
10/18/2011 © 2002-11 Hal Perkins & UW CSE F-1

CSE P 501 – Compilers

LL and Recursive-Descent Parsing

Hal Perkins

Autumn 2011

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-2

Agenda

 Top-Down Parsing

 Predictive Parsers

 LL(k) Grammars

 Recursive Descent

 Grammar Hacking

 Left recursion removal

 Factoring

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-3

Basic Parsing Strategies (1)

 Bottom-up

 Build up tree from leaves

 Shift next input or reduce a handle

 Accept when all input read and reduced to
start symbol of the grammar

 LR(k) and subsets (SLR(k), LALR(k), …)

remaining input

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-4

Basic Parsing Strategies (2)

 Top-Down

 Begin at root with start symbol of grammar

 Repeatedly pick a non-terminal and expand

 Success when expanded tree matches input

 LL(k)

A

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-5

Top-Down Parsing

 Situation: have completed part of a derivation

 S =>* wA =>* wxy

 Basic Step: Pick some production

 A ::= 1 2 … n

 that will properly expand A
to match the input
 Want this to be

deterministic A

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-6

Predictive Parsing

 If we are located at some non-terminal A,
and there are two or more possible
productions
 A ::=
 A ::=

 we want to make the correct choice by
looking at just the next input symbol

 If we can do this, we can build a predictive
parser that can perform a top-down parse
without backtracking

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-7

Example

 Programming language grammars are often
suitable for predictive parsing

 Typical example
 stmt ::= id = exp ; | return exp ;

 | if (exp) stmt | while (exp) stmt

 If the first part of the unparsed input begins
with the tokens

 IF LPAREN ID(x) …

 we should expand stmt to an if-statement

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-8

LL(k) Property

 A grammar has the LL(1) property if,
for all non-terminals A, if productions
A ::= and A ::= both appear in the
grammar, then it is the case that
 FIRST() FIRST() = Ø

 If a grammar has the LL(1) property,
we can build a predictive parser for it
that uses 1-symbol lookahead

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-9

LL(k) Parsers

 An LL(k) parser
 Scans the input Left to right

 Constructs a Leftmost derivation

 Looking ahead at most k symbols

 1-symbol lookahead is enough for
many practical programming language
grammars
 LL(k) for k>1 is rare in practice

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-10

Table-Driven LL(k) Parsers

 As with LR(k), a table-driven parser can be
constructed from the grammar

 Example

 1. S ::= (S) S

 2. S ::= [S] S

 3. S ::= ε

 Table
() [] $

S 1 3 2 3 3

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-11

LL vs LR (1)

 Table-driven parsers for both LL and
LR can be automatically generated by
tools

 LL(1) has to make a decision based on
a single non-terminal and the next
input symbol

 LR(1) can base the decision on the
entire left context (i.e., contents of the
stack) as well as the next input symbol

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-12

LL vs LR (2)

 LR(1) is more powerful than LL(1)

 Includes a larger set of languages

 (editorial opinion) If you’re going to
use a tool-generated parser, might as
well use LR

 But there are some very good LL parser
tools out there (ANTLR, JavaCC, …) that
might win for non- LL vs LR reasons

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-13

Recursive-Descent Parsers

 An advantage of top-down parsing is
that it is easy to implement by hand

 Key idea: write a function (procedure,
method) corresponding to each non-
terminal in the grammar

 Each of these functions is responsible for
matching its non-terminal with the next
part of the input

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-14

Example: Statements

 Grammar

stmt ::= id = exp ;
 | return exp ;
 | if (exp) stmt
 | while (exp) stmt

 Method for this grammar rule

// parse stmt ::= id=exp; | …

void stmt() {

 switch(nextToken) {

 RETURN: returnStmt(); break;

 IF: ifStmt(); break;

 WHILE: whileStmt(); break;

 ID: assignStmt(); break;

 }

}

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-15

Example (cont)

// parse while (exp) stmt
void whileStmt() {
 // skip “while (”
 getNextToken();
 getNextToken();

 // parse condition
 exp();

 // skip “)”
 getNextToken();

 // parse stmt
 stmt();
}

// parse return exp ;
void returnStmt() {
 // skip “return”
 getNextToken();

 // parse expression
 exp();

 // skip “;”
 getNextToken();
}

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-16

Invariant for Functions

 The parser functions need to agree on where
they are in the input

 Useful invariant: When a parser function is
called, the current token (next unprocessed
piece of the input) is the token that begins
the expanded non-terminal being parsed

 Corollary: when a parser function is done, it must
have completely consumed input correspond to
that non-terminal

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-17

Possible Problems

 Two common problems for recursive-
descent (and LL(1)) parsers

 Left recursion (e.g., E ::= E + T | …)

 Common prefixes on the right hand side
of productions

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-18

Left Recursion Problem

 Grammar rule

expr ::= expr + term

 | term

 And the bug is????

