
10/4/2011 © 2002-11 Hal Perkins & UW CSE A-1

CSE P 501 – Compilers

Overview and Administrivia

Hal Perkins

Autumn 2011

Credits

 Some direct ancestors of this course

 UW CSE 401 (Chambers, Snyder, Notkin…)

 Cornell CS 412-3 (Teitelbaum, Perkins)

 Rice CS 412 (Cooper, Kennedy, Torczon)

 Many other compiler courses, some papers

 Many books (Appel; Cooper/Torczon; Aho,
[[Lam,] Sethi,] Ullman [Dragon Books];
Fischer, Cryton, LeBlanc; Muchnick, …)

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-2

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-3

Agenda

 Introductions

 What’s a compiler?

 Administrivia

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-4

CSE P 501 Personel

 Instructor: Hal Perkins
 CSE 548; perkins@cs

 Office hours: after class + drop in when
you’re around + appointments

 (& before class if I’m not swamped)

 TA: Soumya Vasisht
 vasisht@cs

 Office hours: Tue 5:30-6:20; location tba

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-5

And the point is…

 Execute this!

int nPos = 0;

int k = 0;

while (k < length) {

 if (a[k] > 0) {

 nPos++;

 }

}

 How? Computers only know 1’s and 0’s

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-6

Interpreters & Compilers

 Interpreter

 A program that reads an source program
and produces the results of executing that
program

 Compiler

 A program that translates a program from
one language (the source) to another (the
target)

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-7

Common Issues

 Compilers and interpreters both must
read the input – a stream of characters
– and “understand” it; analysis

w h i l e (k < l e n g t h) { <nl> <tab> i f (a [k] > 0

) <nl> <tab> <tab>{ n P o s + + ; } <nl> <tab> }

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-8

Interpreter

 Interpreter
 Execution engine
 Program execution interleaved with

analysis
 running = true;

 while (running) {

 analyze next statement;

 execute that statement;

 }

 Usually need repeated analysis of
statements (particularly in loops, functions)

 But: immediate execution, good debugging
& interaction

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-9

Compiler

 Read and analyze entire program

 Translate to semantically equivalent program
in another language

 Presumably easier to execute or more efficient

 Should “improve” the program in some fashion

 Offline process

 Tradeoff: compile time overhead (preprocessing
step) vs execution performance

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-10

Typical Implementations

 Compilers
 FORTRAN, C, C++, Java, COBOL, etc. etc.

 Strong need for optimization in many cases

 Interpreters
 PERL, Python, Ruby, awk, sed, shells,

Scheme/Lisp/ML, postscript/pdf, Java VM

 Particularly effective if interpreter overhead
is low relative to execution cost of
individual statements

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-11

Hybrid approaches

 Classic example: Java
 Compile Java source to byte codes – Java Virtual

Machine language (.class files)

 Execution
 Interpret byte codes directly, or

 Compile some or all byte codes to native code
 Just-In-Time compiler (JIT) – detect hot spots & compile

on the fly to native code – standard these days

 Variations used for .NET (compile always) &
implementations of dynamic and functional
languages, e.g., JavaScript, Haskell

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-12

Why Study Compilers? (1)

 Become a better programmer(!)

 Insight into interaction between languages,
compilers, and hardware

 Understanding of implementation
techniques

 What is all that stuff in the debugger
anyway?

 Better intuition about what your code does

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-13

Why Study Compilers? (2)

 Compiler techniques are everywhere
 Parsing (little languages, interpreters, XML)

 Software tools (verifiers, checkers, …)

 Database engines, query languages

 AI, etc.: domain-specific languages

 Text processing
 Tex/LaTex -> dvi -> Postscript -> pdf

 Hardware: VHDL; model-checking tools

 Mathematics (Mathematica, Matlab)

Why Study Compilers? (3)

 Fascinating blend of theory and
engineering

 Direct applications of theory to practice

 Parsing, scanning, static analysis

 Some very difficult problems (NP-hard or
worse)

 Resource allocation, “optimization”, etc.

 Need to come up with good-enough
approximations/heuristics

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-14

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-15

Why Study Compilers? (4)

 Ideas from many parts of CSE
 AI: Greedy algorithms, heuristic search

 Algorithms: graph algorithms, dynamic
programming, approximation algorithms

 Theory: Grammars, DFAs and PDAs, pattern
matching, fixed-point algorithms

 Systems: Allocation & naming, synchronization,
locality

 Architecture: pipelines, instruction set use,
memory hierarchy management

Why Study Compilers? (5)

 You might even write a compiler some
day!

