
11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-1

CSE P 501 – Compilers

Introduction to Optimization

Hal Perkins

Autumn 2011

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-2

Agenda

 Optimization
 Goals

 Scope: local, superlocal, regional, global
(intraprocedural), interprocedural

 Control flow graphs

 Value numbering

 Dominators

 Ref.: Cooper/Torczon ch. 8

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-3

Code Improvement (1)

 Pick a better algorithm(!)

 Use machine resources effectively

 Instruction selection & scheduling

 Register allocation

 More about these later…

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-4

Code Improvement (2)

 Local optimizations – basic blocks

 Algebraic simplifications

 Constant folding

 Common subexpression elimination (i.e.,
redundancy elimination)

 Dead code elimination

 Specialize computation based on context

 etc., etc., …

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-5

Code Improvement (3)

 Global optimizations

 Code motion

 Moving invariant computations out of loops

 Strength reduction (replace multiplications
by repeated additions, for example)

 Global common subexpression elimination

 Global register allocation

 Many others…

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-6

“Optimization”

 None of these improvements are truly
“optimal”
 Hard problems

 Proofs of optimality assume artificial
restrictions

 Best we can do is to improve things
 Most (much?) (some?) of the time

 Realistically: try to do better for common
idioms both in the code and on the machine

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-7

Example: A[i,j]

 Without any surrounding context, need to
generate code to calculate

address(A)

 + (i-low1(A)) * (high2(A)-low2(a)+1) * size(A)

 + (j-low2(A)) * size(A)

 lowi and highi are subscript bounds in dimension i

 address(A) is the runtime address of first element
of A

 … And we really should be checking that i, j
are in bounds

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-8

Some Optimizations for A[i,j]

 With more context, we can do better

 Examples

 If A is local, with known bounds, much of the
computation can be done at compile time

 If A[i,j] is in a loop where i and j change
systematically, we probably can replace
multiplications with additions each time around
the loop to reference successive rows/columns

 Even if not, we can move “loop-invariant” parts of the
calculation outside the loop

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-9

Optimization Phase

 Goal

 Discover, at compile time, information
about the runtime behavior of the
program, and use that information to
improve the generated code

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-10

A First Running Example:
Redundancy Elimination

 An expression x+y is redundant at a program
point iff, along every path from the
procedure’s entry, it has been evaluated and
its constituent subexpressions (x and y) have
not been redefined

 If the compiler can prove the expression is
redundant:
 Can store the result of the earlier evaluation

 Can replace the redundant computation with a
reference to the earlier (stored) result

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-11

Common Problems in Code
Improvement

 This strategy is typical of most compiler
optimizations
 First, discover opportunities through

program analysis

 Then, modify the IR to take advantage of
the opportunities
 Historically, goal usually was to decrease

execution time

 Other possibilities: reduce space, power, …

Issues (1)

 Safety – transformation must not change
program meaning
 Must generate correct results

 Can’t generate spurious errors

 Optimizations must be conservative

 Large part of analysis goes towards proving
safety

 Can pay off to speculate (be optimistic) but
then need to recover if reality is different

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-12

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-13

Issues (2)

 Profitibility

 If a transformation is possible, is it
profitable?

 Example: loop unrolling

 Can increase amount of work done on each
iteration, i.e., reduce loop overhead

 Can eliminate duplicate operations done on
separate iterations

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-14

Issues (3)

 Downside risks

 Even if a transformation is generally
worthwhile, need to think about potential
problems

 For example:

 Transformation might need more temporaries,
putting additional pressure on registers

 Increased code size could cause cache misses,
or, in bad cases, increase page working set

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-15

Example: Value Numbering

 Technique for eliminating redundant
expressions: assign an identifying number
VN(n) to each expression

 VN(x+y)=VN(j) if x+y and j have the same value

 Use hashing over value numbers for effeciency

 Old idea (Balke 1968, Ershov 1954)

 Invented for low-level, linear IRs

 Equivalent methods exist for tree IRs, e.g., build a
DAG

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-16

Uses of Value Numbers

 Improve the code

 Replace redundant expressions

 Simplify algebraic identities

 Discover, fold, and propagate constant
valued expressions

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-17

Local Value Numbering

 Algorithm
 For each operation o = <op, o1,o2> in a block

1. Get value numbers for operands from hash lookup

2. Hash <op, VN(o1), VN(o2)> to get a value number for o

 (If op is commutative, sort VN(o1), VN(o2) first)

3. If o already has a value number, replace o with a
reference to the value

4. If o1 and o2 are constant, evaluate o at compile time
and replace with an immediate load

 If hashing behaves well, this runs in linear
time

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-18

Example

Code Rewritten

 a = x + y

 b = x + y

 a = 17

 c = x + y

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-19

Bug in Simple Example

 If we use the original names, we get in
trouble when a name is reused

 Solutions

 Be clever about which copy of the value to
use (e.g., use c=b in last statement)

 Create an extra temporary

 Rename around it (best!)

