CSE P 501 - Compilers

Introduction to Optimization Hal Perkins
 Autumn 2009

Agenda

- Optimization
- Goals
- Scope: local, superlocal, regional, global (intraprocedural), interprocedural
- Control flow graphs
- Value numbering
- Dominators
- Ref.: Cooper/Torczon ch. 8

Code Improvement - How?

- Pick a better algorithm(!)
- Use machine resources effectively
- Instruction selection \& scheduling
- Register allocation

Code Improvement (2)

- Local optimizations - basic blocks
- Algebraic simplifications
- Constant folding
- Common subexpression elimination (i.e., redundancy elimination)
- Dead code elimination
- Specialize computation based on context
- etc., etc., ...

Code Improvement (3)

- Global optimizations
- Code motion
- Moving invariant computations out of loops
- Strength reduction (replace multiplications by repeated additions, for example)
- Global common subexpression elimination
- Global register allocation
- Many others...

"Optimization"

- None of these improvements are truly "optimal"
- Hard problems
- Proofs of optimality assume artificial restrictions
- Best we can do is to improve things
- Most (much?) (some?) of the time

Example: A[i,j]

- Without any surrounding context, need to generate code to calculate
address(A)

$$
\begin{aligned}
& +\left(i-\operatorname{low}_{1}(A)\right) *\left(\operatorname{high}_{2}(A)-\operatorname{low}_{2}(a)+1\right) * \operatorname{size}(A) \\
& +\left(j-\operatorname{low}_{2}(A)\right) * \operatorname{size}(A)
\end{aligned}
$$

- low ${ }_{i}$ and high ${ }_{i}$ are subscript bounds in dimension i
- address(A) is the runtime address of first element of A
- ... And we really should be checking that i, j are in bounds

Some Optimizations for $A[i, j]$

- With more context, we can do better
- Examples
- If A is local, with known bounds, much of the computation can be done at compile time
- If $A[i, j]$ is in a loop where i and j change systematically, we probably can replace multiplications with additions each time around the loop to reference successive rows/columns
- Even if not, we can move "loop-invariant" parts of the calculation outside the loop

Optimization Phase

- Goal
- Discover, at compile time, information about the runtime behavior of the program, and use that information to improve the generated code

A First Running Example: Redundancy Elimination

- An expression $x+y$ is redundant at a program point iff, along every path from the procedure's entry, it has been evaluated and its constituent subexpressions (x and y) have not been redefined
- If the compiler can prove the expression is redundant
- Can store the result of the earlier evaluation
- Can replace the redundant computation with a reference to the earlier (stored) result

Common Problems in Code Improvement

- This strategy is typical of most compiler optimizations
- First, discover opportunities through program analysis
- Then, modify the IR to take advantage of the opportunities
- Historically, goal usually was to decrease execution time
- Other possibilities: reduce space, power, ...

Issues (1)

- Safety - transformation must not change program meaning
- Must generate correct results
- Can't generate spurious errors
- Optimizations must be conservative
- Large part of analysis goes towards proving safety
- Can pay off to speculate (be optimistic) but then need to recover if reality is different

Issues (2)

- Profitibility

- If a transformation is possible, is it profitable?
- Example: loop unrolling
- Can increase amount of work done on each iteration, i.e., reduce loop overhead
- Can eliminate duplicate operations done on separate iterations

Issues (3)

- Downside risks

- Even if a transformation is generally worthwhile, need to factor in potential problems
- For example:
- Transformation might need more temporaries, putting additional pressure on registers
- Increased code size could cause cache misses, or in bad cases, increase page working set

Example: Value Numbering

- Technique for eliminating redundant expressions: assign an identifying number $\mathrm{VN}(\mathrm{n})$ to each expression
- $V N(x+y)=V N(j)$ if $x+y$ and j have the same value
- Use hashing over value numbers for effeciency
- Old idea (Balke 1968, Ershov 1954)
- Invented for low-level, linear IRs
- Equivalent methods exist for tree IRs, e.g., build a DAG

Uses of Value Numbers

- Improve the code
- Replace redundant expressions
- Simplify algebraic identities
- Discover, fold, and propagate constant valued expressions

