CSE P 501 - Compilers

Loops
 Hal Perkins
 Autumn 2009

Agenda

- Loop optimizations
- Dominators - discovering loops
- Loop invariant calculations
- Loop transformations
- A quick look at some memory hierarchy issues
- Largely based on material in Appel ch. 18, 21; similar material in other books

Loops

- Much of he execution time of programs is spent here
- \therefore worth considerable effort to make loops go faster
- \therefore want to figure out how to recognize loops and figure out how to "improve" them

What's a Loop?

- In a control flow graph, a loop is a set of nodes S such that:
- S includes a header node h
- From any node in S there is a path of directed edges leading to h
- There is a path from h to any node in S
- There is no edge from any node outside S to any node in S other than h

Entries and Exits

- In a loop
- An entry node is one with some predecessor outside the loop
- An exit node is one that has a successor outside the loop
- Corollary of preceding definitions: A loop may have multiple exit nodes, but only one entry node

Reducible Flow Graphs

- In a reducible flow graph, any two loops are either nested or disjoint
- Roughly, to discover if a flow graph is reducible, repeatedly delete edges and collapse together pairs of nodes (x, y) where x is the only predecessor of y
- If the graph can be reduced to a single node it is reducible
- Caution: this is the "powerpoint" version of the definition - see a good compiler book for the careful details

Example: Is this Reducible?

Example: Is this Reducible?

Reducible Flow Graphs in

Practice

- Common control-flow constructs yield reducible flow graphs
- if-then[-else], while, do, for, break(!)
- A C function without goto will always be reducible
- Many dataflow analysis algorithms are very efficient on reducible graphs, but...
- We don't need to assume reducible control-flow graphs to handle loops

Finding Loops in Flow Graphs

- We use dominators for this
- Recall
- Every control flow graph has a unique start node s0
- Node x dominates node y if every path from s0 to y must go through x
- A node x dominates itself

Calculating Dominator Sets

- $D[n]$ is the set of nodes that dominate n
- $\mathrm{D}[\mathrm{s} 0]=\{\mathrm{s} 0\}$
- $D[n]=\{n\} \cup(\cap p \in \operatorname{pred}[n] D[p])$
- Set up an iterative analysis as usual to solve this
- Except initially each D[n] must be all nodes in the graph - updates make these sets smaller if changed

Immediate Dominators

- Every node n has a single immediate dominator idom(n)
- idom(n) differs from n
- idom(n) dominates n
- idom(n) does not dominate any other dominator of n
- Fact (er, theorem): If a dominates n and b dominates n, then either a dominates b or b dominates a
- \therefore idom(n) is unique

Dominator Tree

- A dominator tree is constructed from a flowgraph by drawing an edge form every node in n to idom(n)
- This will be a tree. Why?

Example

Back Edges \& Loops

- A flow graph edge from a node n to a node h that dominates n is a back edge
- For every back edge there is a corresponding subgraph of the flow graph that is a loop

Natural Loops

- If h dominates n and $\mathrm{n}->\mathrm{h}$ is a back edge, then the natural loop of that back edge is the set of nodes x such that
- h dominates x
- There is a path from x to n not containing h
- h is the header of this loop
- Standard loop optimizations can cope with loops whether they are natural or not

Inner Loops

- Inner loops are more important for optimization because most execution time is expected to be spent there
- If two loops share a header, it is hard to tell which one is "inner"
- Common way to handle this is to merge natural loops with the same header

Inner (nested) loops

- Suppose
- A and B are loops with headers a and b
- $a \neq b$
- b is in A
- Then
- The nodes of B are a proper subset of A
- B is nested in A , or B is the inner loop

Loop-Nest Tree

- Given a flow graph G

1. Compute the dominators of G
2. Construct the dominator tree
3. Find the natural loops (thus all loopheader nodes)
4. For each loop header h, merge all natural loops of h into a single loop: loop[h]
5. Construct a tree of loop headers s.t. h1 is above h2 if h2 is in loop[h1]

Loop-Nest Tree details

- Leaves of this tree are the innermost loops
- Need to put all non-loop nodes somewhere
- Convention: lump these into the root of the loop-nest tree

Example

Loop Preheader

- Often we need a place to park code right before the beginning of a loop
- Easy if there is a single node preceding the loop header h
- But this isn't the case in general
- So insert a preheader node p
- Include an edge p->h
- Change all edges x->h to be x->p

Loop-Invariant Computations

- Idea: If $\mathrm{x}:=\mathrm{a} 1$ op a2 always does the same thing each time around the loop, we'd like to hoist it and do it once outside the loop
- But can't always tell if a1 and a2 will have the same value
- Need a conservative (safe) approximation

