
11/27/2011 © 2002-11 Hal Perkins & UW CSE R-1 

CSE P 501 – Compilers 

Dataflow Analysis 

Hal Perkins 

Autumn 2011 



11/27/2011 © 2002-11 Hal Perkins & UW CSE R-2 

Agenda 

 Initial example: dataflow analysis for 
common subexpression elimination 

 Other analysis problems that work in 
the same framework 
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The Story So Far… 

 Redundant expression elimination 

 Local Value Numbering 

 Superlocal Value Numbering 

 Extends VN to EBBs 

 SSA-like namespace 

 Dominator VN Technique (DVNT) 

 All of these propagate along forward edges 

 None are global 

 In particular, can’t handle back edges (loops) 
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Dominator Value Numbering 
m0 = a0 + b0 

n0 = a0 + b0 

A 

p0 = c0 + d0 
r0 = c0 + d0 

B 
q0 = a0 + b0 

r1 = c0 + d0 

C 

e0 = b0 + 18 
s0 = a0 + b0 

u0 = e0 + f0 

D 
e1 = a0 + 17 
t0 = c0 + d0 

u1 = e1 + f0 

E 

e2 = Φ(e0,e1) 
u2 = Φ(u0,u1) 
v0 = a0 + b0 

w0 = c0 + d0 

x0 = e2 + f0 

F 

r2 = Φ(r0,r1) 
y0 = a0 + b0 

z0 = c0 + d0 

G 

 Most sophisticated 
algorithm so far 

 Still misses some 
opportunities 

 Can’t handle loops 
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Available Expressions 

 Goal: use dataflow analysis to find 
common subexpressions whose range 
spans basic blocks 

 Idea: calculate available expressions  at 
beginning of each basic block 

 Avoid re-evaluation of an available 
expression – use a copy operation 
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“Available” and Other Terms 

 An expression e  is defined  at point p in the 
CFG if its value is computed at p 
 Sometimes called definition site 

 An expression e  is killed  at point p if one of 
its operands is defined at p 
 Sometimes called kill site 

 An expression e  is available  at point p if 
every path leading to p contains a prior 
definition of e  and e  is not killed between 
that definition and p 
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Available Expression Sets 

 For each block b, define 

 AVAIL(b) – the set of expressions available 
on entry to b 

 NKILL(b) – the set of expressions not killed 
in b 

 DEF(b) – the set of expressions defined in 
b and not subsequently killed in b 
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Computing Available 
Expressions 

 AVAIL(b) is the set 

AVAIL(b) = xpreds(b) (DEF(x)  

     (AVAIL(x)  NKILL(x)) ) 

 preds(b) is the set of b’s predecessors in 
the control flow graph 

 This gives a system of simultaneous 
equations – a dataflow problem 
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Name Space Issues 

 In previous value-numbering 
algorithms, we used a SSA-like 
renaming to keep track of versions 

 In global dataflow problems, we use the 
original namespace 

 The KILL information captures when a 
value is no longer available 
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GCSE with Available 
Expressions 

 For each block b, compute DEF(b) and 
NKILL(b) 

 For each block b, compute AVAIL(b) 

 For each block b, value number the 
block starting with AVAIL(b) 

 Replace expressions in AVAIL(b) with 
references to the previously computed 
values 
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Global CSE Replacement 

 After analysis and before 
transformation, assign a global name to 
each expression e  by hashing on e 

 During transformation step 

 At each evaluation of e, insert copy 

 name(e ) = e 

 At each reference to e, replace e  with 
name(e )  
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Analysis 

 Main problem – inserts extraneous copies at 
all definitions and uses of every e  that 
appears in any AVAIL(b) 

 But the extra copies are dead and easy to remove 

 Useful copies often coalesce away when registers 
and temporaries are assigned 

 Common strategy 

 Insert copies that might be useful 

 Let dead code elimination sort it out later 
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Computing Available 
Expressions 

 Big Picture 

 Build control-flow graph 

 Calculate initial local data – DEF(b) and 
NKILL(b) 

 This only needs to be done once 

 Iteratively calculate AVAIL(b) by repeatedly 
evaluating equations until nothing changes 

 Another fixed-point algorithm 
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Computing DEF and NKILL (1) 