Local Value Numbering

- Algorithm
- For each operation $0=<0 p, 01,02>$ in a block

1. Get value numbers for operands from hash lookup
2. Hash <op, VN(o1), VN(o2)> to get a value number for o (If op is commutative, sort $\mathrm{VN}(\mathrm{o1}), \mathrm{VN}(\mathrm{o} 2)$ first)
3. If o already has a value number, replace o with a reference to the value
4. If o1 and 02 are constant, evaluate o at compile time and replace with an immediate load

- If hashing behaves well, this runs in linear time

Example

Code

Rewritten

$$
\begin{aligned}
a & =x+y \\
b & =x+y \\
a & =17 \\
c & =x+y
\end{aligned}
$$

Bug in Simple Example

- If we use the original names, we get in trouble when a name is reused
- Solutions
- Be clever about which copy of the value to use (e.g., use c=b in last statement)
- Create an extra temporary
- Rename around it (best!)

Renaming

- Idea: give each value a unique name $\mathrm{a}_{\mathrm{j}}^{\mathrm{j}}$ means $\mathrm{i}^{\text {th }}$ definition of a with $\mathrm{VN}=\mathrm{j}$
- Somewhat complex notation, but meaning is clear
- This is the idea behind SSA (Static Single Assignment)
- Popular modern IR - exposes many opportunities for optimizations

Example Revisited

Code

$$
\begin{aligned}
a & =x+y \\
b & =x+y \\
a & =17 \\
c & =x+y
\end{aligned}
$$

Rewritten

Simple Extensions to Value Numbering

- Constant folding
- Add a bit that records when a value is constant
- Evaluate constant values at compile time
- Replace op with load immediate
- Algebraic identities: $x+0, x^{*} 1, x-x, \ldots$
- Many special cases
- Switch on op to narrow down checks needed
- Replace result with input VN

Larger Scopes

- This algorithm works on straight-line blocks of code (basic blocks)
- Best possible results for single basic blocks
- Loses all information when control flows to another block
- To go further we need to represent multiple blocks of code and the control flow between them

Basic Blocks

- Definition: A basic block is a maximal length sequence of straight-line code
- Properties
- Statements are executed sequentially
- If any statement executes, they all do (baring exceptions)
- In a linear IR, the first statement of a basic block is often called the leader

Control Flow Graph (CFG)

- Nodes: basic blocks
- Possible representations: linear 3-address code, expression-level AST, DAG
- Edges: include a directed edge from n1 to n 2 if there is any possible way for control to transfer from block n1 to n2 during execution

Constructing Control Flow Graphs from Linear IRs

- Algorithm
- Pass 1: Identify basic block leaders with a linear scan of the IR
- Pass 2: Identify operations that end a block and add appropriate edges to the CFG to all possible successors
- See your favorite compiler book for details
- For convenience, ensure that every block ends with conditional or unconditional jump
- Code generator can pick the most convenient "fallthrough" case later and eliminate unneeded jumps

Scope of Optimizations

- Optimization algorithms can work on units as small as a basic block or as large as a whole program
- Local information is generally more precise and can lead to locally optimal results
- Global information is less precise (lose information at join points in the graph), but exposes opportunities for improvements across basic blocks

Optimization Categories (1)

- Local methods
- Usually confined to basic blocks
- Simplest to analyze and understand
- Most precise information

Optimization Categories (2)

- Superlocal methods
- Operate over Extended Basic Blocks (EBBs)
- An EBB is a set of blocks $b_{1}, b_{2}, \ldots, b_{n}$ where b_{1} has multiple predecessors and each of the remaining blocks $b_{i}(2 \leq i \leq n)$ have only b_{i-1} as its unique predecessor
- The EBB is entered only at b_{1}, but may have multiple exits
- A single block b_{i} can be the head of multiple EBBs (these EBBs form a tree rooted at b_{i})
- Use information discovered in earlier blocks to improve code in successors

Optimization Categories (3)

