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Basic Parsing Strategies (1) 

 Bottom-up 

 Build up tree from leaves 

 Shift next input or reduce a handle 

 Accept when all input read and reduced to 
start symbol of the grammar 

 LR(k) and subsets (SLR(k), LALR(k), …) 

remaining input 
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Basic Parsing Strategies (2) 

 Top-Down 

 Begin at root with start symbol of grammar 

 Repeatedly pick a non-terminal and expand 

 Success when expanded tree matches input 

 LL(k) 

A 
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Top-Down Parsing 

 Situation: have completed part of a derivation 

 S =>* wA =>* wxy 

 Basic Step: Pick some production 

 A ::= 1 2 … n  

 that will properly expand A 
to match the input 
 Want this to be  

deterministic A 
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Predictive Parsing 

 If we are located at some non-terminal A, 
and there are two or more possible 
productions 
 A ::=  
 A ::=  

 we want to make the correct choice by 
looking at just the next input symbol 

 If we can do this, we can build a predictive 
parser  that can perform a top-down parse 
without backtracking 
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Example 

 Programming language grammars are often 
suitable for predictive parsing 

 Typical example 
 stmt ::= id = exp ; | return exp ;  

  | if ( exp ) stmt  | while ( exp ) stmt  

 If the first part of the unparsed input begins 
with the tokens 

  IF  LPAREN  ID(x) … 

 we should expand stmt  to an if-statement  
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LL(k) Property 

 A grammar has the LL(1) property if, 
for all non-terminals A, if productions 
A ::=  and A ::=  both appear in the 
grammar, then it is the case that 
 FIRST()    FIRST() = Ø  

 If a grammar has the LL(1) property, 
we can build a predictive parser for it 
that uses 1-symbol lookahead 
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LL(k) Parsers 

 An LL(k) parser 
 Scans the input Left to right 

 Constructs a Leftmost derivation 

 Looking ahead at most k symbols 

 1-symbol lookahead is enough for  
many practical programming language 
grammars 
 LL(k) for k>1 is rare in practice 
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Table-Driven LL(k) Parsers 

 As with LR(k), a table-driven parser can be 
constructed from the grammar 

 Example 

 1.  S ::= ( S  ) S 

 2.  S ::= [ S  ] S 

 3.  S ::= ε 

 Table 
( ) [ ] $ 

S 1 3 2 3 3 
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LL vs LR (1) 

 Table-driven parsers for both LL and 
LR can be automatically generated by 
tools 

 LL(1) has to make a decision based on 
a single non-terminal and the next 
input symbol 

 LR(1) can base the decision on the 
entire left context (i.e., contents of the 
stack) as well as the next input symbol 
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LL vs LR (2) 

  LR(1) is more powerful than LL(1) 

 Includes a larger set of languages 

  (editorial opinion) If you’re going to 
use a tool-generated parser, might as 
well use LR 

 But there are some very good LL parser 
tools out there (ANTLR, JavaCC, …) that 
might win for non- LL vs LR reasons 
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Recursive-Descent Parsers 

 An advantage of top-down parsing is 
that it is easy to implement by hand 

 Key idea: write a function (procedure, 
method) corresponding to each non-
terminal in the grammar 

 Each of these functions is responsible for 
matching its non-terminal with the next 
part of the input 
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Example: Statements 

 Grammar 

stmt ::= id = exp ; 
     | return exp ; 
     | if ( exp ) stmt 
     | while ( exp ) stmt  

 Method for this grammar rule 

// parse stmt ::= id=exp; | … 

void stmt( ) { 

  switch(nextToken) { 

 RETURN: returnStmt(); break; 

 IF:          ifStmt(); break; 

 WHILE:   whileStmt(); break; 

 ID:         assignStmt(); break; 

  } 

} 
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Example (cont) 

// parse while (exp) stmt 
void whileStmt() { 
 // skip “while (” 
 getNextToken(); 
 getNextToken(); 
 
 // parse condition 
 exp(); 
 
 // skip “)” 
 getNextToken(); 
 
 // parse stmt 
 stmt(); 
} 

// parse return exp ; 
void returnStmt() { 
 // skip “return” 
 getNextToken(); 
 
 // parse expression 
 exp(); 
 
 // skip “;” 
 getNextToken(); 
} 
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Invariant for Functions 

 The parser functions need to agree on where 
they are in the input 

 Useful invariant: When a parser function is 
called, the current token (next unprocessed 
piece of the input) is the token that begins 
the expanded non-terminal being parsed 

 Corollary: when a parser function is done, it must 
have completely consumed input correspond to 
that non-terminal 
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Possible Problems 

 Two common problems for recursive-
descent (and LL(1)) parsers 

 Left recursion (e.g., E ::= E  + T  | …) 

 Common prefixes on the right hand side 
of productions 
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Left Recursion Problem 

 Grammar rule 

expr ::= expr  + term 

  |  term 

 

 

 

 

 

 And the bug is???? 

