
10/25/2011 © 2002-11 Hal Perkins & UW CSE J-1

CSE P 501 – Compilers

x86 Lite for Compiler Writers

Hal Perkins

Autumn 2011

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-2

Agenda

 Learn/review x86 architecture

 Core 32-bit part only for now

 Ignore crufty, backward-compatible things

 Look at x86-64 extensions later

 Suggest either 32- or 64-bit x86 as compiler target
for project (tradeoffs either way)

 If you want to try something else (ARM, MIPS, ?), let’s talk

 After we’ve reviewed the x86 we’ll look at
how to map language constructs to code

x86 Selected History

 30 Years of x86
 1978: 8086 – 16-bit processor, segmentation
 1982: 80286 – protected mode, floating point
 1985: 80386 – 32-bit architecture, “general-purpose”

register set, VM
 1993: Pentium – mmx
 1999: Pentium III – SSE
 2000: Pentium IV – SSE2, SSE3, HT, virtualization
 2006: Core Duo, Core 2 – Multicore, SSE4+, x86-64
 2008: Atom, i7, …

 Many internal implementation changes, pipelining,
concurrency, &c

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-3

And It’s Backward-Compatible!

 Current processors can run 8086 code (!)
 (You can get VisiCalc 1.0 on the web!)

  The Intel descriptions of the architecture are
loaded down with modes and flags that
obscure the modern, fairly simple 32-bit and
64-bit processor models

 Modern processors have a RISC-like core
 Simple, register-register & load/store architecture
 Simple x86 instructions preferred; complex CICS

instructions supported
 We’ll focus on the basic 32-bit core instructions for now

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-4

x86 Assembler

 The nice thing about standards…
 Two main assembler languages for x86:

 Intel/Microsoft– what’s in the documentation
 GNU / AT&T syntax (Linux, OS X)

 Use gcc –S to generate examples from C/C++ code

 You can use either for your project

 Slides use Intel descriptions
 Brief information later on differences

 Main changes: dst,src reversed, data types in
gnu opcodes, various syntactic annoyances

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-5

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-6

Intel ASM Statements

 Format is

 optLabel: opcode operands ; comment

 optLabel is an optional label

 opcode and operands make up the assembly
language instruction

 Anything following a ‘;’ is a comment

 Language is very free-form

 Comments and labels may appear on separate
lines by themselves (we’ll take advantage of this)

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-7

x86 Memory Model

 8-bit bytes, byte addressable

 16-, 32-, 64-bit words, doublewords,
and quadwords

 Data should almost always be aligned on
“natural” boundaries; huge performance
penalty on modern processors if it isn’t

 Little-endian – address of a 4-byte
integer is address of low-order byte

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-8

x86 Processor Registers

 8 32-bit, mostly general purpose registers

 eax, ebx, ecx, edx, esi, edi, ebp (base pointer),
esp (stack pointer)

 Other registers, not directly addressable

 32-bit eflags register

 Holds condition codes, processor state, etc.

 32-bit “instruction pointer” eip

 Holds address of first byte of next instruction to execute

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-9

Processor Fetch-Execute Cycle

 Basic cycle (same as every processor you’ve
ever seen)

 while (running) {

 fetch instruction beginning at eip address

 eip <- eip + instruction length

 execute instruction

 }

 Sequential execution unless a jump stores a
new “next instruction” address in eip

Instruction Format

 Typical data manipulation instruction
 opcode dst,src

 Meaning is
 dst <- dst op src

 Normally, one operand is a register, the
other is a register, memory location, or
integer constant
 Can’t have both operands in memory – can’t

encode two separate memory addresses

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-10

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-11

x86 Memory Stack

 Register esp points to the “top” of stack
 Dedicated for this use; don’t use otherwise

 Points to the last 32-bit doubleword
pushed onto the stack (not next “free”
one)

 Should always be doubleword aligned
 It will start out this way, and will stay aligned

unless your code does something bad

 Stack grows down

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-12

Stack Instructions

push src
 esp <- esp – 4; memory[esp] <- src

(e.g., push src onto the stack)

pop dst
 dst <- memory[esp]; esp <- esp + 4

(e.g., pop top of stack into dst and logically
remove it from the stack)

 These are highly optimized and heavily used
 32-bit function call protocol is stack-based

 32-bit x86 doesn’t have enough registers, so the
stack is frequently used for temporary space

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-13

Stack Frames

 When a method is called, a stack frame is
traditionally allocated on the top of the stack
to hold its local variables

 Frame is popped on method return

 By convention, ebp (base pointer) points to a
known offset into the stack frame
 Local variables referenced relative to ebp

 (This is often optimized to use esp-relative
references instead. Frees up ebp, needs
additional bookkeeping at compile time.)

