CSE P 501 - Compilers

Instruction Scheduling Hal Perkins
 Autumn 2011

Agenda

- Instruction scheduling issues - latencies
- List scheduling

Issues (1)

- Many operations have non-zero latencies
- Modern machines can issue several operations per cycle
- Want to take advantage of multiple function units on chip
- Loads \& Stores may or may not block
may be slots after load/store for other useful work

Issues (2)

- Branch costs vary
- Branches on some processors have delay slots
- Modern processors have heuristics to predict whether branches are taken and try to keep pipelines full
- GOAL: Scheduler should reorder instructions to hide latencies, take advantage of multiple function units and delay slots, and help the processor effectively pipeline execution

Latencies for a Simple Example Machine

Operation	Cycles
LOAD	3
STORE	3
ADD	1
MULT	2
SHIFT	1
BRANCH	0 TO 8

Example: w $=w^{*} 2^{*} x^{*} y^{*} z^{\prime}$

- Simple schedule

1 LOAD	$r 1<-w$
4 ADD	$r 1<-r 1, r 1$
5 LOAD	$r 2<-x$
8 MULT	$r 1<-r 1, r 2$
9 LOAD	$r 2<-y$
12 MULT	$r 1<-r 1, r 2$
13 LOAD	$r 2<-z$
16 MULT	$r 1<-r 1, r 2$
18 STORE $w<-r 1$	
$21 r 1$ free	
2 registers, 20 cycles	

- Loads early

$$
\begin{aligned}
& 1 \text { LOAD } \quad \mathrm{r} 1<-\mathrm{w} \\
& 2 \text { LOAD r2 <-x } \\
& 3 \text { LOAD r3<-y } \\
& 4 \text { ADD } \quad r 1<-r 1, r 1 \\
& 5 \text { MULT r1 <-r1,r2 } \\
& 6 \text { LOAD r2 <-z } \\
& 7 \text { MULT r1 <-r1,r3 } \\
& 9 \text { MULT r1 <-r1,r2 } \\
& 11 \text { STORE } \mathrm{w}<-\mathrm{r} 1
\end{aligned}
$$

14 r 1 is free
3 registers, 13 cycles

Instruction Scheduling

- Problem
- Given a code fragment for some machine and latencies for each operation, reorder to minimize execution time
- Constraints
- Produce correct code
- Minimize wasted cycles
- Avoid spilling registers
- Do this efficiently

Precedence Graph

- Nodes n are operations
- Attributes of each node
- type - kind of operation
- delay - latency
- If node n 2 uses the result of node n 1 , there is an edge $\mathrm{e}=(\mathrm{n} 1, \mathrm{n} 2)$ in the graph

Example Graph

- Code

a LOAD	$r 1<-w$
b ADD	$r 1<-r 1, r 1$
c LOAD	$r 2<-x$
d MULT	$r 1<-r 1, r 2$
e LOAD	$r 2<-y$
f	MULT
g LOAD	$r 1<-r 1, r 2$
h MULT	$r 1<-r$
i	STORE
	$w<-r 1$

Schedules (1)

- A correct schedule S maps each node n into a non-negative integer representing its cycle number, and
- $S(n)>=0$ for all nodes n (obvious)
- If $(n 1, n 2)$ is an edge, then S(n1)+delay(n1) <= S(n2)
- For each type t there are no more operations of type t in any cycle than the target machine can issue

Schedules (2)

- The length of a schedule S, denoted $\mathrm{L}(\mathrm{S})$ is

$$
\mathrm{L}(\mathrm{~S})=\max _{n}(\mathrm{~S}(\underline{n})+\operatorname{delay}(n))
$$

- The goal is to find the shortest possible correct schedule
- Other possible goals: minimize use of registers, power, space, ...

Constraints

- Main points
- All operands must be available
- Multiple operations can be ready at any given point
- Moving operations can lengthen register lifetimes
- Moving uses near definitions can shorten register lifetimes
- Operations can have multiple predecessors
- Collectively this makes scheduling NP-complete
- Local scheduling is the simpler case
- Straight-line code
- Consistent, predictable latencies

Algorithm Overview

- Build a precedence graph P
- Compute a priority function over the nodes in P (typical: longest latency-weighted path)
- Use list scheduling to construct a schedule, one cycle at a time
- Use queue of operations that are ready
- At each cycle
- Chose a ready operation and schedule it
- Update ready queue
- Rename registers to avoid false dependencies and conflicts

List Scheduling Algorithm

Cycle = 1; Ready = leaves of P; Active = empty; while (Ready and/or Active are not empty)
if (Ready is not empty)
remove an op from Ready;
S(op) = Cycle;
Active = Active $\cup \mathrm{op} ;$
Cycle++;
for each op in Active
if (S(op) + delay(op) <= Cycle) remove op from Active; for each successor s of op in P
if (s is ready - i.e., all operands available) add s to Ready

Example

- Code

a LOAD	$r 1<-w$
b ADD	$r 1<-r 1, r 1$
c LOAD	$r 2<-x$
d MULT	$r 1<-r 1, r 2$
e LOAD	$r 2<-y$
f	MULT
g LOAD	$r 1<-r 1, r 2$
h MULT	$r 1<-r$
i	STORE
	$w<-r 1$

Forward vs Backwards

- Backward list scheduling
- Work from the root to the leaves
- Schedules instructions from end to beginning of the block
- In practice, compilers try both and pick the result that minimizes costs
- Little extra expense since the precedence graph and other information can be reused
- Different directions win in different cases

Beyond Basic Blocks

- List scheduling dominates, but moving beyond basic blocks can improve quality of the code. Some possibilities:
- Schedule extended basic blocks
- Watch for exit points - limits reordering or requires compensating
- Trace scheduling
- Use profiling information to select regions for scheduling using traces (paths) through code