 

 Code 

// parse expr ::= … 

void expr() { 

 expr(); 

 if (current token is 
                       PLUS) { 

  getNextToken(); 

  term(); 

 } 

} 
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Left Recursion Problem 

 If we code up a left-recursive rule as-
is, we get an infinite recursion 

 Non-solution: replace with a right-
recursive rule 

     expr ::= term + expr  |  term 

 Why isn’t this the right thing to do? 
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Left Recursion Solution 

 Rewrite using right recursion and a new non-
terminal 

 Original:  expr ::= expr + term  |  term 

 New 
 expr ::= term exprtail 

 exprtail ::= + term exprtail  |  ε 

 Properties 
 No infinite recursion if coded up directly 

 Maintains left associatively (required) 
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Another Way to Look at This 

 Observe that 
 expr ::= expr + term | term 

 generates the sequence 
 (… ((term + term) + term) + …) + term 

 We can sugar the original rule to show 
this 
 expr ::= term { + term }* 

 This leads directly to parser code 
 Just be sure to do the correct thing to handle 

associativity as the terms are parsed 
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Code for Expressions (1) 

// parse 
//    expr ::=  term { + term }* 
void expr() { 
 term(); 
 while (next symbol is PLUS) { 
  getNextToken();  

 term() 
 } 
} 

// parse 

//    term ::= factor { * factor }* 

void term() { 

 factor(); 

 while (next symbol is  TIMES) { 

  getNextToken();  
 factor() 

 } 

} 
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Code for Expressions (2) 

// parse  
//    factor ::= int | id | ( expr ) 
void factor() { 
   
  switch(nextToken) { 
 
 case INT: 
  process int constant; 
  getNextToken(); 
  break;  
 … 

 

 case ID: 

  process identifier; 

  getNextToken(); 

  break; 

 case LPAREN: 

  getNextToken(); 

  expr(); 

  getNextToken(); 

 } 

}  
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What About Indirect Left 
Recursion? 

 A grammar might have a derivation 
that leads to a left recursion 

 A => 1 =>* n => A  

 There are systematic ways to factor 
such grammars 

 See any compiler or formal language book 
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Left Factoring 

 If two rules for a non-terminal have 
right hand sides that begin with the 
same symbol, we can’t predict which 
one to use 

 Solution: Factor the common prefix 
into a separate production 
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Left Factoring Example 

 Original grammar 

 stmt ::= if ( expr  ) stmt 

    | if ( expr  ) stmt  else stmt 

 Factored grammar 

 stmt  ::= if ( expr  ) stmt  ifTail 

 ifTail  ::= else stmt  | ε  
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Parsing if Statements 

 But it’s easiest to just 
code up the “else 
matches closest if” 
rule directly 

// parse  
//     if (expr) stmt [ else stmt ] 
void ifStmt() { 
 getNextToken(); 
 getNextToken(); 
 expr(); 
 getNextToken(); 
 stmt(); 
 if (next symbol is ELSE) { 
  getNextToken(); 
  stmt(); 
 } 
} 



10/18/2011 © 2002-11 Hal Perkins & UW CSE F-28 

Another Lookahead Problem 

 In languages like FORTRAN, parentheses are 
used for array subscripts 

 A FORTRAN grammar includes something 
like 

 factor ::= id ( subscripts  ) | id ( arguments ) | …  

 When the parser sees “id (”, how can it 
decide whether this begins an array element 
reference or a function call?   
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Two Ways to Handle id ( ? ) 

 Use the type of id  to decide 

 Requires declare-before-use restriction if 
we want to parse in 1 pass 

 Use a covering grammar 

 factor ::= id ( commaSeparatedList  ) | … 

 and fix later when more information is 
available 
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Top-Down Parsing Concluded 

 Works with a smaller set of grammars 
than bottom-up, but can be done for 
most sensible programming language 
constructs 

 If you need to write a quick-n-dirty 
parser, recursive descent is often the 
method of choice 
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Parsing Concluded 

 That’s it!   

 On to the rest of the compiler 

 Coming attractions 

 Intermediate representations (ASTs etc.) 

 Semantic analysis (including type 
checking) 

 Symbol tables 

 & more… 


