
12/8/2009 © 2002-09 Hal Perkins & UW CSE X3-1

CSE P 501 – Compilers

Threads and Memory Models

Hal Perkins

Autumn 2009

References

 Foundations of the C++ Concurrency
Memory Model
Boehm and Adve, PLDI 2008

 The Java Memory Model
Manson, Pugh, and Adve, POPL 2005

 Slides by Vijay Menon, CSE 501, Sp09

12/8/2009 X3-2© 2002-09 Hal Perkins & UW CSE

Threads and shared memory

 Multithreaded programs allow multiple
threads to run concurrently.

 each thread has its own local variables
(stack and registers), but...

 all threads share a common view of
memory (globals / statics)

 Commonly used with multiple cores in
hardware

12/8/2009 X3-3© 2002-09 Hal Perkins & UW CSE

Safety of optimization

 A standard constraint / definition:

 If, in their actual program context, the

result of evaluating e’ cannot be

distinguished from the result of evaluating

e, the compiler can substitute e’ for e.

 What does this mean in a multi-
threaded setting?

12/8/2009 X3-4© 2002-09 Hal Perkins & UW CSE

Register promotion

// x is global, initially 0

void foo(int* a, int n) {
for (int i = 0; i < n; ++i)
x += i;

}

12/8/2009 X3-5© 2002-09 Hal Perkins & UW CSE

Register promotion

// x is global, initially 0

void foo(int* a, int n) {
for (int i = 0; i < n; ++i)
x += i;

}

// Optimized

void foo(int* a, int n) {
int reg = x;
for (int i = 0; i < n; ++i)
reg += i;

x = reg;
}

12/8/2009 X3-6© 2002-09 Hal Perkins & UW CSE

Before optimization

// Thread 1

void foo(int* a, int n) {
for (int i = 0; i < n; ++i)
x += i;

}

// Thread 2

void bar() {
x = 10;
...

}

What happens when n == 0?

12/8/2009 X3-7© 2002-09 Hal Perkins & UW CSE

After optimization

// Thread 1

void foo(int* a, int n) {
int reg = x;
for (int i = 0; i < n; ++i)
reg += i;

x = reg;
}

// Thread 2

void bar() {
x = 10;
...

}

What happens when n == 0?

12/8/2009 X3-8© 2002-09 Hal Perkins & UW CSE

What happened?

 In executions where n == 0, the
compiler optimization creates a value
out of thin air.

 Original code: x == 10 is guaranteed

 Optimized code: new write of x = 0
creates new result

 Safety is no longer maintained

12/8/2009 X3-9© 2002-09 Hal Perkins & UW CSE

How did we get here?

 C & C++ originally defined as single-
threaded languages
 Compilers didn’t consider threads

 Threads were provided by externally
libraries (e.g. pthreads) that defined their
own semantics

 This is a broken model!
 New spec explicitly deals with threads

(Boehm, et al)

12/8/2009 X3-10© 2002-09 Hal Perkins & UW CSE

Dekker’s example

 Initially, x == y == 0

 What are possible executions?

Thread 1
x = 1; (a)
r1 = y; (b)

Thread 2
y = 1; (c)
r2 = x; (d)

12/8/2009 X3-11© 2002-09 Hal Perkins & UW CSE

Dekker’s example

 Initially, x == y == 0

 What are possible executions?

 Consider interleavings of thread 1 & 2:

 abcd, acbd, acdb, cdab, cadb, cabd

Thread 1
x = 1; (a)
r1 = y; (b)

Thread 2
y = 1; (c)
r2 = x; (d)

12/8/2009 X3-12© 2002-09 Hal Perkins & UW CSE

Dekker’s example

 Initially, x == y == 0

 Can r1 == r2 == 0?

 No interleaving gives this results, but...

 Most hardware will allow it (store buffers)

 Many compilers will allow it (instruction
scheduling)

Thread 1
x = 1;
r1 = y;

Thread 2
y = 1;
r2 = x;

12/8/2009 X3-13© 2002-09 Hal Perkins & UW CSE

What is a correct execution?

 Simplest notion: sequential consistency
(Lamport ’79)
"... the result of any execution is the same
as if the operations of all the processors
were executed in some sequential order,
and the operations of each individual
processor appear in this sequence in the
order specified by its program."

 This is essentially the interleaving model
 Too expensive (?)

 Nobody implements this in practice

12/8/2009 X3-14© 2002-09 Hal Perkins & UW CSE

Refined notion

 Guarantee sequential consistency only
for correctly synchronized programs
(Adve)

 Give the programmer rules to follow

 Give simple semantics when rules are obeyed

 Correctly synchronized

 Must be intuitive to programmer

 Must not be restrictive for implementer

12/8/2009 X3-15© 2002-09 Hal Perkins & UW CSE

Data races

 Two operations conflict if they both
access a memory location and one is a
write.

