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Agenda 

 Register allocation constraints 

 Local methods 

 Faster compile, slower code, but good 
enough for lots of things (JITs, …) 

 Global allocation – register coloring 
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k 

 Intermediate code typically assumes infinite 
number of registers 

 Real machine has k registers available 

 Goals 

 Produce correct code that uses k or fewer 
registers 

 Minimize added loads and stores 

 Minimize space needed for spilled values 

 Do this efficiently – O(n), O(n log n), maybe O(n2) 
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Register Allocation 

 Task 
 At each point in the code, pick the values 

to keep in registers 

 Insert code to move values between 
registers and memory 
 No additional transformations – scheduling 

should have done its job 
 But we will usually rerun scheduling after this 

 Minimize inserted code, both dynamically 
and statically 
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Allocation vs Assignment 

 Allocation: deciding which values to 
keep in registers 

 Assignment: choosing specific registers 
for values 

 Compiler must do both 
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Local Register Allocation 

 Apply to basic blocks 

 Produces decent register usage inside a 
block 

 But can have inefficiencies at boundaries 
between blocks 

 Two variations: top-down, bottom-up 



Top-down Local Allocation 

 Principle: keep most heavily used values in 
registers 
 Priority = # of times register referenced in block 

 If more virtual registers than physical,  
 Reserve some registers for values allocated to 

memory 
 Need enough to address and load two operands and 

store result 

 Other registers dedicated to “hot” values 
 (But are tied up for entire block with particular value, 

even if only needed for part of the block) 
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Bottom-up Local Allocation (1) 

 Keep a list of available registers (initially 
all registers at beginning of block) 

 Scan the code 

 Allocate a register when one is needed 

 Free register as soon as possible 

 In x:=y op z, free y and z if they are no 
longer needed before allocating x 
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Bottom-up Local Allocation (2) 

 If no registers are free when one is 
needed for allocation: 

 Look at values assigned to registers – find 
the one not needed for longest forward 
stretch in the code 

 Insert code to spill the value to memory 
and insert code to reload it when needed 
later 
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Bottom-Up Allocator 

 Invented about once per decade 

 Sheldon Best, 1955, for Fortran I 

 Laslo Belady, 1965, for analyzing paging 
algorithms 

 William Harrison, 1975, ECS compiler work 

 Chris Fraser, 1989, LCC compiler 

 Vincenzo Liberatore, 1997, Rutgers 

 Will be reinvented again, no doubt 

 Many arguments for optimality of this 



Global Register Allocation 

 A standard technique is graph coloring 
 Use control and dataflow graphs to derive 

interference graph 
 Nodes are live ranges  (not registers!) 
 Edge between (t1,t2) when t1 and t2 cannot be 

assigned to the same register 
 Most commonly, t1 and t2 are both live at the same time 
 Can also use to express constraints about registers, etc. 

 Then color the nodes in the graph 
 Two nodes connected by an edge may not have same 

color (i.e., be allocated to same register) 
 If more than k colors are needed, insert spill code 
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Live Ranges (1) 

 A live range is the set of definitions and 
uses that are related because they flow 
together 

 Every definition can reach every use 

 Every use that a definition can reach is in 
the same live range 
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Live Ranges (2) 

 The idea relies on the notion of 
liveness, but not the same as either the 
set of variables or set of values 

 Every value is part of some live range, 
even anonymous temporaries 

 Same name may be part of several 
different live ranges 
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Live Ranges: Example 

1. loadi  …     rfp 
2. loadai   rfp, 0  rw 
3. loadi    2  r2 
4. loadai  rfp,xoffset  rx 
5. loadai  rfp,yoffset  ry 
6. loadai  rfp,zoffset  rz 
7. mult    rw, r2   rw 
8. mult    rw, rx   rw 
9. mult    rw, ry   rw 
10. mult    rw, rz  rw 
11. storeai  rw   rfp, 0 

Register    Interval 
 rfp  [1,11] 
 rw  [2,7] 
 rw  [7,8] 
 rw  [8,9] 
 rw  [9,10] 
 rw  [10,11] 
 r2  [3,7] 
 rx  [4,8] 
 ry  [5,9] 
 rz  [6,10] 
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Coloring by Simplification 

 Linear-time approximation that 
generally gives good results 
1. Build: Construct the interference graph 

2. Simplify: Color the graph by repeatedly 
simplification 

3. Spill: If simplify cannot reduce the graph 
completely, mark some node for spilling 

4. Select: Assign colors to nodes in the 
graph  
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1. Build 

 Construct the interference graph  
 Find live ranges – SSA! 