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-20

Renaming

 Idea: give each value a unique name
 ai

j means ith definition of a with VN = j

 Somewhat complex notation, but
meaning is clear

 This is the idea behind SSA (Static
Single Assignment)
 Popular modern IR – exposes many

opportunities for optimizations

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-21

Example Revisited

Code Rewritten

 a = x + y

 b = x + y

 a = 17

 c = x + y

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-22

Simple Extensions to Value
Numbering

 Constant folding

 Add a bit that records when a value is constant

 Evaluate constant values at compile time

 Replace op with load immediate

 Algebraic identities: x+0, x*1, x-x, …

 Many special cases

 Switch on op to narrow down checks needed

 Replace result with input VN

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-23

Larger Scopes

 This algorithm works on straight-line
blocks of code (basic blocks)

 Best possible results for single basic blocks

 Loses all information when control flows to
another block

 To go further we need to represent
multiple blocks of code and the control
flow between them

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-24

Basic Blocks

 Definition: A basic block is a maximal
length sequence of straight-line code

 Properties
 Statements are executed sequentially
 If any statement executes, they all do

 (baring exceptions)

 In a linear IR, the first statement of a
basic block is often called the leader
 Procedure entry, jump targets, statements

following any jump/call

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-25

Control Flow Graph (CFG)

 Nodes: basic blocks

 Possible representations: linear 3-address
code, expression-level AST, DAG

 Edges: include a directed edge from n1
to n2 if there is any possible way for
control to transfer from block n1 to n2
during execution

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-26

Constructing Control Flow
Graphs from Linear IRs

 Algorithm
 Pass 1: Identify basic block leaders with a linear

scan of the IR
 Pass 2: Identify operations that end a block and

add appropriate edges to the CFG to all possible
successors

 See your favorite compiler book for details

 For convenience, ensure that every block
ends with conditional or unconditional jump
 Code generator can pick the most convenient “fall-

through” case later and eliminate unneeded jumps

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-27

Scope of Optimizations

 Optimization algorithms can work on units as
small as a basic block or as large as a whole
program

 Local information is generally more precise
and can lead to locally optimal results

 Global information is less precise (lose
information at join points in the graph), but
exposes opportunities for improvements
across basic blocks

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-28

Optimization Categories (1)

 Local methods

 Usually confined to basic blocks

 Simplest to analyze and understand

 Most precise information

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-29

Optimization Categories (2)

 Superlocal methods
 Operate over Extended Basic Blocks (EBBs)

 An EBB is a set of blocks b1, b2, …, bn where b1 has
multiple predecessors and each of the remaining blocks
bi (2≤i≤n) have only bi-1 as its unique predecessor

 The EBB is entered only at b1, but may have multiple
exits

 A single block bi can be the head of multiple EBBs (these
EBBs form a tree rooted at bi)

 Use information discovered in earlier blocks to
improve code in successors

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-30

Optimization Categories (3)

 Regional methods
 Operate over scopes larger than an EBB

but smaller than an entire procedure/
function/method

 Typical example: loop body

 Difference from superlocal methods is that
there may be merge points in the graph
(i.e., a block with two or more
predecessors)

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-31

Optimization Categories (4)

 Global methods
 Operate over entire procedures

 Sometimes called intraprocedural methods

 Motivation is that local optimizations sometimes
have bad consequences in larger context

 Procedure/method/function is a natural unit for
analysis, separate compilation, etc.