- Regional methods
- Operate over scopes larger than an EBB but smaller than an entire procedure/ function/method
- Typical example: loop body
- Difference from superlocal methods is that there may be merge points in the graph (i.e., a block with two or more predecessors)

Optimization Categories (4)

- Global methods
- Operate over entire procedures
- Sometimes called intraprocedura/methods
- Motivation is that local optimizations sometimes have bad consequences in larger context
- Procedure/method/function is a natural unit for analysis, separate compilation, etc.
- Almost always need global data-flow analysis information for these

Optimization Categories (5)

- Whole-program methods
- Operate over more than one procedure
- Sometimes called interprocedura/methods
- Challenges: name scoping and parameter binding issues at procedure boundaries
- Classic examples: inline method substitution, interprocedural constant propagation
- Common in aggressive JIT compilers and optimizing compilers for object-oriented languages

Value Numbering Revisited

- Local Value Numbering
- 1 block at a time
- Strong local results
- No cross-block effects
- Missed opportunities

Superlocal Value Numbering

- Idea: apply local method to EBBs
- $\{A, B\},\{A, C, D\},\{A, C, E\}$
- Final info from A is initial info for B, C; final info from C is initial for D, E
- Gets reuse from ancestors
- Avoid reanalyzing A, C
- Doesn't help with F, G

SSA Name Space (from before)

Code
$\mathrm{a}_{0}{ }^{3}=\mathrm{x}_{0}{ }^{1}+\mathrm{y}_{0}{ }^{2}$
$b_{0}{ }^{3}=x_{0}{ }^{1}+y_{0}{ }^{2}$
$\mathrm{a}_{1}{ }^{4}=17$
$c_{0}{ }^{3}=x_{0}{ }^{1}+y_{0}{ }^{2}$

- Unique name for each definition
- Name $\Leftrightarrow \mathrm{VN}$
- $\mathrm{a}_{0}{ }^{3}$ is available to assign to $\mathrm{c}_{0}{ }^{3}$

SSA Name Space

- Two Principles
- Each name is defined by exactly one operation
- Each operand refers to exactly one definition
- Need to deal with merge points
- Add Φ functions at merge points to reconcile names
- Use subscripts on variable names for uniqueness

Superlocal Value Numbering with All Bells \& Whistles

- Finds more redundancies
- Little extra cost
- Still does nothing for F and G

Larger Scopes

- Still have not helped F and G
- Problem: multiple predecessors
- Must decide what facts hold in F and in G
- For G, combine B \& F?
- Merging states is expensive
- Fall back on what we know

Dominators

- Definition
- x dominates y iff every path from the entry of the control-flow graph to y includes x
- By definition, x dominates x
- Associate a Dom set with each node
- | Dom(x) | ≥ 1
- Many uses in analysis and transformation
- Finding loops, building SSA form, code motion

Immediate Dominators

- For any node x, there is a y in $\operatorname{Dom}(x)$ closest to x
- This is the immediate dominator of x - Notation: IDom(x)

Dominator Sets

Block Dom IDom

Dominator Value Numbering

- Still looking for a way to handle F and G
- Idea: Use info from IDom(x) to start analysis of x
- Use C for F and A for G
- Dominator VN Iechnique (DVNT)

DVNT algorithm

- Use superlocal algorithm on extended basic blocks
- Use scoped hash tables \& SSA name space as before
- Start each node with table from its IDOM
- No values flow along back edges (i.e., loops)
- Constant folding, algebraic identities as before

Dominator Value Numbering

- Advantages
- Finds more redundancy
- Little extra cost
- Shortcomings
- Misses some opportunities (common calculations in ancestors that are not IDOMs)
- Doesn't handle loops or other back edges

The Story So Far...

- Local algorithm
- Superlocal extension
- Some local methods extend cleanly to superlocal scopes
- Dominator VN Technique (DVNT)
- All of these propagate along forward edges
- None are global

Coming Attractions

- Data-flow analysis
- Provides global solution to redundant expression analysis
- Catches some things missed by DVNT, but misses some others
- Generalizes to many other analysis problems, both forward and backward
- Transformations
- A catalog of some of the things a compiler can do with the analysis information

