
10/25/2011 © 2002-11 Hal Perkins & UW CSE J-1

CSE P 501 – Compilers

x86 Lite for Compiler Writers

Hal Perkins

Autumn 2011

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-2

Agenda

 Learn/review x86 architecture

 Core 32-bit part only for now

 Ignore crufty, backward-compatible things

 Look at x86-64 extensions later

 Suggest either 32- or 64-bit x86 as compiler target
for project (tradeoffs either way)

 If you want to try something else (ARM, MIPS, ?), let’s talk

 After we’ve reviewed the x86 we’ll look at
how to map language constructs to code

x86 Selected History

 30 Years of x86
 1978: 8086 – 16-bit processor, segmentation
 1982: 80286 – protected mode, floating point
 1985: 80386 – 32-bit architecture, “general-purpose”

register set, VM
 1993: Pentium – mmx
 1999: Pentium III – SSE
 2000: Pentium IV – SSE2, SSE3, HT, virtualization
 2006: Core Duo, Core 2 – Multicore, SSE4+, x86-64
 2008: Atom, i7, …

 Many internal implementation changes, pipelining,
concurrency, &c

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-3

And It’s Backward-Compatible!

 Current processors can run 8086 code (!)
 (You can get VisiCalc 1.0 on the web!)

 The Intel descriptions of the architecture are
loaded down with modes and flags that
obscure the modern, fairly simple 32-bit and
64-bit processor models

 Modern processors have a RISC-like core
 Simple, register-register & load/store architecture
 Simple x86 instructions preferred; complex CICS

instructions supported
 We’ll focus on the basic 32-bit core instructions for now

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-4

x86 Assembler

 The nice thing about standards…
 Two main assembler languages for x86:

 Intel/Microsoft– what’s in the documentation
 GNU / AT&T syntax (Linux, OS X)

 Use gcc –S to generate examples from C/C++ code

 You can use either for your project

 Slides use Intel descriptions
 Brief information later on differences

 Main changes: dst,src reversed, data types in
gnu opcodes, various syntactic annoyances

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-5

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-6

Intel ASM Statements

 Format is

 optLabel: opcode operands ; comment

 optLabel is an optional label

 opcode and operands make up the assembly
language instruction

 Anything following a ‘;’ is a comment

 Language is very free-form

 Comments and labels may appear on separate
lines by themselves (we’ll take advantage of this)

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-7

x86 Memory Model

 8-bit bytes, byte addressable

 16-, 32-, 64-bit words, doublewords,
and quadwords

 Data should almost always be aligned on
“natural” boundaries; huge performance
penalty on modern processors if it isn’t

 Little-endian – address of a 4-byte
integer is address of low-order byte

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-8

x86 Processor Registers

 8 32-bit, mostly general purpose registers

 eax, ebx, ecx, edx, esi, edi, ebp (base pointer),
esp (stack pointer)

 Other registers, not directly addressable

 32-bit eflags register

 Holds condition codes, processor state, etc.

 32-bit “instruction pointer” eip

 Holds address of first byte of next instruction to execute

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-9

Processor Fetch-Execute Cycle

 Basic cycle (same as every processor you’ve
ever seen)

 while (running) {

 fetch instruction beginning at eip address

 eip <- eip + instruction length

 execute instruction

 }

 Sequential execution unless a jump stores a
new “next instruction” address in eip

Instruction Format

 Typical data manipulation instruction
 opcode dst,src

 Meaning is
 dst <- dst op src

 Normally, one operand is a register, the
other is a register, memory location, or
integer constant
 Can’t have both operands in memory – can’t

encode two separate memory addresses

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-10

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-11

x86 Memory Stack

 Register esp points to the “top” of stack
 Dedicated for this use; don’t use otherwise

 Points to the last 32-bit doubleword
pushed onto the stack (not next “free”
one)

 Should always be doubleword aligned
 It will start out this way, and will stay aligned

unless your code does something bad

 Stack grows down

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-12

Stack Instructions

push src
 esp <- esp – 4; memory[esp] <- src

(e.g., push src onto the stack)

pop dst
 dst <- memory[esp]; esp <- esp + 4

(e.g., pop top of stack into dst and logically
remove it from the stack)

 These are highly optimized and heavily used
 32-bit function call protocol is stack-based

 32-bit x86 doesn’t have enough registers, so the
stack is frequently used for temporary space

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-13

Stack Frames

 When a method is called, a stack frame is
traditionally allocated on the top of the stack
to hold its local variables

 Frame is popped on method return

 By convention, ebp (base pointer) points to a
known offset into the stack frame
 Local variables referenced relative to ebp

 (This is often optimized to use esp-relative
references instead. Frees up ebp, needs
additional bookkeeping at compile time.)