 Almost always need global data-flow analysis
information for these

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-32

Optimization Categories (5)

 Whole-program methods
 Operate over more than one procedure

 Sometimes called interprocedural methods

 Challenges: name scoping and parameter binding
issues at procedure boundaries

 Classic examples: inline method substitution,
interprocedural constant propagation

 Common in aggressive JIT compilers and
optimizing compilers for object-oriented languages

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-33

Value Numbering Revisited

 Local Value
Numbering

 1 block at a time

 Strong local results

 No cross-block
effects

 Missed opportunities

m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D
e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-34

Superlocal Value Numbering

 Idea: apply local
method to EBBs
 {A,B}, {A,C,D}, {A,C,E}

 Final info from A is
initial info for B, C; final
info from C is initial for
D, E

 Gets reuse from
ancestors

 Avoid reanalyzing A, C

 Doesn’t help with F, G

m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D
e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-35

SSA Name Space (from before)

 Code Rewritten
 a0

3 = x0
1 + y0

2 a0
3 = x0

1 + y0
2

 b0
3 = x0

1 + y0
2 b0

3 = a0
3

 a1
4 = 17 a1

4 = 17

 c0
3 = x0

1 + y0
2 c0

3 = a0
3

 Unique name for each definition

 Name VN

 a0
3 is available to assign to c0

3

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-36

SSA Name Space

 Two Principles

 Each name is defined by exactly one operation

 Each operand refers to exactly one definition

 Need to deal with merge points

 Add Φ functions at merge points to reconcile
names

 Use subscripts on variable names for uniqueness

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-37

Superlocal Value Numbering
with All Bells & Whistles

 Finds more
redundancies

 Little extra cost

 Still does nothing for
F and G

m0 = a0 + b0

n0 = a0 + b0

A

p0 = c0 + d0
r0 = c0 + d0

B
q0 = a0 + b0

r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0

u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0

u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0

z0 = c0 + d0

G

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-38

Larger Scopes

 Still have not helped F
and G

 Problem: multiple
predecessors

 Must decide what facts
hold in F and in G
 For G, combine B & F?

 Merging states is
expensive

 Fall back on what we
know

m0 = a0 + b0

n0 = a0 + b0

A

p0 = c0 + d0
r0 = c0 + d0

B
q0 = a0 + b0

r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0

u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0

u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0

z0 = c0 + d0

G

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-39

Dominators

 Definition

 x dominates y iff every path from the entry of the
control-flow graph to y includes x

 By definition, x dominates x

 Associate a Dom set with each node

 | Dom(x) | ≥ 1

 Many uses in analysis and transformation

 Finding loops, building SSA form, code motion

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-40

Immediate Dominators

 For any node x, there is a y in Dom(x)
closest to x

 This is the immediate dominator of x

 Notation: IDom(x)

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-41

Dominator Sets
m0 = a0 + b0

n0 = a0 + b0

A

p0 = c0 + d0
r0 = c0 + d0

B
q0 = a0 + b0

r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0

u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0

u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0

z0 = c0 + d0

G

Block Dom IDom

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-42

Dominator Value Numbering
m0 = a0 + b0

n0 = a0 + b0

A

p0 = c0 + d0
r0 = c0 + d0

B
q0 = a0 + b0

r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0

u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0

u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0

z0 = c0 + d0

G

 Still looking for a way
to handle F and G

 Idea: Use info from
IDom(x) to start
analysis of x
 Use C for F and

A for G

 Dominator VN
Technique (DVNT)

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-43

DVNT algorithm

 Use superlocal algorithm on extended basic
blocks

 Use scoped hash tables & SSA name space as
before

 Start each node with table from its IDOM

 No values flow along back edges (i.e., loops)

 Constant folding, algebraic identities as
before

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-44

Dominator Value Numbering
m0 = a0 + b0

n0 = a0 + b0

A

p0 = c0 + d0
r0 = c0 + d0

B
q0 = a0 + b0

r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0

u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0

u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0

z0 = c0 + d0

G

 Advantages
 Finds more redundancy

 Little extra cost

 Shortcomings
 Misses some

opportunities (common
calculations in ancestors
that are not IDOMs)

 Doesn’t handle loops or
other back edges

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-45

The Story So Far…

 Local algorithm

 Superlocal extension
 Some local methods extend cleanly to

superlocal scopes

 Dominator VN Technique (DVNT)

 All of these propagate along forward
edges

 None are global

11/8/2011 © 2002-11 Hal Perkins & UW CSE Q-46

Coming Attractions

 Data-flow analysis

 Provides global solution to redundant expression
analysis

 Catches some things missed by DVNT, but misses some
others

 Generalizes to many other analysis problems, both
forward and backward

 Transformations

 A catalog of some of the things a compiler can do
with the analysis information

