
11/17/2009 © 2002-09 Hal Perkins & UW CSE S2-1

CSE P 501 – Compilers

Analysis & Optimization Examples

Hal Perkins

Winter 2008

Liveness Analysis – an
example from last week

 Recall: A variable is live on an edge if
there is a path from that edge to a use
that does not go through any definition

 In a block, a variable is

 Live-in if it is live on any in-edge

 Live-out if it is live on any out-edge

11/17/2009 © 2002-09 Hal Perkins & UW CSE S2-2

Example (1 stmt per block)

 Code

a := 0

L: b := a+1

c := c+b

a := b*2

if a < N goto L

return c

11/17/2009 © 2002-09 Hal Perkins & UW CSE S2-3

1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b+2

5: a < N

6: return c

Liveness Analysis Sets

 For each block b

 use[b] = variable used in b before any def

 def[b] = variable defined in b & not killed

 in[b] = variables live on entry to b

 out[b] = variables live on exit from b

 Information flows from the “future” to the
“past”

11/17/2009 © 2002-09 Hal Perkins & UW CSE S2-4

Dataflow equation

 Given the preceding definitions, we have

in[b] = use[b] (out[b] – def[b])

out[b] = ssucc[b] in[s]

 Algorithm

 Set in[b] = out[b] =

 Update in, out until no change

 Evaluation order: back to front is best
given information flow

11/17/2009 © 2002-09 Hal Perkins & UW CSE S2-5

Calculation

11/17/2009 © 2002-09 Hal Perkins & UW CSE S2-6

1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b+2

5: a < N

6: return c

A few optimizing
transformations

 A few examples with a bit more detail
than last time….

11/17/2009 © 2002-09 Hal Perkins & UW CSE S2-7

Classic Common-
Subexpression Elimination

 In a statement s: t := x op y, if x op y
is available at s then it need not be
recomputed

 Analysis: compute reaching expressions
i.e., statements n: v := x op y such that
the path from n to s does not compute
x op y or define x or y

11/17/2009 © 2002-09 Hal Perkins & UW CSE S2-8

Classic CSE

 If x op y is defined at n and reaches s
 Create new temporary w

 Rewrite n as
n: w := x op y

n’: v := w

 Modify statement s to be
s: t := w

 (Rely on copy propagation to remove extra
assignments if not really needed)

11/17/2009 © 2002-09 Hal Perkins & UW CSE S2-9

Constant Propagation

 Suppose we have

 Statement d: t := c, where c is constant

 Statement n that uses t

 If d reaches n and no other definitions
of t reach n, then rewrite n to use c
instead of t

11/17/2009 © 2002-09 Hal Perkins & UW CSE S2-10

Copy Propagation

 Similar to constant propagation

 Setup:
 Statement d: t := z

 Statement n uses t

 If d reaches n and no other definition of
t reaches n, and there is no definition of
z on any path from d to n, then rewrite
n to use z instead of t

11/17/2009 © 2002-09 Hal Perkins & UW CSE S2-11

Copy Propagation Tradeoffs

 Downside is that this can increase the
lifetime of variable z and increase need for
registers or memory traffic
 Not worth doing if only reason is to eliminate

copies – let the register allocate deal with that

 But it can expose other optimizations, e.g.,
a := y + z
u := y
c := u + z

 After copy propagation we can recognize the
common subexpression

11/17/2009 © 2002-09 Hal Perkins & UW CSE S2-12

Dead Code Elimination

 If we have an instruction

s: a := b op c

and a is not live-out after s, then s can
be eliminated

 Provided it has no implicit side effects that
are visible (output, exceptions, etc.)

11/17/2009 © 2002-09 Hal Perkins & UW CSE S2-13

Lazy Code Motion (LCM)

 Also known as partial-redundancy
elimination

 More recent alternative to classic CSE
and loop-invariant code motion

11/17/2009 © 2002-09 Hal Perkins & UW CSE S2-14

Partial Redundancy

 Informally, an expression is partially
redundant if it is done more than once on
some path through the flowgraph

 More specifically, a computation is partially
redundant at point p if it occurs on some,
but not all paths that reach p

 Idea: convert partially redundant
expressions to fully redundant, then
eliminate it, which moves it out of a loop
or avoids recomputing it on some paths

11/17/2009 © 2002-09 Hal Perkins & UW CSE S2-15

Example

11/17/2009 © 2002-09 Hal Perkins & UW CSE S2-16

