
11/22/2011 © 2002-11 Hal Perkins & UW CSE P-1

CSE P 501 – Compilers

Register Allocation

Hal Perkins

Autumn 2011

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-2

Agenda

 Register allocation constraints

 Local methods

 Faster compile, slower code, but good
enough for lots of things (JITs, …)

 Global allocation – register coloring

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-3

k

 Intermediate code typically assumes infinite
number of registers

 Real machine has k registers available

 Goals

 Produce correct code that uses k or fewer
registers

 Minimize added loads and stores

 Minimize space needed for spilled values

 Do this efficiently – O(n), O(n log n), maybe O(n2)

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-4

Register Allocation

 Task
 At each point in the code, pick the values

to keep in registers

 Insert code to move values between
registers and memory
 No additional transformations – scheduling

should have done its job
 But we will usually rerun scheduling after this

 Minimize inserted code, both dynamically
and statically

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-5

Allocation vs Assignment

 Allocation: deciding which values to
keep in registers

 Assignment: choosing specific registers
for values

 Compiler must do both

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-6

Local Register Allocation

 Apply to basic blocks

 Produces decent register usage inside a
block

 But can have inefficiencies at boundaries
between blocks

 Two variations: top-down, bottom-up

Top-down Local Allocation

 Principle: keep most heavily used values in
registers
 Priority = # of times register referenced in block

 If more virtual registers than physical,
 Reserve some registers for values allocated to

memory
 Need enough to address and load two operands and

store result

 Other registers dedicated to “hot” values
 (But are tied up for entire block with particular value,

even if only needed for part of the block)

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-7

Bottom-up Local Allocation (1)

 Keep a list of available registers (initially
all registers at beginning of block)

 Scan the code

 Allocate a register when one is needed

 Free register as soon as possible

 In x:=y op z, free y and z if they are no
longer needed before allocating x

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-8

Bottom-up Local Allocation (2)

 If no registers are free when one is
needed for allocation:

 Look at values assigned to registers – find
the one not needed for longest forward
stretch in the code

 Insert code to spill the value to memory
and insert code to reload it when needed
later

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-9

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-10

Bottom-Up Allocator

 Invented about once per decade

 Sheldon Best, 1955, for Fortran I

 Laslo Belady, 1965, for analyzing paging
algorithms

 William Harrison, 1975, ECS compiler work

 Chris Fraser, 1989, LCC compiler

 Vincenzo Liberatore, 1997, Rutgers

 Will be reinvented again, no doubt

 Many arguments for optimality of this

Global Register Allocation

 A standard technique is graph coloring
 Use control and dataflow graphs to derive

interference graph
 Nodes are live ranges (not registers!)
 Edge between (t1,t2) when t1 and t2 cannot be

assigned to the same register
 Most commonly, t1 and t2 are both live at the same time
 Can also use to express constraints about registers, etc.

 Then color the nodes in the graph
 Two nodes connected by an edge may not have same

color (i.e., be allocated to same register)
 If more than k colors are needed, insert spill code

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-11

Live Ranges (1)

 A live range is the set of definitions and
uses that are related because they flow
together

 Every definition can reach every use

 Every use that a definition can reach is in
the same live range

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-12

Live Ranges (2)

 The idea relies on the notion of
liveness, but not the same as either the
set of variables or set of values

 Every value is part of some live range,
even anonymous temporaries

 Same name may be part of several
different live ranges

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-13

Live Ranges: Example

1. loadi … rfp
2. loadai rfp, 0 rw
3. loadi 2 r2
4. loadai rfp,xoffset rx
5. loadai rfp,yoffset ry
6. loadai rfp,zoffset rz
7. mult rw, r2 rw
8. mult rw, rx rw
9. mult rw, ry rw
10. mult rw, rz rw
11. storeai rw rfp, 0

Register Interval
 rfp [1,11]
 rw [2,7]
 rw [7,8]
 rw [8,9]
 rw [9,10]
 rw [10,11]
 r2 [3,7]
 rx [4,8]
 ry [5,9]
 rz [6,10]

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-14

Coloring by Simplification

 Linear-time approximation that
generally gives good results
1. Build: Construct the interference graph

2. Simplify: Color the graph by repeatedly
simplification

3. Spill: If simplify cannot reduce the graph
completely, mark some node for spilling

4. Select: Assign colors to nodes in the
graph

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-15

1. Build

 Construct the interference graph
 Find live ranges – SSA!