 A execution contains a data race if two
adjacent operations from two different
threads conflict
 x = 1; y = 1; r1 = y; r2 = x;

 A program is race-free if no sequentially
consistent execution (i.e., interleaving)
has a data race.

12/8/2009 X3-16© 2002-09 Hal Perkins & UW CSE

Correct synchronization

 We call a program correctly
synchronized if it is data race free.

 Basic contract:

 If programmers write race free programs,
implementers will provide sequentially
consistent semantics.

 This is the fundamental underpinning for
Java, C++ memory models.

12/8/2009 X3-17© 2002-09 Hal Perkins & UW CSE

Another example

 Dekker’s example is not race free.



 What about: (initially, x == y == 0)

Thread 1
r1 = x;
if (r1 > 0)

y = 1;

Thread 2
r2 = y;
if (r2 > 0)

x = 1;

12/8/2009 X3-18© 2002-09 Hal Perkins & UW CSE

How do we avoid races?

 Mutual exclusion:

 Thread acquires lock before accessing a
shared variable:

 Locks disallow problematic interleavings

Thread 1
lock (mutex);
tmp1 = x;
tmp2 = tmp1 + 1;
x = tmp2
unlock (mutex);

Thread 2
lock (mutex);
tmp3 = x;
tmp4 = tmp3 + 1;
x = tmp4
unlock (mutex);

12/8/2009 X3-19© 2002-09 Hal Perkins & UW CSE

How do we avoid races?

 Volatile variables (atomic in new C++):

 Certain variables are declared with
stronger ordering semantics (initially, x
and flag are 0):

 If flag is declared volatile, then write to x
cannot be sunk in T1 and read from x
cannot be hoisted in T2 by definition.
 Compiler must respect ordering.

Thread 1
x = 1;
flag = 1;

Thread 2
if (flag == 1)

t = x;

12/8/2009 X3-20© 2002-09 Hal Perkins & UW CSE

What does this mean for
compilers?

 In the absence of synchronization,
compilers may almost operate as if
programs were single-threaded.

 Compilers must respect ordering due to
synchronization (and generate necessary
hardware instructions).

 Caveat: compiler must not introduce
races into correctly synchronized code
(e.g. register promotion)

12/8/2009 X3-21© 2002-09 Hal Perkins & UW CSE

What happens on a race?

 In C++, undefined semantics

 Valid results:

Thread 1 (x == y == 0)
x = 1; (a)
r1 = y; (b)

Thread 2
y = 1; (c)
r2 = x; (d)

12/8/2009 X3-22© 2002-09 Hal Perkins & UW CSE

What happens on a race?

 In C++, undefined semantics

 Valid results:
 r1 = 0 and r2 = 0

 r1 = 0 and r2 = 2

 “format c:\”

 No such thing as a benign race in C++!

Thread 1 (x == y == 0)
x = 1; (a)
r1 = y; (b)

Thread 2
y = 1; (c)
r2 = x; (d)

12/8/2009 X3-23© 2002-09 Hal Perkins & UW CSE

Hard to bound effects

 Compiler should
be able to
generate table
 Assumes x in

range after
check

 Async change to
x causes
arbitrary
behavior

unsigned x;

if (x < 3) {
// x modified by another
// thread
switch (x) {

case 0: ...
case 1: ...
case 2: ...

}
}
12/8/2009 X3-24© 2002-09 Hal Perkins & UW CSE

Type-safety issues

 In Java, data races cannot violate type
safety

 Java promises a measure of security

 Synch. errors may be used on purposed
by untrusted code to open / exploit holes

 Java memory model must provide some
guarantees in the presence of races

12/8/2009 X3-25© 2002-09 Hal Perkins & UW CSE

Java ordering

 Java’s memory model defines a partial
order over all actions in a program.

 For each thread, actions must happen in
program order.

 Globally, synchronization actions must be
totally ordered.

 These two must be consistent.

12/8/2009 X3-26© 2002-09 Hal Perkins & UW CSE

Synchronization edges

 A synchronization edge is defined
from each release to each matching
acquire that follows in synchronization
order.

 A volatile write has an edge to all later
volatile reads to the same variable.

 An unlock has an edge to all later lock
operations to the same monitor.

12/8/2009 X3-27© 2002-09 Hal Perkins & UW CSE

Happens-before

 Java defines a happens-before
relationship as the transitive closure
over program order and
synchronization edges.

 A read r is not allowed to see a write
w to the same variable v if
 r happens before w or

 there exists another write w’ to v s.t.
w happens before w’ happens before r

 otherwise, r may see w

12/8/2009 X3-28© 2002-09 Hal Perkins & UW CSE

Races in Java

 Incorrectly synchronization programs
in Java must still obey happens-before

 Additional subtle restrictions:
 final fields

 causal safety

 Much more in Manson’s thesis, related
papers, and Java 5.0 specification

12/8/2009 X3-29© 2002-09 Hal Perkins & UW CSE

