act as a bridge between

compiled code and the C runtime
 Put information about these classes in the symbol table at

compiler initialization
 Calls to these routines compile normally – no other special

case code needed in the compiler(!)

11/3/2009 © 2002-09 Hal Perkins & UW CSE M-31

And That‟s It…

 We‟ve now got enough on the table to
complete the compiler project

 Coming Attractions

 Lower-level IR

 Back end (instruction selection and
scheduling, register allocation)

 Middle (optimizations)