 You will write parsers and interpreters for
little languages if not bigger things

 Command languages, configuration files, XML,
network protocols, …

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-16

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-17

Structure of a Compiler

 First approximation

 Front end: analysis

 Read source program and understand its
structure and meaning

 Back end: synthesis

 Generate equivalent target language program

Source Target Front End Back End

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-18

Compiler must…

 recognize legal programs (& complain about
illegal ones)

 generate correct code

 manage storage of all variables/data

 agree with OS & linker on target format

Source Target Front End Back End

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-19

Implications

 Need some sort of Intermediate
Representation(s) (IR)

 Front end maps source into IR

 Back end maps IR to target machine code

 Often multiple IRs – higher level at first,
lower level in later phases

Source Target Front End Back End

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-20

Front End

 Normally split into two parts

 Scanner: Responsible for converting character
stream to token stream

 Also strips out white space, comments

 Parser: Reads token stream; generates IR

 Both of these can be generated automatically

 Source language specified by a formal grammar

 Tools read the grammar and generate scanner &
parser (either table-driven or hard-coded)

Scanner Parser
source tokens IR

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-21

Scanner Example

 Input text
// this statement does very little

if (x >= y) y = 42;

 Token Stream

 Notes: tokens are atomic items, not character
strings; comments & whitespace are not tokens
(not true of all languages, cf. Python)

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-22

Parser Output (IR)

 Many different forms

 Engineering tradeoffs have changed over
time (e.g., memory is (almost) free these days)

 Common output from a parser is an
abstract syntax tree

 Essential meaning of the program without
the syntactic noise

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-23

Parser Example

 Token Stream Input Abstract Syntax Tree

IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-24

Static Semantic Analysis

 During or (more common) after parsing

 Type checking

 Check language requirements like proper
declarations, etc.

 Preliminary resource allocation

 Collect other information needed by back
end analysis and code generation

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-25

Back End

 Responsibilities

 Translate IR into target machine code

 Should produce “good” code

 “good” = fast, compact, low power (pick some)

 Should use machine resources effectively

 Registers

 Instructions & function units

 Memory hierarchy

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-26

Back End Structure

 Typically split into two major parts
 “Optimization” – code improvements

 Usually works on lower-level IR than AST

 Code generation
 Instruction selection & scheduling

 Register allocation

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-27

The Result

 Input
if (x >= y)

 y = 42;

 Output

 mov eax,[ebp+16]

 cmp eax,[ebp-8]

 jl L17

 mov [ebp-8],42

L17:

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-28

Some History (1)

 1950’s. Existence proof
 FORTRAN I (1954) – competitive with

hand-optimized code

 1960’s
 New languages: ALGOL, LISP, COBOL,

SIMULA

 Formal notations for syntax, esp. BNF

 Fundamental implementation techniques
 Stack frames, recursive procedures, etc.

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-29

Some History (2)

 1970’s
 Syntax: formal methods for producing

compiler front-ends; many theorems

 Late 1970’s, 1980’s
 New languages (functional; object-oriented

- Smalltalk)

 New architectures (RISC machines, parallel
machines, memory hierarchy)

 More attention to back-end issues

Some History (3)

 1990s
 Techniques for compiling objects and

classes, efficiency in the presence of
dynamic dispatch and small methods (Self,
Smalltalk – now common in JVMs, etc.)

 Just-in-time compilers (JITs)

 Compiler technology critical to effective use
of new hardware (RISC, Itanium, parallel
machines, complex memory hierarchies)

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-30

Some History (4)

 Last decade

 Compilation techniques in many new
places

 Software analysis, verification, security

 Phased compilation – blurring the lines
between “compile time” and “runtime”

 Dynamic languages – e.g., JavaScript, …

 The new 800 lb gorilla - multicore

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-31

Compiler (and related) Turing
Awards

 1966 Alan Perlis

 1972 Edsger Dijkstra

 1974 Donald Knuth

 1976 Michael Rabin
and Dana Scott

 1977 John Backus

 1978 Bob Floyd

 1979 Ken Iverson

 1980 Tony Hoare

 1984 Niklaus Wirth

 1987 John Cocke

 1991 Robin Milner

 2001 Ole-Johan Dahl
and Kristen Nygaard

 2003 Alan Kay

 2005 Peter Naur

 2006 Fran Allen

 2008 Barbara Liskov

10/4/2011 © 2002-11 Hal Perkins & UW CSE 32

CSE P 501

 So what will this course cover?
 Only about 15% of you said “yes” for

having had a compiler course, and what
was covered was mixed, so…

 we will cover the basics, but quickly, then…

 we’ll explore more advanced things.