Loop-Invariant Computations

- d: x := a1 op a2 is loop-invariant if for each ai
- ai is a constant, or
- All the definitions of ai that reach d are outside the loop, or
- Only one definition of ai reaches d, and that definition is loop invariant
- Use this to build an iterative algorithm
- Base cases: constants and operands defined outside the loop
- Then: repeatedly find definitions with loopinvariant operands

Hoisting

- Assume that d : $\mathrm{x}:=\mathrm{a}$ op a2 is loop invariant. We can hoist it to the loop preheader if
- d dominates all loop exits where x is live-out, and
- There is only one definition of x in the loop, and
- x is not live-out of the loop preheader
- Need to modify this if a1 op a2 could have side effects or raise an exception

Hoisting: Possible?

- Example 1

$$
\begin{aligned}
\text { L0:t } & :=0 \\
\text { L1: } & :=\mathrm{i}+1 \\
\mathrm{t} & :=\mathrm{a} \text { op } \mathrm{b} \\
\mathrm{M}[\mathrm{i}] & :=\mathrm{t}
\end{aligned}
$$

if i < n goto L1

$$
\text { L2: } x:=t
$$

- Example 2

$$
\text { LO:t := } 0
$$

$$
\text { L1: if i } \geq \mathrm{n} \text { goto L2 }
$$

$$
i:=i+1
$$

$$
t:=a \text { op b }
$$

$$
M[i]:=\mathrm{t}
$$

goto L1
L2:x := t

Hoisting: Possible?

- Example 3

$$
\begin{aligned}
& \text { LO:t }:=0 \\
& \text { L1: }:=\mathrm{i}+1 \\
& \mathrm{t}:=\mathrm{a} \text { op } \mathrm{b} \\
& \text { M[i] }:=\mathrm{t} \\
& \mathrm{t}:=0 \\
& \text { M[j] }:=\mathrm{t}
\end{aligned}
$$

if $\mathrm{i}<\mathrm{n}$ goto L 1

Example 4
L0:t:= 0
L1:M[j] := t
$\mathrm{i}:=\mathrm{i}+1$
$t:=a$ op b
M[i] := t
if $\mathrm{i}<\mathrm{n}$ goto L 1
L2: x := t

L2: x := t

Induction Variables

- Suppose inside a loop
- Variable i is incremented or decremented
- Variable j is set to $\mathrm{i}^{*} \mathrm{c}+\mathrm{d}$ where c and d are loop-invariant
- Then we can calculate j's value without using i
- Whenever i is incremented by a, increment j by c*a

Example

- Original

$$
\begin{aligned}
& s:=0 \\
& i:=0 \\
& \text { L1: if } i \geq n \text { goto } L 2 \\
& j:=i * 4 \\
& k:=j+a \\
& x:=M[k] \\
& s:=s+x \\
& i:=i+1 \\
& \text { goto L1 }
\end{aligned}
$$

- Do
- Induction-variable analysis to discover i and j are related induction variables
- Strength reduction to replace *4 with an addition
- Induction-variable elimination to replace i \geq n
- Assorted copy propagation

Regut

- Original

$$
\begin{gathered}
s:=0 \\
\mathrm{i}:=0 \\
\text { L1: if } \mathrm{i} \geq \mathrm{n} \text { goto } \mathrm{L} 2 \\
\mathrm{j}:=\mathrm{i} * 4 \\
\mathrm{k}:=\mathrm{j}+\mathrm{a} \\
\mathrm{x}:=\mathrm{M}[\mathrm{k}] \\
\mathrm{s}:=\mathrm{s}+\mathrm{x} \\
\mathrm{i}:=\mathrm{i}+1 \\
\text { goto L1 }
\end{gathered}
$$

L2:

- Transformed

$$
\begin{gathered}
s:=0 \\
k^{\prime}=a \\
b=n^{*} 4 \\
c=a+b \\
\text { L1: if } k^{\prime} \geq c \text { goto L2 } \\
x:=M\left[k^{\prime}\right] \\
s:=s+x \\
k^{\prime}:=k^{\prime}+4 \\
\text { goto L1 } \\
\text { L2: }
\end{gathered}
$$

Details are somewhat messy - see your favorite compiler book

Basic and Derived Induction Variables

- Variable i is a basic induction variable in loop L with header h if the only definitions of i in L have the form $\mathrm{i}:=\mathrm{i} \pm \mathrm{c}$ where c is loop invariant
- Variable k is a derived induction variable in L if:
- There is only one definition of k in L of the form $k:=j *$ or $k:=j+d$ where j is an induction variable and c, d are loop-invariant, and
- if j is a derived variable in the family of i, then:
- The only definition of j that reaches k is the one in the loop, and
- there is no definition of i on any path between the definition of j and the definition of k

