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Agenda 

 Optimization 
 Goals 

 Scope: local, superlocal, regional, global 
(intraprocedural), interprocedural 

 Control flow graphs 

 Value numbering 

 Dominators 

 Ref.: Cooper/Torczon ch. 8 
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Code Improvement (1) 

 Pick a better algorithm(!) 

 Use machine resources effectively 

 Instruction selection & scheduling 

 Register allocation 

 More about these later… 
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Code Improvement (2) 

 Local optimizations – basic blocks 

 Algebraic simplifications 

 Constant folding 

 Common subexpression elimination (i.e., 
redundancy elimination) 

 Dead code elimination 

 Specialize computation based on context 

 etc., etc., … 
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Code Improvement (3) 

 Global optimizations 

 Code motion 

 Moving invariant computations out of loops 

 Strength reduction (replace multiplications 
by repeated additions, for example) 

 Global common subexpression elimination 

 Global register allocation 

 Many others… 
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“Optimization” 

 None of these improvements are truly 
“optimal” 
 Hard problems 

 Proofs of optimality assume artificial 
restrictions 

 Best we can do is to improve things 
 Most (much?) (some?) of the time 

 Realistically: try to do better for common 
idioms both in the code and on the machine 
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Example: A[i,j] 

 Without any surrounding context, need to 
generate code to calculate 

address(A) 

 + (i-low1(A)) * (high2(A)-low2(a)+1) * size(A)  

 + (j-low2(A)) * size(A) 

 lowi and highi are subscript bounds in dimension i 

 address(A) is the runtime address of first element 
of A 

 … And we really should be checking that i, j 
are in bounds 
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Some Optimizations for A[i,j] 

 With more context, we can do better 

 Examples 

 If A is local, with known bounds, much of the 
computation can be done at compile time 

 If A[i,j] is in a loop where i and j change 
systematically, we probably can replace 
multiplications with additions each time around 
the loop to reference successive rows/columns 

 Even if not, we can move “loop-invariant” parts of the 
calculation outside the loop 
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Optimization Phase 

 Goal 

 Discover, at compile time, information 
about the runtime behavior of the 
program, and use that information to 
improve the generated code  
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A First Running Example: 
Redundancy Elimination 

 An expression x+y is redundant at a program 
point iff, along every path from the 
procedure’s entry, it has been evaluated and 
its constituent subexpressions (x and y) have 
not been redefined 

 If the compiler can prove the expression is 
redundant: 
 Can store the result of the earlier evaluation 

 Can replace the redundant computation with a 
reference to the earlier (stored) result 
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Common Problems in Code 
Improvement 

 This strategy is typical of most compiler 
optimizations 
 First, discover opportunities through 

program analysis 

 Then, modify the IR to take advantage of 
the opportunities 
 Historically, goal usually was to decrease 

execution time 

 Other possibilities: reduce space, power, … 



Issues (1) 

 Safety – transformation must not change 
program meaning 
 Must generate correct results 

 Can’t generate spurious errors 

 Optimizations must be conservative 

 Large part of analysis goes towards proving 
safety 

 Can pay off to speculate (be optimistic) but 
then need to recover if reality is different 
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Issues (2) 

 Profitibility 

 If a transformation is possible, is it 
profitable? 

 Example: loop unrolling 

 Can increase amount of work done on each 
iteration, i.e., reduce loop overhead 

 Can eliminate duplicate operations done on 
separate iterations 
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Issues (3) 

 Downside risks 

 Even if a transformation is generally 
worthwhile, need to think about potential 
problems 

 For example: 

 Transformation might need more temporaries, 
putting additional pressure on registers 

 Increased code size could cause cache misses, 
or, in bad cases, increase page working set 
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Example: Value Numbering 

 Technique for eliminating redundant 
expressions: assign an identifying number 
VN(n) to each expression 

 VN(x+y)=VN(j) if x+y and j have the same value 

 Use hashing over value numbers for effeciency 

 Old idea (Balke 1968, Ershov 1954) 

 Invented for low-level, linear IRs 

 Equivalent methods exist for tree IRs, e.g., build a 
DAG 
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Uses of Value Numbers 