 If you are in that 15%, enjoy the review –
but I’m guessing that everyone will pick up
some new things

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-33

CSE P 501 Course Project

 Best way to learn about compilers is to
build (at least parts of) one

 Course project
 Mini Java compiler: classes, objects,

inheritance, etc.

 Generate executable x86(-64) code & run it

 Completed in steps through the quarter
 Intermediate steps to keep you on schedule

but where you wind up at the end is major part

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-34

Project Details

 Goal: large enough language to be interesting;
small enough to be tractable

 Project due in phases
 Final result is the main thing, but timeliness and quality

of intermediate work counts for something
 Final report & short meeting at end of the course

 Core requirements, then open-ended
 Reasonably open to alternatives; let’s discuss

 Have had people implement the compiler in C#, F# in
the past; Haskell, ML, other languages with lex/yacc –
like tools would make sense also

 Tools, etc. can’t be proprietary – we need copies to run
your code!

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-35

Project Groups

 You are encouraged to work in groups of 2
(or maybe 3)
 Suggestion: use class discussion board to find

partners

 Space for SVN or other repositories +
other shared files available on UW CSE
machines
 Use if desired; not required
 Please send mail to perkins@cs with your and

your partner’s CSE login ids if you want this

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-36

Programming Environments

 Whatever you want!
 But if you’re using Java, your code should compile

& run using standard Sun Oracle javac/java

 If you use C# or something else, you assume
some risk of the unknown
 We’ll provide what pointers we can, but…

 Work with other members of the class on infrastructure

 Class discussion list can be very helpful here

 If you’re looking for a Java IDE, try Eclipse
 Or netbeans, or <name your favorite>

 javac/java + emacs for the truly hardcore

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-37

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-38

Prerequisites

 Assume undergrad courses in:
 Data structures & algorithms

 Linked lists, dictionaries, trees, hash tables, graphs, &c

 Formal languages & automata
 Regular expressions, finite automata, context-free

grammars, maybe a little parsing

 Machine organization
 Assembly-level programming for some machine (not

necessarily x86)

 Gaps can usually be filled in
 But be prepared to put in extra time if needed

Requirements & Grading

 Roughly

 50% project

 20% individual written homework

 25% exam (scheduled Thursday evening
after Thanksgiving, Dec. 1, 6:30-8:00)

 5% other

 Homework submission online with
feedback via the dropbox or email

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-39

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-40

CSE P 501 Administrivia

 1 lecture per week
 Tuesday 6:30-9:20, CSE 305 + MSFT

 Carpools?

 Office Hours
 Perkins: after class, drop-ins, CSE 548

 Vasisht: Tue. 5:30-6:20, location tba

 Also appointments

 Suggestions for other times/locations?

CSE P 501 Web

 Everything is (or will be) at
 www.cs.washington.edu/csep501

 Lecture slides will be on the course web by mid-
afternoon before each class
 Printed copies available in class at UW, but you may

want to read or print in advance

 Live video during class
 But do try to join us (questions, etc.) – it’s lonely

talking to an empty room! (& not as good for you)

 Archived video and slides from class will be posted
a day or two later

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-41

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-42

Communications

 Course web site

 Mailing list
 You are automatically subscribed if you are enrolled

 Your UW netid email – forward if needed

 Will try to keep this fairly low-volume; limited to things that
everyone needs to read

 Link is on course web page

 Discussion board
 Also linked from course web

 Use for anything relevant to the course – let’s try to build a
community

 Can configure to have postings sent via email

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-43

Books

 Four good books (all on engr lib Reserve):

 Aho, Lam, Sethi, Ullman, “Dragon Book”, 2nd
ed (but 1st ed is also fine)

 Appel, Modern Compiler Implementation in
Java, 2nd ed.

 Cooper & Torczon, Engineering a Compiler

 Fisher, Cryton, LeBlanc, Crafting a Compiler
 Cooper/Torczon book is the “official” text, but all would work &

we’ll draw on all (and more). Older editions are generally okay.

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-44

Academic Integrity

 We want a cooperative group working
together to do great stuff!
 Possibilities include bounties for first person to

solve vexing problems

 But: you must never misrepresent work done
by someone else as your own, without proper
credit
 OK to share ideas & help each other out, but your

project should ultimately be created by your group
& solo homework / test should be your own

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-45

Any questions?

 Your job is to ask questions to be sure
you understand what’s happening and
to slow me down

 Otherwise, I’ll barrel on ahead

10/4/2011 © 2002-11 Hal Perkins & UW CSE A-46

Coming Attractions

 Review of formal grammars

 Lexical analysis – scanning

 Background for first part of the project

 Followed by parsing …

 Good time to read the first couple of
chapters of (any of) the book(s)