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-14

Operand Address Modes (1)

 These should cover most of what we’ll need

 mov eax,17 ; store 17 in eax

 mov eax,ecx ; copy ecx to eax

 mov eax,[ebp-12] ; copy memory to eax

 mov [ebp+8],eax ; copy eax to memory

 References to object fields work similarly –
put the object’s memory address in a register
and use that address plus field offset

Operand Address Modes (2)

 In full generality, a memory address can combine
the contents of two registers (with one being
scaled) plus a constant displacement:
 [basereg + index*scale + constant]
 Scale can be 2, 4, 8

 Main use is for array subscripting
 Example: suppose

 Array of 4-byte ints, address of the array A is in ecx,
subscript i is in eax

 Code to store edx in A[i]
 mov [ecx+eax*4],edx ;; and we didn’t even use the offset!

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-15

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-16

dword ptr – Intel assembler

 Obscure, but sometimes necessary…
 If the assembler can’t figure out the size

of the operands to move, you can
explicitly tell it to move 32 bits with the
qualifier “dword ptr”
 mov dword ptr [eax+16],[ebp-8]
 Use this if the assembler complains; otherwise

ignore
 Not an issue in GNU asembler – different

opcode mnemonics for different operand sizes

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-17

Basic Data Movement and
Arithmetic Instructions

mov dst,src

 dst <- src

add dst,src

 dst <- dst + src

sub dst,src

 dst <- dst – src

inc dst

 dst <- dst + 1

dec dst

 dst <- dst - 1

neg dst

 dst <- - dst
(2’s complement
arithmetic negation)

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-18

Integer Multiply and Divide

imul dst,src

 dst <- dst * src

 32-bit product

 dst must be a register

imul dst,src,imm8

 dst <- dst*src*imm8

 imm8 – 8 bit constant

 Obscure, but useful for
optimizing array refs

 There are other mul
instructions – see docs

idiv src

 Divide edx:eax by src
(edx:eax holds sign-
extended 64-bit value;
cannot use other
registers for division)

 eax <- quotient

 edx <- remainder

cdq

 edx:eax <- 64-bit sign
extended copy of eax

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-19

Bitwise Operations

and dst,src

 dst <- dst & src

or dst,src

 dst <- dst | src

xor dst,src

 dst <- dst ^ src

not dst

 dst <- ~ dst
(logical or 1’s
complement)

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-20

Shifts and Rotates

shl dst,count
 dst shifted left count

bits

shr dst,count
 dst <- dst shifted

right count bits (0
fill)

sar dst,count
 dst <- dst shifted

right count bits (sign
bit fill)

rol dst,count
 dst <- dst rotated

left count bits

ror dst,count
 dst <- dst rotated

right count bits

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-21

Uses for Shifts and Rotates

 Can often be used to optimize multiplication
and division by small constants

 If you’re interested, look at “Hacker’s Delight” by
Henry Warren, A-W, 2003

 Lots of very cool bit fiddling and other algorithms

 But be careful – be sure semantics are OK

 There are additional instructions that shift
and rotate double words, use a calculated
shift amount instead of a constant, etc.

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-22

Load Effective Address

 The unary & operator in C
 lea dst,src ; dst <- address of src

 dst must be a register

 Address of src includes any address
arithmetic or indexing

 Useful to capture addresses for pointers,
reference parameters, etc.

 Also useful for computing arithmetic
expressions that match r1+scale*r2+const

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-23

Control Flow - GOTO

 At this level, all we have is goto and
conditional goto

 Loops and conditional statements are
synthesized from these

 Optimization note: random jumps play havoc
with pipeline efficiency; much work is done in
modern compilers and processors to minimize
this impact

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-24

Unconditional Jumps

jmp dst

 eip <- address of dst

 Assembly language notes:

 dst will be a label

 Can have multiple labels on separate lines
preceding an instruction

 Convenient in compiler-generated asm lang.

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-25

Conditional Jumps

 Most arithmetic instructions set “condition
code” bits in eflags to record information
about the result (zero, non-zero, positive,
etc.)

 True of add, sub, and, or; but not imul or idiv

 Other instructions that set eflags

cmp dst,src ; compare dst to src

test dst,src ; calculate dst & src (logical
 ; and); doesn’t change either

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-26

Conditional Jumps Following
Arithmetic Operations

jz label ; jump if result == 0
jnz label ; jump if result != 0
jg label ; jump if result > 0
jng label ; jump if result <= 0
jge label ; jump if result >= 0
jnge label ; jump if result < 0
jl label ; jump if result < 0
jnl label ; jump if result >= 0
jle label ; jump if result <= 0
jnle label ; jump if result > 0

 Obviously, the assembler is providing multiple opcode

mnemonics for several of these instructions

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-27

Compare and Jump
Conditionally

 Want: compare two operands and jump
if a relationship holds between them

 Would like to do this
 jmpcond op1,op2,label

 but can’t, because 3-address
instructions can’t be encoded in x86

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-28

cmp and jcc

 Instead, use a 2-instruction sequence

 cmp op1,op2

 jcc label

 where jcc is a conditional jump that is
taken if the result of the comparison
matches the condition cc

