
10/18/2011 © 2002-11 Hal Perkins & UW CSE G-1

CSE P 501 – Compilers

Intermediate Representations

Hal Perkins

Autumn 2011

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-2

Agenda

 Parser Semantic Actions

 Intermediate Representations

 Abstract Syntax Trees (ASTs)

 Linear Representations

 & more

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-3

Compiler Structure (review)

Source Target

Scanner

Parser
Middle

(optimization)

Code Gen

characters

tokens

IR

IR (maybe different)

Assembly or binary code

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-4

What’s a Parser to Do?

 Idea: at significant points in the parse
perform a semantic action

 Typically when a production is reduced (LR) or at
a convenient point in the parse (LL)

 Typical semantic actions

 Build (and return) a representation of the parsed
chunk of the input (compiler)

 Perform some sort of computation and return
result (interpreter)

Intermediate Representations

 In most compilers, the parser builds an
intermediate representation of the
program

 Rest of the compiler transforms the IR to
improve (“optimize”) it and eventually
translates it to final code
 Often will transform initial IR to one or more

different IRs along the way

 Some general examples now; specific
examples as we cover later topics

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-5

IR Design

 Decisions affect speed and efficiency of the
rest of the compiler

 Desirable properties
 Easy to generate
 Easy to manipulate
 Expressive
 Appropriate level of abstraction

 Different tradeoffs depending on compiler
goals

 Different tradeoffs in different parts of the
same compiler

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-6

IR Design Taxonomy

 Structure

 Graphical (trees, DAGs, etc.)

 Linear (code for some abstract machine)

 Hybrids are common (e.g., control-flow
graphs)

 Abstraction Level

 High-level, near to source language

 Low-level, closer to machine

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-7

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-8

Levels of Abstraction

 Key design decision: how much detail
to expose

 Affects possibility and profitability of
various optimizations

 Structural IRs are typically fairly high-level

 Linear IRs are typically low-level

 But these generalizations don’t always
hold

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-9

Examples: Array Reference

 A[i,j]

or

 t1 A[i,j]

loadI 1 => r1

sub rj,r1 => r2

loadI 10 => r3

mult r2,r3 => r4

sub ri,r1 => r5

add r4,r5 => r6

loadI @A => r7

add r7,r6 => r8

load r8 => r9

subscript

A i j

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-10

Structural IRs

 Typically reflect source (or other
higher-level) language structure

 Tend to be large

 Examples: syntax trees, DAGs

 Generally used in early phases of
compilers

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-11

Concrete Syntax Trees

 The full grammar is needed to guide the
parser, but contains many extraneous details

 Chain productions

 Rules that control precedence and associativity

 Typically the full syntax tree does not need
to be used explicitly

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-12

Syntax Tree Example

 Concrete syntax for x=2*(n+m);

expr ::= expr + term | expr – term | term

term ::= term * factor | term / factor | factor

factor ::= int | id | (expr)

Abstract Syntax Trees

 Want only essential structural information
 Omit extraneous junk

 Can be represented explicitly as a tree or
in a linear form
 Example: LISP/Scheme S-expressions are

essentially ASTs

 Common output from parser; used for
static semantics (type checking, etc.) and
high-level optimizations
 Usually lowered for later compiler phases

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-13

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-14

AST Example

 AST for x=2*(n+m);

Directed Acyclic Graphs

 DAGs are often used to identify
common subexpressions

 Not necessarily a primary representation,
compiler might build dag then translate
back after some code improvement

 Leaves = operands

 Interior nodes = operators

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-15

Expression DAG example

 DAG for a + a * (b – c) + (b – c) * d

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-16

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-17

Linear IRs

 Pseudo-code for some abstract
machine

 Level of abstraction varies

 Simple, compact data structures

 Commonly used: arrays, linked structures

 Examples: three-address code, stack
machine code

Abstraction Levels in Linear IR

 Linear IRs can also be close to the
source language, very low-level, or
somewhere in between.

 Example: Linear IRs for C array
reference a[i][j+2] (from Muchnick, sec. 4.2)

 High-level: t1 a[i,j+1]

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-18

IRs for a[i,j+2], cont.

 Medium-level

t1 j + 2

t2 i * 20

t3 t1 + t2

t4 4 * t3

t5 addr a

t6 t5 + t4

t7 *t6

 Low-level

r1 [fp-4]

r2 r1 + 2

r3 [fp-8]

r4 r3 * 20

r5 r4 + r2

r6 4 * r5

r7 fp – 216

f1 [r7+r6]

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-19

Abstraction Level Tradeoffs

 High-level: good for source
optimizations, semantic checking

 Low-level: need for good code
generation and resource utilization in
back end; many optimizing compilers
work at this level for middle/back ends

 Medium-level: fine for optimization and
most other middle/back-end purposes

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-20

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-21

Three-Address code

 Usual form: x y (op) z

 One operator

 Maximum of three names

 Example: x=2*(n+m); becomes

 t1 n + m

 t2 2 * t1

 x t2

 Invent as many new temporary names as neeeded

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-22

Three Address Code

 Advantages
 Resembles code for actual machines

 Explicitly names intermediate results

 Compact

 Often easy to rearrange

 Various representations
 Quadruples, triples, SSA

 We will see much more of this…

Stack Machine Code

 Originally used for stack-based computers
(famous example: B5000, ca 1961 et seq)

 Now used for Java (.class files), C# (MSIL),
others

 Advantages
 Very compact; mostly 0-address opcodes

 Easy to generate

 Simple to translate to machine code or interpret
directly

 And a good starting point for generating optimized code

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-23

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-24

Stack Code Example

 Hypothetical code for x=2*(n+m);

 pushaddr x

 pushconst 2

 pushval n

 pushval m

 add

 mult

 store

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-25

Hybrid IRs

 Combination of structural and linear

 Level of abstraction varies

 Most common example: control-flow
graph

 Nodes: basic blocks

 Edge from B1 to B2 if execution can flow
from B1 to B2

Basic Blocks

 Fundamental unit in IRs

 Definition: a basic block is a maximal
sequence of instructions entered at the
first instruction and exited at the last

 i.e., if the first instruction is executed, all
of them will be (modulo exceptions)

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-26

Identifying Basic Blocks

 Easy to do with a scan of the linear
instruction stream

 A basic blocks begins at each
instruction that is:

 The beginning of a routine

 The target of a branch

 Immediately following a branch or return

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-27

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-28

What IR to Use?

 Common choice: all(!)

 AST or other structural representation built by
parser and used in early stages of the compiler

 Closer to source code

 Good for semantic analysis

 Facilitates some higher-level optimizations

 Lower to linear IR for later stages of compiler

 Closer to machine code

 Exposes machine-related optimizations

 Use to build control-flow graph

10/18/2011 © 2002-11 Hal Perkins & UW CSE G-29

Coming Attractions

 Representing ASTs

 Working with ASTs

 Where do the algorithms go?

 Is it really object-oriented? (Does it matter?)

 Visitor pattern

 Then: semantic analysis, type
checking, and symbol tables