 Improve the code 

 Replace redundant expressions 

 Simplify algebraic identities 

 Discover, fold, and propagate constant 
valued expressions 
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Local Value Numbering 

 Algorithm 
 For each operation o = <op, o1,o2> in a block 

1. Get value numbers for operands from hash lookup 

2. Hash <op, VN(o1), VN(o2)> to get a value number for o 

 (If op is commutative, sort VN(o1), VN(o2) first) 

3. If o already has a value number, replace o with a 
reference to the value 

4. If o1 and o2 are constant, evaluate o at compile time 
and replace with an immediate load 

 If hashing behaves well, this runs in linear 
time 
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Example 

Code    Rewritten 

 a   =  x   +   y 

 b   =  x   +   y 

 a   =  17 

 c   =  x   +   y 
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Bug in Simple Example 

 If we use the original names, we get in 
trouble when a name is reused 

 Solutions 

 Be clever about which copy of the value to 
use (e.g., use c=b in last statement) 

 Create an extra temporary 

 Rename around it (best!) 
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Renaming 

 Idea: give each value a unique name 
 ai

j means ith definition of a with VN = j 

 Somewhat complex notation, but 
meaning is clear 

 This is the idea behind SSA (Static 
Single Assignment) 
 Popular modern IR – exposes many 

opportunities for optimizations 
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Example Revisited 

Code    Rewritten 

 a   =  x   +   y 

 b   =  x   +   y 

 a   =  17 

 c   =  x   +   y 
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Simple Extensions to Value 
Numbering 

 Constant folding 

 Add a bit that records when a value is constant 

 Evaluate constant values at compile time 

 Replace op with load immediate 

 Algebraic identities: x+0, x*1, x-x, … 

 Many special cases 

 Switch on op to narrow down checks needed 

 Replace result with input VN 
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Larger Scopes 

 This algorithm works on straight-line 
blocks of code (basic blocks) 

 Best possible results for single basic blocks 

 Loses all information when control flows to 
another block 

 To go further we need to represent 
multiple blocks of code and the control 
flow between them 



11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-24 

Basic Blocks 

 Definition: A basic block is a maximal 
length sequence of straight-line code 

 Properties 
 Statements are executed sequentially 
 If any statement executes, they all do 

 (baring exceptions) 

 In a linear IR, the first statement of a 
basic block is often called the leader 
 Procedure entry, jump targets, statements 

following any jump/call 
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Control Flow Graph (CFG) 

 Nodes: basic blocks 

 Possible representations: linear 3-address 
code, expression-level AST, DAG 

 Edges: include a directed edge from n1 
to n2 if there is any possible way for 
control to transfer from block n1 to n2 
during execution 
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Constructing Control Flow 
Graphs from Linear IRs 

 Algorithm 
 Pass 1: Identify basic block leaders with a linear 

scan of the IR 
 Pass 2: Identify operations that end a block and 

add appropriate edges to the CFG to all possible 
successors 

 See your favorite compiler book for details 

 For convenience, ensure that every block 
ends with conditional or unconditional jump 
 Code generator can pick the most convenient “fall-

through” case later and eliminate unneeded jumps 
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Scope of Optimizations 

 Optimization algorithms can work on units as 
small as a basic block or as large as a whole 
program 

 Local information is generally more precise 
and can lead to locally optimal results 

 Global information is less precise (lose 
information at join points in the graph), but 
exposes opportunities for improvements 
across basic blocks 
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Optimization Categories (1) 

 Local methods 

 Usually confined to basic blocks 

 Simplest to analyze and understand 

 Most precise information 
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Optimization Categories (2) 

 Superlocal methods 
 Operate over Extended Basic Blocks (EBBs) 

 An EBB is a set of blocks b1, b2, …, bn where b1 has 
multiple predecessors and each of the remaining blocks 
bi (2≤i≤n) have only bi-1 as its unique predecessor 

 The EBB is entered only at b1, but may have multiple 
exits 

 A single block bi can be the head of multiple EBBs (these 
EBBs form a tree rooted at bi) 

 Use information discovered in earlier blocks to 
improve code in successors 
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Optimization Categories (3) 

 Regional methods 
 Operate over scopes larger than an EBB 

but smaller than an entire procedure/ 
function/method 

 Typical example: loop body 

 Difference from superlocal methods is that 
there may be merge points in the graph 
(i.e., a block with two or more 
predecessors) 
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Optimization Categories (4) 

 Global methods 
 Operate over entire procedures 

 Sometimes called intraprocedural methods 

 Motivation is that local optimizations sometimes 
have bad consequences in larger context 

 Procedure/method/function is a natural unit for 
analysis, separate compilation, etc. 