 Build SSA form of IR
 Each SSA name is initially a singleton set
 A -function means form the union of the sets

that includes those names (union-find algo.)
 Resulting sets represent live ranges
 Either rewrite code to use live range names or

keep a mapping between SSA names and live-
range names

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-16

1. Build

 Use dataflow information to build
interference graph

 Nodes = live ranges

 Add an edge in the graph for each pair of
live ranges that overlap

 But watch copy operations. MOV ri rj does
not create interference between ri, rj since they
can be the same register if the ranges do not
otherwise interfere

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-17

2. Simplify

 Heuristic: Assume we have K registers

 Find a node m with fewer than K neighbors

 Remove m from the graph. If the resulting
graph can be colored, then so can the original
graph (the neighbors of m have at most K-1
colors among them)

 Repeat by removing and pushing on a stack all
nodes with degree less than K
 Each simplification decreases other node degrees

– may make more simplifications possible

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-18

Example with k = 3

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-19

a d e

b

c

3. Spill

 If simplify stops because all nodes have
degree ≥ k, mark some node for spilling
 This node is in memory during execution

 Spilled node no longer interferes with
remaining nodes, reducing their degree.

 Continue by removing spilled node and
push on the stack (optimistic – hope that
spilled node does not interfere with
remaining nodes – Briggs allocator)

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-20

3. Spill

 Spill decisions should be based on costs
of spilling different values

 Issues

 Address computation needed for spill

 Cost of memory operation

 Estimated execution frequency

 (e.g., inner loops first)

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-21

4. Select

 Assign nodes to colors in the graph:
 Start with empty graph

 Rebuild original graph by repeatedly adding
node from top of the stack
 (When we do this, there must be a color for it if it

didn’t represent a potential spill – pick a different
color from any adjacent node)

 When a potential spill node is popped it may
not be colorable (neighbors may have k colors
already). This is an actual spill.

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-22

Example with k = 3

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-23

Stack

a
c
b
d
e

5. Start Over

 If Select phase cannot color some node
(must be a potential spill node), add load
instructions before each use and stores
after each definition

 Creates new temporaries with tiny live ranges

 Repeat from beginning

 Iterate until Simplify succeeds

 In practice a couple of iterations are enough

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-24

Coalescing Live Ranges

 Idea: if two live ranges are connected
by a copy operation (MOV ri rj) do
not otherwise interfere, then the live
ranges can be coalesced (combined)

 Rewrite all references to rj to use ri

 Remove the copy instruction

 Then need to fix up interference graph

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-25

Advantages?

 Makes the code smaller, faster (no copy
operation)

 Shrinks set of live ranges

 Reduces the degree of any live range that
interfered with both live ranges ri, rj

 But: coalescing two live ranges can prevent
coalescing of others, so ordering matters
 Best: Coalesce most frequently executed ranges

first (e.g., inner loops)

 Can have a substantial payoff – do it!

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-26

Overall Structure

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-27

Find live
ranges

Build int.
graph

Coalesce
Spill
Costs

Find
Coloring

Insert
Spills

No Spills

More Coalescing Possible

Spills

Complications

 Need to deal with irregularities in the
register set
 Some operations require dedicated

registers (idiv in x86, split address/data
registers in M68k and othres)

 Register conventions like function results,
use of registers across calls, etc.

 Model by precoloring nodes, adding
constraints in the graph, etc.

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-28

Graph Representation

 The interference graph representation
drives the time and space requirements for
the allocator (& maybe the compiler)

 Not unknown to have O(5K) nodes and
O(1M) edges

 Dual representation works best
 Triangular bit matrix for efficient access to

interference information
 Vector of adjacency vectors for efficient access

to node neighbors

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-29

11/22/2011 © 2002-11 Hal Perkins & UW CSE P-30

And That’s It

 Modulo all the picky details, that is…