 Code

// parse expr ::= …

void expr() {

 expr();

 if (current token is
 PLUS) {

 getNextToken();

 term();

 }

}

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-19

Left Recursion Problem

 If we code up a left-recursive rule as-
is, we get an infinite recursion

 Non-solution: replace with a right-
recursive rule

 expr ::= term + expr | term

 Why isn’t this the right thing to do?

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-20

Left Recursion Solution

 Rewrite using right recursion and a new non-
terminal

 Original: expr ::= expr + term | term

 New
 expr ::= term exprtail

 exprtail ::= + term exprtail | ε

 Properties
 No infinite recursion if coded up directly

 Maintains left associatively (required)

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-21

Another Way to Look at This

 Observe that
 expr ::= expr + term | term

 generates the sequence
 (… ((term + term) + term) + …) + term

 We can sugar the original rule to show
this
 expr ::= term { + term }*

 This leads directly to parser code
 Just be sure to do the correct thing to handle

associativity as the terms are parsed

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-22

Code for Expressions (1)

// parse
// expr ::= term { + term }*
void expr() {
 term();
 while (next symbol is PLUS) {
 getNextToken();

 term()
 }
}

// parse

// term ::= factor { * factor }*

void term() {

 factor();

 while (next symbol is TIMES) {

 getNextToken();
 factor()

 }

}

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-23

Code for Expressions (2)

// parse
// factor ::= int | id | (expr)
void factor() {

 switch(nextToken) {

 case INT:
 process int constant;
 getNextToken();
 break;
 …

 case ID:

 process identifier;

 getNextToken();

 break;

 case LPAREN:

 getNextToken();

 expr();

 getNextToken();

 }

}

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-24

What About Indirect Left
Recursion?

 A grammar might have a derivation
that leads to a left recursion

 A => 1 =>* n => A

 There are systematic ways to factor
such grammars

 See any compiler or formal language book

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-25

Left Factoring

 If two rules for a non-terminal have
right hand sides that begin with the
same symbol, we can’t predict which
one to use

 Solution: Factor the common prefix
into a separate production

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-26

Left Factoring Example

 Original grammar

 stmt ::= if (expr) stmt

 | if (expr) stmt else stmt

 Factored grammar

 stmt ::= if (expr) stmt ifTail

 ifTail ::= else stmt | ε

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-27

Parsing if Statements

 But it’s easiest to just
code up the “else
matches closest if”
rule directly

// parse
// if (expr) stmt [else stmt]
void ifStmt() {
 getNextToken();
 getNextToken();
 expr();
 getNextToken();
 stmt();
 if (next symbol is ELSE) {
 getNextToken();
 stmt();
 }
}

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-28

Another Lookahead Problem

 In languages like FORTRAN, parentheses are
used for array subscripts

 A FORTRAN grammar includes something
like

 factor ::= id (subscripts) | id (arguments) | …

 When the parser sees “id (”, how can it
decide whether this begins an array element
reference or a function call?

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-29

Two Ways to Handle id (?)

 Use the type of id to decide

 Requires declare-before-use restriction if
we want to parse in 1 pass

 Use a covering grammar

 factor ::= id (commaSeparatedList) | …

 and fix later when more information is
available

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-30

Top-Down Parsing Concluded

 Works with a smaller set of grammars
than bottom-up, but can be done for
most sensible programming language
constructs

 If you need to write a quick-n-dirty
parser, recursive descent is often the
method of choice

10/18/2011 © 2002-11 Hal Perkins & UW CSE F-31

Parsing Concluded

 That’s it!

 On to the rest of the compiler

 Coming attractions

 Intermediate representations (ASTs etc.)

 Semantic analysis (including type
checking)

 Symbol tables

 & more…