 Almost always need global data-flow analysis 
information for these 
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Optimization Categories (5) 

 Whole-program methods 
 Operate over more than one procedure 

 Sometimes called interprocedural methods 

 Challenges: name scoping and parameter binding 
issues at procedure boundaries 

 Classic examples: inline method substitution, 
interprocedural constant propagation 

 Common in aggressive JIT compilers and 
optimizing compilers for object-oriented languages 
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Value Numbering Revisited 

 Local Value 
Numbering 

 1 block at a time 

 Strong local results 

 No cross-block 
effects 

 Missed opportunities 

 

m = a + b 
n = a + b 

A 

p = c + d 
r = c + d 

B 
q = a + b 
r = c + d 

C 

e = b + 18 
s = a + b 
u = e + f 

D 
e = a + 17 
t = c + d 
u = e + f 

E 

v = a + b 
w = c + d 
x = e + f 

F 

y = a + b 
z = c + d 

G 
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Superlocal Value Numbering 

 Idea: apply local 
method to EBBs 
 {A,B}, {A,C,D}, {A,C,E} 

 Final info from A is 
initial info for B, C; final 
info from C is initial for 
D, E 

 Gets reuse from 
ancestors 

 Avoid reanalyzing A, C 

 Doesn’t help with F, G 

m = a + b 
n = a + b 

A 

p = c + d 
r = c + d 

B 
q = a + b 
r = c + d 

C 

e = b + 18 
s = a + b 
u = e + f 

D 
e = a + 17 
t = c + d 
u = e + f 

E 

v = a + b 
w = c + d 
x = e + f 

F 

y = a + b 
z = c + d 

G 
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SSA Name Space (from before) 

 Code   Rewritten 
 a0

3 = x0
1 + y0

2  a0
3 = x0

1 + y0
2 

 b0
3 = x0

1 + y0
2  b0

3 = a0
3 

 a1
4 = 17   a1

4 = 17 

 c0
3 = x0

1 + y0
2  c0

3 = a0
3 

 Unique name for each definition 

 Name  VN 

 a0
3 is available to assign to c0

3  
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SSA Name Space 

 Two Principles 

 Each name is defined by exactly one operation 

 Each operand refers to exactly one definition 

 Need to deal with merge points 

 Add Φ functions at merge points to reconcile 
names 

 Use subscripts on variable names for uniqueness 
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Superlocal Value Numbering 
with All Bells & Whistles 

 Finds more 
redundancies 

 Little extra cost 

 Still does nothing for 
F and G 

 

m0 = a0 + b0 

n0 = a0 + b0 

A 

p0 = c0 + d0 
r0 = c0 + d0 

B 
q0 = a0 + b0 

r1 = c0 + d0 

C 

e0 = b0 + 18 
s0 = a0 + b0 

u0 = e0 + f0 

D 
e1 = a0 + 17 
t0 = c0 + d0 

u1 = e1 + f0 

E 

e2 = Φ(e0,e1) 
u2 = Φ(u0,u1) 
v0 = a0 + b0 

w0 = c0 + d0 

x0 = e2 + f0 

F 

r2 = Φ(r0,r1) 
y0 = a0 + b0 

z0 = c0 + d0 

G 



11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-38 

Larger Scopes 

 Still have not helped F 
and G 

 Problem: multiple 
predecessors 

 Must decide what facts 
hold in F and in G 
 For G, combine B & F? 