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-14

Operand Address Modes (1)

 These should cover most of what we’ll need

 mov eax,17 ; store 17 in eax

 mov eax,ecx ; copy ecx to eax

 mov eax,[ebp-12] ; copy memory to eax

 mov [ebp+8],eax ; copy eax to memory

 References to object fields work similarly –
put the object’s memory address in a register
and use that address plus field offset

Operand Address Modes (2)

 In full generality, a memory address can combine
the contents of two registers (with one being
scaled) plus a constant displacement:
 [basereg + index*scale + constant]
 Scale can be 2, 4, 8

 Main use is for array subscripting
 Example: suppose

 Array of 4-byte ints, address of the array A is in ecx,
subscript i is in eax

 Code to store edx in A[i]
 mov [ecx+eax*4],edx ;; and we didn’t even use the offset!

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-15

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-16

dword ptr – Intel assembler

 Obscure, but sometimes necessary…
 If the assembler can’t figure out the size

of the operands to move, you can
explicitly tell it to move 32 bits with the
qualifier “dword ptr”
 mov dword ptr [eax+16],[ebp-8]
 Use this if the assembler complains; otherwise

ignore
 Not an issue in GNU asembler – different

opcode mnemonics for different operand sizes

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-17

Basic Data Movement and
Arithmetic Instructions

mov dst,src

 dst <- src

add dst,src

 dst <- dst + src

sub dst,src

 dst <- dst – src

inc dst

 dst <- dst + 1

dec dst

 dst <- dst - 1

neg dst

 dst <- - dst
(2’s complement
arithmetic negation)

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-18

Integer Multiply and Divide

imul dst,src

 dst <- dst * src

 32-bit product

 dst must be a register

imul dst,src,imm8

 dst <- dst*src*imm8

 imm8 – 8 bit constant

 Obscure, but useful for
optimizing array refs

 There are other mul
instructions – see docs

idiv src

 Divide edx:eax by src
(edx:eax holds sign-
extended 64-bit value;
cannot use other
registers for division)

 eax <- quotient

 edx <- remainder

cdq

 edx:eax <- 64-bit sign
extended copy of eax

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-19

Bitwise Operations

and dst,src

 dst <- dst & src

or dst,src

 dst <- dst | src

xor dst,src

 dst <- dst ^ src

not dst

 dst <- ~ dst
(logical or 1’s
complement)

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-20

Shifts and Rotates

shl dst,count
 dst shifted left count

bits

shr dst,count
 dst <- dst shifted

right count bits (0
fill)

sar dst,count
 dst <- dst shifted

right count bits (sign
bit fill)

rol dst,count
 dst <- dst rotated

left count bits

ror dst,count
 dst <- dst rotated

right count bits

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-21

Uses for Shifts and Rotates

 Can often be used to optimize multiplication
and division by small constants

 If you’re interested, look at “Hacker’s Delight” by
Henry Warren, A-W, 2003

 Lots of very cool bit fiddling and other algorithms

 But be careful – be sure semantics are OK

 There are additional instructions that shift
and rotate double words, use a calculated
shift amount instead of a constant, etc.

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-22

Load Effective Address

 The unary & operator in C
 lea dst,src ; dst <- address of src

 dst must be a register

 Address of src includes any address
arithmetic or indexing

 Useful to capture addresses for pointers,
reference parameters, etc.

 Also useful for computing arithmetic
expressions that match r1+scale*r2+const

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-23

Control Flow - GOTO

 At this level, all we have is goto and
conditional goto

 Loops and conditional statements are
synthesized from these

 Optimization note: random jumps play havoc
with pipeline efficiency; much work is done in
modern compilers and processors to minimize
this impact

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-24

Unconditional Jumps

jmp dst

 eip <- address of dst

 Assembly language notes:

 dst will be a label

 Can have multiple labels on separate lines
preceding an instruction

 Convenient in compiler-generated asm lang.

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-25

Conditional Jumps

 Most arithmetic instructions set “condition
code” bits in eflags to record information
about the result (zero, non-zero, positive,
etc.)

 True of add, sub, and, or; but not imul or idiv

 Other instructions that set eflags

cmp dst,src ; compare dst to src

test dst,src ; calculate dst & src (logical
 ; and); doesn’t change either

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-26

Conditional Jumps Following
Arithmetic Operations

jz label ; jump if result == 0
jnz label ; jump if result != 0
jg label ; jump if result > 0
jng label ; jump if result <= 0
jge label ; jump if result >= 0
jnge label ; jump if result < 0
jl label ; jump if result < 0
jnl label ; jump if result >= 0
jle label ; jump if result <= 0
jnle label ; jump if result > 0

 Obviously, the assembler is providing multiple opcode

mnemonics for several of these instructions

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-27

Compare and Jump
Conditionally

 Want: compare two operands and jump
if a relationship holds between them

 Would like to do this
 jmpcond op1,op2,label

 but can’t, because 3-address
instructions can’t be encoded in x86

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-28

cmp and jcc

 Instead, use a 2-instruction sequence

 cmp op1,op2

 jcc label

 where jcc is a conditional jump that is
taken if the result of the comparison
matches the condition cc