 Build SSA form of IR 
 Each SSA name is initially a singleton set 
 A -function means form the union of the sets 

that includes those names (union-find algo.) 
 Resulting sets represent live ranges 
 Either rewrite code to use live range names or 

keep a mapping between SSA names and live-
range names 
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1. Build 

 Use dataflow information to build 
interference graph 

 Nodes = live ranges 

 Add an edge in the graph for each pair of 
live ranges that overlap 

 But watch copy operations.  MOV ri  rj does 
not create interference between ri, rj since they 
can be the same register if the ranges do not 
otherwise interfere 
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2. Simplify 

 Heuristic: Assume we have K registers 

 Find a node m with fewer than K neighbors 

 Remove m from the graph.  If the resulting 
graph can be colored, then so can the original 
graph (the neighbors of m have at most K-1 
colors among them) 

 Repeat by removing and pushing on a stack all 
nodes with degree less than K 
 Each simplification decreases other node degrees 

– may make more simplifications possible 
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Example with k = 3 
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a d e 

b 

c 



3. Spill 

 If simplify stops because all nodes have 
degree ≥ k, mark some node for spilling 
 This node is in memory during execution 

  Spilled node no longer interferes with 
remaining nodes, reducing their degree. 

 Continue by removing spilled node and 
push on the stack (optimistic – hope that 
spilled node does not interfere with 
remaining nodes – Briggs allocator) 
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3. Spill 

 Spill decisions should be based on costs 
of spilling different values  

 Issues 

 Address computation needed for spill 

 Cost of memory operation 

 Estimated execution frequency 

 (e.g., inner loops first) 
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4. Select 

 Assign nodes to colors in the graph: 
 Start with empty graph 

 Rebuild original graph by repeatedly adding 
node from top of the stack 
 (When we do this, there must be a color for it if it 

didn’t represent a potential spill – pick a different 
color from any adjacent node) 

 When a potential spill node is popped it may 
not be colorable (neighbors may have k colors 
already).  This is an actual spill. 
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Example with k = 3 
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Stack 
 
a 
c 
b 
d 
e 



5. Start Over  

 If Select phase cannot color some node 
(must be a potential spill node), add load 
instructions before each use and stores 
after each definition 

 Creates new temporaries with tiny live ranges 

 Repeat from beginning 

 Iterate until Simplify succeeds 

 In practice a couple of iterations are enough 
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Coalescing Live Ranges 

 Idea: if two live ranges are connected 
by a copy operation (MOV ri  rj) do 
not otherwise interfere, then the live 
ranges can be coalesced (combined) 

 Rewrite all references to rj to use ri 

 Remove the copy instruction 

 Then need to fix up interference graph 
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Advantages? 

 Makes the code smaller, faster (no copy 
operation) 

 Shrinks set of live ranges 

 Reduces the degree of any live range that 
interfered with both live ranges ri, rj 

 But: coalescing two live ranges can prevent 
coalescing of others, so ordering matters 
 Best: Coalesce most frequently executed ranges 

first (e.g., inner loops) 

 Can have a substantial payoff – do it! 
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Overall Structure 
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Find live 
ranges 

Build int. 
graph 

Coalesce 
Spill 
Costs 

Find 
Coloring 

Insert 
Spills 

No Spills 

More Coalescing Possible 

Spills 



Complications 

 Need to deal with irregularities in the 
register set 
 Some operations require dedicated 

registers (idiv in x86, split address/data 
registers in M68k and othres) 

 Register conventions like function results, 
use of registers across calls, etc. 

 Model by precoloring nodes, adding 
constraints in the graph, etc. 
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Graph Representation 

 The interference graph representation 
drives the time and space requirements for 
the allocator (& maybe the compiler) 

 Not unknown to have O(5K) nodes and 
O(1M) edges 

 Dual representation works best 
 Triangular bit matrix for efficient access to 

interference information 
 Vector of adjacency vectors for efficient access 

to node neighbors 
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And That’s It 

 

 

 Modulo all the picky details, that is… 