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-29

Conditional Jumps Following
Arithmetic Operations

je label ; jump if op1 == op2
jne label ; jump if op1 != op2
jg label ; jump if op1 > op2
jng label ; jump if op1 <= op2
jge label ; jump if op1 >= op2
jnge label ; jump if op1 < op2
jl label ; jump if op1 < op2
jnl label ; jump if op1 >= op2
jle label ; jump if op1 <= op2
jnle label ; jump if op1 > op2

 Again, the assembler is mapping more than one mnemonic to

some machine instructions

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-30

Function Call and Return

 The x86 instruction set itself only provides for
transfer of control (jump) and return

 Stack is used to capture return address and
recover it

 Everything else – parameter passing, stack
frame organization, register usage – is a
matter of convention and not defined by the
hardware

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-31

call and ret Instructions

call label

 Push address of next instruction and jump

 esp <- esp – 4; memory[esp] <- eip
eip <- address of label

ret

 Pop address from top of stack and jump

 eip <- memory[esp]; esp <- esp + 4

 WARNING! The word on the top of the stack had
better be an address, not some leftover data

enter and leave

 Complex instructions for languages with
nested procedures
 enter can be slow on current CPUs – best

avoided
 i.e., don’t use it in your project

 leave is equivalent to
mov esp,ebp

pop ebp

and is generated by many compilers. Fits in 1
byte, saves space. Not clear if it’s any faster.

10/25/2011 © 2002-10 Hal Perkins & UW CSE J-32

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-33

Win 32 C Function Call
Conventions

 Wintel code obeys the following
conventions for C programs
 Note: calling conventions normally

designed very early in the instruction set/
basic software design. Hard (e.g., basically
impossible) to change later.

 C++ augments these conventions to
include the “this” pointer

 We’ll use these conventions in our code

Win32 C Register Conventions

 These registers must be restored to their
original values before a function returns, if they
are altered during execution
 esp, ebp, ebx, esi, edi
 Traditional: push/pop from stack to save/restore

 A function may use the other registers (eax,
ecx, edx) without having to save/restore

 A 32-bit function result is expected to be in eax
when the function returns

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-34

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-35

Call Site

 Caller is responsible for

 Pushing arguments on the stack from right
to left (allows implementation of varargs)

 Execute call instruction

 Pop arguments from stack after return

 For us, this means add 4*(# arguments) to esp
after the return, since everything is either a 32-
bit variable (int, bool), or a reference (pointer)

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-36

Call Example

n = sumOf(17,42)

 push 42 ; push args

 push 17

 call sumOf ; jump &

 ; push addr

 add esp,8 ; pop args

 mov [ebp+offsetn],eax ; store result

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-37

Callee

 Called function must do the following
 Save registers if necessary

 Allocate stack frame for local variables

 Execute function body

 Ensure result of non-void function is in eax

 Restore any required registers if necessary

 Pop the stack frame

 Return to caller

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-38

Win32 Function Prologue

 The code that needs to be executed before
the statements in the body of the function
are executed is referred to as the prologue

 For a Win32 function f, it looks like this:
f: push ebp ; save old frame pointer
 mov ebp,esp ; new frame ptr is top of
 ; stack after arguments and
 ; return address are pushed
 sub esp,”# bytes needed”
 ; allocate stack frame (size
 ; must be multiple of 4)

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-39

Win32 Function Epilogue

 The epilogue is the code that is executed for a return
statement (or if execution “falls off” the bottom of a
void function)

 For a Win32 function, it looks like this:
 mov eax,”function result”

 ; put result in eax if not already

 ; there (if non-void function)

 mov esp,ebp ; restore esp to old value

 ; before stack frame allocated

 pop ebp ; restore ebp to caller’s value

 ret ; return to caller

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-40

Example Function

 Source code

 int sumOf(int x, int y) {

 int a, int b;

 a = x;

 b = a + y;

 return b;

 }

int sumOf(int x, int y) {
 int a, int b;
 a = x;
 b = a + y;
 return b;
}

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-41

Stack Frame for sumOf

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-42

Assembly Language Version

;; int sumOf(int x, int y) {
;; int a, int b;
sumOf:
 push ebp ; prologue
 mov ebp,esp
 sub esp, 8

;; a = x;
 mov eax,[ebp+8]
 mov [ebp-4],eax

;; b = a + y;
 mov eax,[ebp-4]
 add eax,[ebp+12]
 mov [ebp-8],eax

;; return b;
 mov eax,[ebp-8]
 mov esp,ebp
 pop ebp
 ret
;; }

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-43

Coming Attractions

 Now that we’ve got a basic idea of the
x86 instruction set, we need to map
language constructs to x86

 Code Shape

 Then on to basic code generation and
execution

 And later, optimizations

