
11/22/2011 © 2002-11 Hal Perkins & UW CSE O-1

CSE P 501 – Compilers

Instruction Scheduling

Hal Perkins

Autumn 2011

11/22/2011 © 2002-11 Hal Perkins & UW CSE O-2

Agenda

 Instruction scheduling issues – latencies

 List scheduling

11/22/2011 © 2002-11 Hal Perkins & UW CSE O-3

Issues (1)

 Many operations have non-zero latencies
 Modern machines can issue several operations per

cycle
 Want to take advantage of multiple function units on chip

 Loads & Stores may or may not block
 may be slots after load/store for other useful work

11/22/2011 © 2002-11 Hal Perkins & UW CSE O-4

Issues (2)

 Branch costs vary
 Branches on some processors have delay slots
 Modern processors have heuristics to predict whether

branches are taken and try to keep pipelines full

 GOAL: Scheduler should reorder instructions to hide
latencies, take advantage of multiple function units
and delay slots, and help the processor effectively
pipeline execution

11/22/2011 © 2002-11 Hal Perkins & UW CSE O-5

Latencies for a Simple
Example Machine

Operation Cycles

LOAD 3

STORE 3

ADD 1

MULT 2

SHIFT 1

BRANCH 0 TO 8

11/22/2011 © 2002-11 Hal Perkins & UW CSE O-6

Example: w = w*2*x*y*z;

 Simple schedule
1 LOAD r1 <- w

4 ADD r1 <- r1,r1

5 LOAD r2 <- x

8 MULT r1 <- r1,r2

9 LOAD r2 <- y

12 MULT r1 <- r1,r2

13 LOAD r2 <- z

16 MULT r1 <- r1,r2

18 STORE w <- r1

21 r1 free

 2 registers, 20 cycles

 Loads early
1 LOAD r1 <- w

2 LOAD r2 <- x

3 LOAD r3 <- y

4 ADD r1 <- r1,r1

5 MULT r1 <- r1,r2

6 LOAD r2 <- z

7 MULT r1 <- r1,r3

9 MULT r1 <- r1,r2

11 STORE w <- r1

14 r1 is free

 3 registers, 13 cycles

11/22/2011 © 2002-11 Hal Perkins & UW CSE O-7

Instruction Scheduling

 Problem

 Given a code fragment for some machine and
latencies for each operation, reorder to minimize
execution time

 Constraints

 Produce correct code

 Minimize wasted cycles

 Avoid spilling registers

 Do this efficiently

11/22/2011 © 2002-11 Hal Perkins & UW CSE O-8

Precedence Graph

 Nodes n are operations

 Attributes of each node

 type – kind of operation

 delay – latency

 If node n2 uses the result of node n1,
there is an edge e = (n1,n2) in the
graph

11/22/2011 © 2002-11 Hal Perkins & UW CSE O-9

Example Graph

 Code

a LOAD r1 <- w

b ADD r1 <- r1,r1

c LOAD r2 <- x

d MULT r1 <- r1,r2

e LOAD r2 <- y

f MULT r1 <- r1,r2

g LOAD r2 <- z

h MULT r1 <- r1,r2

i STORE w <- r1

11/22/2011 © 2002-11 Hal Perkins & UW CSE O-10

Schedules (1)

 A correct schedule S maps each node n
into a non-negative integer
representing its cycle number, and
 S (n) >= 0 for all nodes n (obvious)

 If (n1,n2) is an edge, then
S(n1)+delay(n1) <= S(n2)

 For each type t there are no more
operations of type t in any cycle than the
target machine can issue

11/22/2011 © 2002-11 Hal Perkins & UW CSE O-11

Schedules (2)

 The length of a schedule S, denoted
L(S) is

 L(S) = maxn (S(n)+delay(n))

 The goal is to find the shortest possible
correct schedule

 Other possible goals: minimize use of
registers, power, space, …

11/22/2011 © 2002-11 Hal Perkins & UW CSE O-12

Constraints

 Main points
 All operands must be available

 Multiple operations can be ready at any given point

 Moving operations can lengthen register lifetimes

 Moving uses near definitions can shorten register lifetimes

 Operations can have multiple predecessors

 Collectively this makes scheduling NP-complete

 Local scheduling is the simpler case
 Straight-line code

 Consistent, predictable latencies

11/22/2011 © 2002-11 Hal Perkins & UW CSE O-13

Algorithm Overview

 Build a precedence graph P
 Compute a priority function over the nodes in

P (typical: longest latency-weighted path)
 Use list scheduling to construct a schedule,

one cycle at a time
 Use queue of operations that are ready
 At each cycle

 Chose a ready operation and schedule it
 Update ready queue

 Rename registers to avoid false dependencies
and conflicts

11/22/2011 © 2002-11 Hal Perkins & UW CSE O-14

List Scheduling Algorithm

Cycle = 1; Ready = leaves of P; Active = empty;
while (Ready and/or Active are not empty)
 if (Ready is not empty)
 remove an op from Ready;
 S(op) = Cycle;
 Active = Active op;
 Cycle++;
 for each op in Active
 if (S(op) + delay(op) <= Cycle)
 remove op from Active;
 for each successor s of op in P
 if (s is ready – i.e., all operands available)
 add s to Ready

11/22/2011 © 2002-11 Hal Perkins & UW CSE O-15

Example

 Code

a LOAD r1 <- w

b ADD r1 <- r1,r1

c LOAD r2 <- x

d MULT r1 <- r1,r2

e LOAD r2 <- y

f MULT r1 <- r1,r2

g LOAD r2 <- z

h MULT r1 <- r1,r2

i STORE w <- r1

11/22/2011 © 2002-11 Hal Perkins & UW CSE O-16

Forward vs Backwards

 Backward list scheduling
 Work from the root to the leaves

 Schedules instructions from end to beginning of
the block

 In practice, compilers try both and pick the
result that minimizes costs
 Little extra expense since the precedence graph

and other information can be reused

 Different directions win in different cases

Beyond Basic Blocks

 List scheduling dominates, but moving
beyond basic blocks can improve quality
of the code. Some possibilities:

 Schedule extended basic blocks

 Watch for exit points – limits reordering or
requires compensating

 Trace scheduling

 Use profiling information to select regions for
scheduling using traces (paths) through code

 11/22/2011 © 2002-11 Hal Perkins & UW CSE O-17