Optimizating Induction Variables

- Strength reduction: if a derived induction variable is defined with $j:=i^{*} \mathrm{c}$, try to replace it with an addition inside the loop
- Elimination: after strength reduction some induction variables are not used or are only compared to loop-invariant variables; delete them
- Rewrite comparisons: If a variable is used only in comparisons against loop-invariant variables and in its own definition, modify the comparison to use a related induction variable

Loop Unrolling

- If the body of a loop is small, most of the time is spent in the "increment and test" code
- Idea: reduce overhead by unrollingput two or more copies of the loop body inside the loop

Loop Unrolling

- Basic idea: Given loop L with header node h and back edges $s_{i}->h$

1. Copy the nodes to make loop L' with header h^{\prime} and back edges $s_{i}^{\prime}->h^{\prime}$
2. Change all backedges in L from $s_{i}->h$ to $s_{i}->h^{\prime}$
3. Change all back edges in L^{\prime} from $s_{i}^{\prime}->h^{\prime}$ to

$$
s_{i}^{\prime}->h
$$

Unrolling Algorithm Results

- Before

L1:x := M[i]

$$
s:=s+x
$$

$$
i:=i+4
$$

if $\mathrm{i}<\mathrm{n}$ goto L 1 else L2
L2:

- After

$$
\begin{aligned}
\mathrm{L} 1: & x \\
\mathrm{~s} & :=\mathrm{M}[\mathrm{i}] \\
\mathrm{i} & :=\mathrm{i}+\mathrm{x}
\end{aligned}
$$

if $\mathrm{i}<\mathrm{n}$ goto $\mathrm{L1}^{\prime}$ else L2
L1': $x:=M[i]$

$$
s:=s+x
$$

$$
i:=i+4
$$

if $\mathrm{i}<\mathrm{n}$ goto L 1 else L2
L2:

Hmmmm....

- Not so great - just code bloat
- But: use induction variables and various loop transformations to clean up

After Some Optimizations

- Before

L1: $x:=M[i]$
$S:=S+X$
i := i + 4
if $\mathrm{i}<\mathrm{n}$ goto $\mathrm{L} 1^{\prime}$ else L2
L1': $x:=M[i]$
$\mathrm{s}:=\mathrm{s}+\mathrm{x}$
$i:=i+4$
if $\mathrm{i}<$ n goto L1 else L2
L2:

- After

$$
\begin{aligned}
\mathrm{L1}: & x:=M[i] \\
& s:=s+x \\
& x:=M[i+4] \\
s & :=s+x \\
i & :=i+8
\end{aligned}
$$

if i<n goto L1 else L2

L2:

Still Broken...

- But in a different, better(?) way
- Good code, but only correct if original number of loop iterations was even
- Fix: add an epilogue to handle the "odd" leftover iteration

Fixed

- Before

L1:x := M[i]
$S:=S+X$
$x:=M[i+4]$
$\mathrm{s}:=\mathrm{s}+\mathrm{x}$
$\mathrm{i}:=\mathrm{i}+8$
if $\mathrm{i}<\mathrm{n}$ goto L 1 else L2
L2:

- After
if $\mathrm{i}<\mathrm{n}-8$ goto L1 else L2
L1: $x:=M[i]$
$s:=s+x$
$x:=M[i+4]$
$\mathrm{s}:=\mathrm{s}+\mathrm{x}$
$\mathrm{i}:=\mathrm{i}+8$
if $\mathrm{i}<\mathrm{n}-8$ goto L1 else L2
L2: $x:=M[i]$
$\mathrm{s}:=\mathrm{s}+\mathrm{x}$
$\mathrm{i}:=\mathrm{i}+4$
if $\mathrm{i}<\mathrm{n}$ goto L 2 else L3
L3:

Postscript

- This example only unrolls the loop by a factor of 2
- More typically, unroll by a factor of K
- Then need an epilogue that is a loop like the original that iterates up to K - 1 times

Memory Heirarchies

- One of the great triumphs of computer design
- Effect is a large, fast memory
- Reality is a series of progressively larger, slower, cheaper stores, with frequently accessed data automatically staged to faster storage (cache, main storage, disk)
- Programmer/compiler typically treats it as one large store. Bug or feature?

