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Agenda 

 Parser Semantic Actions 

 Intermediate Representations 

 Abstract Syntax Trees (ASTs) 

 Linear Representations 

 & more 
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Compiler Structure (review) 

Source Target 

Scanner 

Parser 
Middle 

(optimization) 

Code Gen 

characters 

tokens 

IR 

IR (maybe different) 

Assembly or binary code 
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What’s a Parser to Do? 

 Idea: at significant points in the parse 
perform a semantic action  

 Typically when a production is reduced (LR) or at 
a convenient point in the parse (LL) 

 Typical semantic actions 

 Build (and return) a representation of the parsed 
chunk of the input (compiler)  

 Perform some sort of computation and return 
result (interpreter) 



Intermediate Representations 

 In most compilers, the parser builds an 
intermediate representation of the 
program 

 Rest of the compiler transforms the IR to 
improve (“optimize”) it and eventually 
translates it to final code 
 Often will transform initial IR to one or more 

different IRs along the way 

 Some general examples now; specific 
examples as we cover later topics 
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IR Design 

 Decisions affect speed and efficiency of the 
rest of the compiler 

 Desirable properties 
 Easy to generate 
 Easy to manipulate 
 Expressive 
 Appropriate level of abstraction 

 Different tradeoffs depending on compiler 
goals 

 Different tradeoffs in different parts of the 
same compiler 
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IR Design Taxonomy 

 Structure 

 Graphical (trees, DAGs, etc.) 

 Linear (code for some abstract machine) 

 Hybrids are common (e.g., control-flow 
graphs) 

 Abstraction Level 

 High-level, near to source language 

 Low-level, closer to machine 
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Levels of Abstraction 

 Key design decision: how much detail 
to expose 

 Affects possibility and profitability of 
various optimizations 

 Structural IRs are typically fairly high-level 

 Linear IRs are typically low-level 

 But these generalizations don’t always 
hold 
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Examples: Array Reference 

 A[i,j] 

 

 

 

 
 

or 

 t1  A[i,j] 

loadI   1   => r1 

sub  rj,r1  => r2 

loadI  10  => r3 

mult r2,r3 => r4 

sub  ri,r1  => r5 

add  r4,r5 => r6 

loadI @A  => r7 

add  r7,r6 => r8 

load r8     => r9 

subscript 

A i j 
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Structural IRs 

 Typically reflect source (or other 
higher-level) language structure 

 Tend to be large 

 Examples: syntax trees, DAGs 

 Generally used in early phases of 
compilers 
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Concrete Syntax Trees 

 The full grammar is needed to guide the 
parser, but contains many extraneous details 

 Chain productions 

 Rules that control precedence and associativity 

 Typically the full syntax tree does not need 
to be used explicitly 
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Syntax Tree Example 

 Concrete syntax for x=2*(n+m); 

expr ::= expr + term | expr – term | term 

term ::= term * factor | term / factor | factor 

factor ::= int | id  |  ( expr ) 



Abstract Syntax Trees 

 Want only essential structural information 
 Omit extraneous junk 

 Can be represented explicitly as a tree or 
in a linear form 
 Example: LISP/Scheme S-expressions are 

essentially ASTs 

 Common output from parser; used for 
static semantics (type checking, etc.) and 
high-level optimizations 
 Usually lowered for later compiler phases 
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AST Example 

 AST for x=2*(n+m); 



Directed Acyclic Graphs 

 DAGs are often used to identify 
common subexpressions 

 Not necessarily a primary representation, 
compiler might build dag then translate 
back after some code improvement 

 Leaves = operands 

 Interior nodes = operators 
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Expression DAG example 

 DAG for  a + a * (b – c) + (b – c) * d 
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Linear IRs 

 Pseudo-code for some abstract 
machine 

 Level of abstraction varies 

 Simple, compact data structures 

 Commonly used: arrays, linked structures 

 Examples: three-address code, stack 
machine code 



Abstraction Levels in Linear IR 

 Linear IRs can also be close to the 
source language, very low-level, or 
somewhere in between. 

 Example: Linear IRs for C array 
reference a[i][j+2]     (from Muchnick, sec. 4.2) 

 

 High-level:  t1  a[i,j+1] 
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IRs for a[i,j+2], cont. 

 Medium-level 

t1  j + 2 

t2  i * 20 

t3  t1 + t2 

t4  4 * t3 

t5  addr a 

t6  t5 + t4 

t7  *t6 

 Low-level 

r1  [fp-4] 

r2   r1 + 2 

r3  [fp-8] 

r4  r3 * 20 

r5  r4 + r2 

r6  4 * r5 

r7  fp – 216 

f1  [r7+r6] 
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Abstraction Level Tradeoffs 

 High-level: good for source 
optimizations, semantic checking 

 Low-level: need for good code 
generation and resource utilization in 
back end; many optimizing compilers 
work at this level for middle/back ends 

 Medium-level: fine for optimization and 
most other middle/back-end purposes 
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Three-Address code 

 Usual form: x  y (op) z 

 One operator 

 Maximum of three names 

 Example: x=2*(n+m); becomes 

 t1  n + m 

 t2  2 * t1 

 x  t2 

 Invent as many new temporary names as neeeded 
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Three Address Code 

 Advantages 
 Resembles code for actual machines 

 Explicitly names intermediate results 

 Compact 

 Often easy to rearrange 

 Various representations 
 Quadruples, triples, SSA 

 We will see much more of this… 



Stack Machine Code 

 Originally used for stack-based computers 
(famous example: B5000, ca 1961 et seq) 

 Now used for Java (.class files), C# (MSIL), 
others 

 Advantages 
 Very compact; mostly 0-address opcodes 

 Easy to generate 

 Simple to translate to machine code or interpret 
directly 

 And a good starting point for generating optimized code 
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Stack Code Example 

 Hypothetical code for x=2*(n+m); 

 pushaddr    x 

 pushconst   2 

 pushval      n 

 pushval      m 

 add 

 mult 

 store 
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Hybrid IRs 

 Combination of structural and linear 

 Level of abstraction varies 

 Most common example: control-flow 
graph 

 Nodes: basic blocks 

 Edge from B1 to B2 if execution can flow 
from B1 to B2 



Basic Blocks 

 Fundamental unit in IRs 

 Definition: a basic block is a maximal 
sequence of instructions entered at the 
first instruction and exited at the last 

 i.e., if the first instruction is executed, all 
of them will be (modulo exceptions) 
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Identifying Basic Blocks 

 Easy to do with a scan of the linear 
instruction stream 

 A basic blocks begins at each 
instruction that is: 

 The beginning of a routine 

 The target of a branch 

 Immediately following a branch or return 
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What IR to Use? 

 Common choice: all(!) 

 AST or other structural representation built by 
parser and used in early stages of the compiler 

 Closer to source code 

 Good for semantic analysis 

 Facilitates some higher-level optimizations 

 Lower to linear IR for later stages of compiler 

 Closer to machine code 

 Exposes machine-related optimizations  

 Use to build control-flow graph 
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Coming Attractions 

 Representing ASTs 

 Working with ASTs 

 Where do the algorithms go? 

 Is it really object-oriented?  (Does it matter?) 

 Visitor pattern 

 Then: semantic analysis, type 
checking, and symbol tables 


