CSE P 501 - Compilers

Analysis \& Optimization Examples Hal Perkins
 Winter 2008

Liveness Analysis - an example from last week

- Recall: A variable is live on an edge if there is a path from that edge to a use that does not go through any definition - In a block, a variable is
- Live-in if it is live on any in-edge
- Live-out if it is live on any out-edge

Example (1 stmt per block)

- Code

$$
\begin{aligned}
& \text { a := } 0 \\
& \text { L: b:=a+1 } \\
& \mathrm{c}:=\mathrm{c}+\mathrm{b} \\
& \text { a := b*2 } \\
& \text { if } \mathrm{a}<\mathrm{N} \text { goto } \mathrm{L} \\
& \text { return } \mathrm{c}
\end{aligned}
$$

Liveness Analysis Sets

- For each block b
- use[b] = variable used in b before any def
- def[b] = variable defined in b \& not killed
- in[b] = variables live on entry to b
- out[b] = variables live on exit from b
- Information flows from the "future" to the "past"

Dataflow equation

- Given the preceding definitions, we have in[b] $=$ use[b] $\cup($ out[b] $-\operatorname{def}[b])$ out[b] $=\cup_{s \in \operatorname{succ}[b]}$ in[s]
- Algorithm
- Set in[b] = out[b] = \varnothing
- Update in, out until no change
- Evaluation order: back to front is best given information flow

Calculation

A few optimizing transformations

- A few examples with a bit more detail than last time....

Classic Common-
 Subexpression Elimination

- In a statement s: t:=x op y, if x op y is available at s then it need not be recomputed
- Analysis: compute reaching expressions i.e., statements n: v := x op y such that the path from n to s does not compute x op y or define x or y

Classic CSE

- If x op y is defined at n and reaches s
- Create new temporary w
- Rewrite n as

$$
\begin{aligned}
& \mathrm{n}: \mathrm{w}:=\mathrm{x} \text { op } \mathrm{y} \\
& \mathrm{n}: ~ v:=\mathrm{w}
\end{aligned}
$$

- Modify statement s to be
s: t:= w
- (Rely on copy propagation to remove extra assignments if not really needed)

Constant Propagation

- Suppose we have
- Statement d: t:= c, where c is constant
- Statement n that uses t
- If d reaches n and no other definitions of t reach n, then rewrite n to use c instead of t

Copy Propagation

- Similar to constant propagation
- Setup:
- Statement d: t:= z
- Statement n uses t
- If d reaches n and no other definition of t reaches n, and there is no definition of z on any path from d to n, then rewrite n to use z instead of t

Copy Propagation Tradeoffs

- Downside is that this can increase the lifetime of variable z and increase need for registers or memory traffic
- Not worth doing if only reason is to eliminate copies - let the register allocate deal with that
- But it can expose other optimizations, e.g.,

$$
\begin{aligned}
& \mathrm{a}:=\mathrm{y}+\mathrm{z} \\
& \mathrm{u}:=\mathrm{y} \\
& \mathrm{c}:=\mathrm{u}+\mathrm{z}
\end{aligned}
$$

- After copy propagation we can recognize the common subexpression

Dead Code Elimination

- If we have an instruction
s: a := b op c
and a is not live-out after s, then s can be eliminated
- Provided it has no implicit side effects that are visible (output, exceptions, etc.)

Lazy Code Motion (LCM)

- Also known as partial-redundancy elimination
- More recent alternative to classic CSE and loop-invariant code motion

Partial Redundancy

- Informally, an expression is partially redundant if it is done more than once on some path through the flowgraph
- More specifically, a computation is partially redundant at point p if it occurs on some, but not all paths that reach p
- Idea: convert partially redundant expressions to fully redundant, then eliminate it, which moves it out of a loop or avoids recomputing it on some paths

Example