Memory Issues (review)

- Byte load/store is often slower than whole (physical) word load/store
- Unaligned access is often extremely slow
- Temporal locality: accesses to recently accessed data will usually find it in the (fast) cache
- Spatial locality: accesses to data near recently used data will usually be fast
. "near" = in the same cache block
- But - alternating accesses to blocks that map to the same cache block will cause thrashing

Data Alignment

- Data objects (structs) often are similar in size to a cache block (≈ 8 words)
- \therefore Better if objects don't span blocks
- Some strategies
- Allocate objects sequentially; bump to next block boundary if useful
- Allocate objects of same common size in separate pools (all size-2, size-4, etc.)
- Tradeoff: speed for some wasted space

Instruction Alignment

- Align frequently executed basic blocks on cache boundaries (or avoid spanning cache blocks)
- Branch targets (particularly loops) may be faster if they start on a cache line boundary
- Try to move infrequent code (startup, exceptions) away from hot code
- Optimizing compiler should have a basic-block ordering phase (\& maybe even loader)

Loop Interchange

- Watch for bad cache patterns in inner loops; rearrange if possible
- Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<m ; i++) \\
& \text { for }(j=0 ; j<n ; j++) \\
& \text { for }(k=0 ; k<p ; k++) \\
& \quad a[i, k, j]=b[i, j-1, k]+b[i, j, k]+b[i, j+1, k]
\end{aligned}
$$

- $\mathrm{b}[\mathrm{i}, \mathrm{j}+1, \mathrm{k}]$ is reused in the next two iterations, but will have been flushed from the cache by the k loop

Loop Interchange

- Solution for this example: interchange j and k loops

$$
\begin{aligned}
& \text { for }(i=0 ; i<m ; i++) \\
& \text { for }(k=0 ; k<p ; k++) \\
& \quad \text { for }(j=0 ; j<n ; j++) \\
& \quad a[i, k, j]=b[i, j-1, k]+b[i, j, k]+b[i, j+1, k]
\end{aligned}
$$

- Now $b[i, j+1, k]$ will be used three times on each cache load
- Safe here because loop iterations are independent

Loop Interchange

- Need to construct a data-dependency graph showing information flow between loop iterations
- For example, iteration (j, k) depends on iteration (j^{\prime}, k^{\prime}) if (j^{\prime}, k^{\prime}) computes values used in (j, k) or stores values overwritten by (j, k)
- If there is a dependency and loops are interchanged, we could get different results so can't do it

Blocking

- Consider matrix multiply for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{n}$; $\mathrm{i}++$)
for ($\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$) $\{$
$\mathrm{c}[1, \mathrm{j}]=0.0$;
for ($\mathrm{k}=0 ; \mathrm{k}<\mathrm{n} ; \mathrm{k}+$ +)

$$
c[i, j]=c[i, j]+a[i, k] * b[k, j]
$$

\}

- If a, b fit in the cache together, great!
- If they don't, then every $\mathrm{b}[\mathrm{k}, \mathrm{j}]$ reference will be a cache miss
- Loop interchange ($\mathrm{i}<->\mathrm{j}$) won't help; then every a[i,k] reference would be a miss

Blocking

- Solution: reuse rows of A and columns of B while they are still in the cache
- Assume the cache can hold 2*c*n matrix elements ($1<\mathrm{c}<\mathrm{n}$)
- Calculate $\mathrm{c} \times \mathrm{c}$ blocks of C using c rows of A and c columns of B

Blocking

- Calculating $\mathrm{C} \times \mathrm{c}$ blocks of C for (i = i0; i < i0+c; i++)

$$
\begin{aligned}
& \text { for }(j=j 0 ; j<j 0+c ; j++)\{ \\
& \quad c[i, j]=0.0 ;
\end{aligned}
$$

$$
\text { for }(k=0 ; k<n ; k++)
$$

$$
c[i, j]=c[i, j]+a[i, k] * b[k, j]
$$

$$
\text { \} }
$$

Blocking

- Then nest this inside loops that calculate successive $\mathrm{c} \times \mathrm{c}$ blocks
for (i0 = 0; i0 < n; i0+=c)
for (j0 = 0; j0 < n; j0+=c)
for (i = i0; i < i0+c; i++)
for (j = j0; j < j0+c; j++) \{
$\mathrm{c}[\mathrm{i}, \mathrm{j}]=0.0$;
for (k = 0; k < n; k++)
$c[i, j]=c[i, j]+a[i, k] * b[k, j]$
\}

Parallelizing Code

- There is a long literature about how to rearrange loops for better locality and to detect parallelism
- Some starting points
- New edition of Dragon book, ch. 11
- Allen \& Kennedy Optimizing Compilers for Modern Architectures
- Wolfe, High-Performance Compilers for Parallel Computing