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-29

Conditional Jumps Following
Arithmetic Operations

je label ; jump if op1 == op2
jne label ; jump if op1 != op2
jg label ; jump if op1 > op2
jng label ; jump if op1 <= op2
jge label ; jump if op1 >= op2
jnge label ; jump if op1 < op2
jl label ; jump if op1 < op2
jnl label ; jump if op1 >= op2
jle label ; jump if op1 <= op2
jnle label ; jump if op1 > op2

 Again, the assembler is mapping more than one mnemonic to

some machine instructions

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-30

Function Call and Return

 The x86 instruction set itself only provides for
transfer of control (jump) and return

 Stack is used to capture return address and
recover it

 Everything else – parameter passing, stack
frame organization, register usage – is a
matter of convention and not defined by the
hardware

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-31

call and ret Instructions

call label

 Push address of next instruction and jump

 esp <- esp – 4; memory[esp] <- eip
eip <- address of label

ret

 Pop address from top of stack and jump

 eip <- memory[esp]; esp <- esp + 4

 WARNING! The word on the top of the stack had
better be an address, not some leftover data

enter and leave

 Complex instructions for languages with
nested procedures
 enter can be slow on current CPUs – best

avoided
 i.e., don’t use it in your project

 leave is equivalent to
mov esp,ebp

pop ebp

and is generated by many compilers. Fits in 1
byte, saves space. Not clear if it’s any faster.

10/25/2011 © 2002-10 Hal Perkins & UW CSE J-32

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-33

Win 32 C Function Call
Conventions

 Wintel code obeys the following
conventions for C programs
 Note: calling conventions normally

designed very early in the instruction set/
basic software design. Hard (e.g., basically
impossible) to change later.

 C++ augments these conventions to
include the “this” pointer

 We’ll use these conventions in our code

Win32 C Register Conventions

 These registers must be restored to their
original values before a function returns, if they
are altered during execution
 esp, ebp, ebx, esi, edi
 Traditional: push/pop from stack to save/restore

 A function may use the other registers (eax,
ecx, edx) without having to save/restore

 A 32-bit function result is expected to be in eax
when the function returns

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-34

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-35

Call Site

 Caller is responsible for

 Pushing arguments on the stack from right
to left (allows implementation of varargs)

 Execute call instruction

 Pop arguments from stack after return

 For us, this means add 4*(# arguments) to esp
after the return, since everything is either a 32-
bit variable (int, bool), or a reference (pointer)

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-36

Call Example

n = sumOf(17,42)

 push 42 ; push args

 push 17

 call sumOf ; jump &

 ; push addr

 add esp,8 ; pop args

 mov [ebp+offsetn],eax ; store result

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-37

Callee

 Called function must do the following
 Save registers if necessary

 Allocate stack frame for local variables

 Execute function body

 Ensure result of non-void function is in eax

 Restore any required registers if necessary

 Pop the stack frame

 Return to caller

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-38

Win32 Function Prologue

 The code that needs to be executed before
the statements in the body of the function
are executed is referred to as the prologue

 For a Win32 function f, it looks like this:
f: push ebp ; save old frame pointer
 mov ebp,esp ; new frame ptr is top of
 ; stack after arguments and
 ; return address are pushed
 sub esp,”# bytes needed”
 ; allocate stack frame (size
 ; must be multiple of 4)

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-39

Win32 Function Epilogue

 The epilogue is the code that is executed for a return
statement (or if execution “falls off” the bottom of a
void function)

 For a Win32 function, it looks like this:
 mov eax,”function result”

 ; put result in eax if not already

 ; there (if non-void function)

 mov esp,ebp ; restore esp to old value

 ; before stack frame allocated

 pop ebp ; restore ebp to caller’s value

 ret ; return to caller

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-40

Example Function

 Source code

 int sumOf(int x, int y) {

 int a, int b;

 a = x;

 b = a + y;

 return b;

 }

int sumOf(int x, int y) {
 int a, int b;
 a = x;
 b = a + y;
 return b;
}

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-41

Stack Frame for sumOf

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-42

Assembly Language Version

;; int sumOf(int x, int y) {
;; int a, int b;
sumOf:
 push ebp ; prologue
 mov ebp,esp
 sub esp, 8

;; a = x;
 mov eax,[ebp+8]
 mov [ebp-4],eax

;; b = a + y;
 mov eax,[ebp-4]
 add eax,[ebp+12]
 mov [ebp-8],eax

;; return b;
 mov eax,[ebp-8]
 mov esp,ebp
 pop ebp
 ret
;; }

10/25/2011 © 2002-11 Hal Perkins & UW CSE J-43

Coming Attractions

 Now that we’ve got a basic idea of the
x86 instruction set, we need to map
language constructs to x86

 Code Shape

 Then on to basic code generation and
execution

 And later, optimizations