 Merging states is 
expensive 

 Fall back on what we 
know 

m0 = a0 + b0 

n0 = a0 + b0 

A 

p0 = c0 + d0 
r0 = c0 + d0 

B 
q0 = a0 + b0 

r1 = c0 + d0 

C 

e0 = b0 + 18 
s0 = a0 + b0 

u0 = e0 + f0 

D 
e1 = a0 + 17 
t0 = c0 + d0 

u1 = e1 + f0 

E 

e2 = Φ(e0,e1) 
u2 = Φ(u0,u1) 
v0 = a0 + b0 

w0 = c0 + d0 

x0 = e2 + f0 

F 

r2 = Φ(r0,r1) 
y0 = a0 + b0 

z0 = c0 + d0 

G 
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Dominators 

 Definition 

 x dominates y iff every path from the entry of the 
control-flow graph to y includes x 

 By definition, x dominates x 

 Associate a Dom set with each node 

 | Dom(x) | ≥ 1 

 Many uses in analysis and transformation 

 Finding loops, building SSA form, code motion 
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Immediate Dominators 

 For any node x, there is a y in Dom(x) 
closest to x 

 This is the immediate dominator of x  

 Notation: IDom(x) 
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Dominator Sets 
m0 = a0 + b0 

n0 = a0 + b0 

A 

p0 = c0 + d0 
r0 = c0 + d0 

B 
q0 = a0 + b0 

r1 = c0 + d0 

C 

e0 = b0 + 18 
s0 = a0 + b0 

u0 = e0 + f0 

D 
e1 = a0 + 17 
t0 = c0 + d0 

u1 = e1 + f0 

E 

e2 = Φ(e0,e1) 
u2 = Φ(u0,u1) 
v0 = a0 + b0 

w0 = c0 + d0 

x0 = e2 + f0 

F 

r2 = Φ(r0,r1) 
y0 = a0 + b0 

z0 = c0 + d0 

G 

Block  Dom  IDom 
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Dominator Value Numbering 
m0 = a0 + b0 

n0 = a0 + b0 

A 

p0 = c0 + d0 
r0 = c0 + d0 

B 
q0 = a0 + b0 

r1 = c0 + d0 

C 

e0 = b0 + 18 
s0 = a0 + b0 

u0 = e0 + f0 

D 
e1 = a0 + 17 
t0 = c0 + d0 

u1 = e1 + f0 

E 

e2 = Φ(e0,e1) 
u2 = Φ(u0,u1) 
v0 = a0 + b0 

w0 = c0 + d0 

x0 = e2 + f0 

F 

r2 = Φ(r0,r1) 
y0 = a0 + b0 

z0 = c0 + d0 

G 

 Still looking for a way 
to handle F and G 

 Idea: Use info from 
IDom(x) to start 
analysis of x 
 Use C for F and  

A for G 

 Dominator VN 
Technique (DVNT) 
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DVNT algorithm 

 Use superlocal algorithm on extended basic 
blocks 

 Use scoped hash tables & SSA name space as 
before 

 Start each node with table from its IDOM 

 No values flow along back edges (i.e., loops) 

 Constant folding, algebraic identities as 
before 



11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-44 

Dominator Value Numbering 
m0 = a0 + b0 

n0 = a0 + b0 

A 

p0 = c0 + d0 
r0 = c0 + d0 

B 
q0 = a0 + b0 

r1 = c0 + d0 

C 

e0 = b0 + 18 
s0 = a0 + b0 

u0 = e0 + f0 

D 
e1 = a0 + 17 
t0 = c0 + d0 

u1 = e1 + f0 

E 

e2 = Φ(e0,e1) 
u2 = Φ(u0,u1) 
v0 = a0 + b0 

w0 = c0 + d0 

x0 = e2 + f0 

F 

r2 = Φ(r0,r1) 
y0 = a0 + b0 

z0 = c0 + d0 

G 

 Advantages 
 Finds more redundancy 

 Little extra cost 

 Shortcomings 
 Misses some 

opportunities (common 
calculations in ancestors 
that are not IDOMs) 

 Doesn’t handle loops or 
other back edges 
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The Story So Far… 

 Local algorithm 

 Superlocal extension 
 Some local methods extend cleanly to 

superlocal scopes 

 Dominator VN Technique (DVNT) 

 All of these propagate along forward 
edges 

 None are global 
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Coming Attractions 

 Data-flow analysis 

 Provides global solution to redundant expression 
analysis 

 Catches some things missed by DVNT, but misses some 
others 

 Generalizes to many other analysis problems, both 
forward and backward 

 Transformations 

 A catalog of some of the things a compiler can do 
with the analysis information 