 For each block b with operations o1, o2, …, ok 

KILLED =  

DEF(b) =  

for i = k to 1 

 assume oi is “x = y + z”  

 if (y  KILLED and z  KILLED) 

    add “y + z” to DEF(b) 

 add x to KILLED 

…  
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Computing DEF and NKILL (2) 

 After computing DEF and KILLED for a 
block b, 
NKILL(b) = { all expressions } 

for each expression e 

 for each variable v  e 

     if v  KILLED then 

   NKILL(b) = NKILL(b) - e 
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Computing Available 
Expressions 

 Once DEF(b) and NKILL(b) are 
computed for all blocks b: 
Worklist = { all blocks b } 

while (Worklist  ) 

 remove a block b from Worklist 

 recompute AVAIL(b) 

 if AVAIL(b) changed 

    Worklist = Worklist  successors(b) 
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Comparing Algorithms 
m = a + b 

n = a + b 

A 

p = c + d 
r = c + d 

B 
q = a + b 

r = c + d 

C 

e = b + 18 
s = a + b 

u = e + f 

D 
e = a + 17 
t = c + d 

u = e + f 

E 

v = a + b 

w = c + d 

x = e + f 

F 

y = a + b 

z = c + d 

G 

 LVN – Local Value 
Numbering 

 SVN – Superlocal Value 
Numbering 

 DVN – Dominator-based 
Value Numbering 

 GRE – Global Redundancy 
Elimination 
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Comparing Algorithms (2) 

 LVN => SVN => DVN form a strict hierarchy 
– later algorithms find a superset of previous 
information 

 Global RE finds a somewhat different set 

 Discovers e+f in F (computed in both D and E) 

 Misses identical values if they have different 
names (e.g., a+b and c+d when a=c and b=d) 

 Value Numbering catches this 
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Scope of Analysis 

 Larger context (EBBs, regions, global, 
interprocedural) sometimes helps 

 More opportunities for optimizations 

 But not always 

 Introduces uncertainties about flow of control 

 Usually only allows weaker analysis 

 Sometimes has unwanted side effects 

 Can create additional pressure on registers, for example 



Code Replication 

 Sometimes replicating code increases 
opportunities – modify the code to 
create larger regions with simple control 
flow 

 Two examples 

 Cloning 

 Inline substitution 
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Cloning 

 Idea: duplicate blocks with multiple 
predecessors 

 Tradeoff 

 More local optimization possibilities – larger 
blocks, fewer branches 

 But: larger code size, may slow down if it 
interacts badly with cache 
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Original VN Example 
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m = a + b 
n = a + b 

A 

p = c + d 
r = c + d 

B 
q = a + b 
r = c + d 

C 

e = b + 18 
s = a + b 
u = e + f 

D 
e = a + 17 
t = c + d 
u = e + f 

E 

v = a + b 
w = c + d 
x = e + f 

F 

y = a + b 
z = c + d 

G 



Example with cloning 
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m = a + b 
n = a + b 

A 

p = c + d 
r = c + d 

B 
q = a + b 
r = c + d 

C 

e = b + 18 
s = a + b 
u = e + f 

D 
e = a + 17 
t = c + d 
u = e + f 

E 

v = a + b 
w = c + d 
x = e + f 

F 

y = a + b 
z = c + d 

G 

v = a + b 
w = c + d 
x = e + f 

F 

y = a + b 
z = c + d 

G 
y = a + b 
z = c + d 

G 



Inline Substitution 

 Problem: an optimizer has to treat a 
procedure call as if it (could have) 
modified all globally reachable data 

 Plus there is the basic expense of calling 
the procedure 

 Inline Substitution: replace each call 
site with a copy of the called function 
body 
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Inline Substitution Issues 

 Pro 
 More effective optimization – better local 

context and don’t need to invalidate local 
assumptions 

 Eliminate overhead of normal function call 

 Con 
 Potential code bloat 

 Need to manage recompilation when either 
caller or callee changes 
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Dataflow analysis 

 Global redundancy elimination is the 
first example of a dataflow analysis 
problem 

 Many similar problems can be 
expressed in a similar framework 

 Only the first part of the story – once 
we’ve discovered facts, we then need to 
use them to improve code 
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Dataflow Analysis (1) 

 A collection of techniques for compile-
time reasoning about run-time values 

 Almost always involves building a graph 

 Trivial for basic blocks 

 Control-flow graph or derivative for global 
problems 

 Call graph or derivative for whole-program 
problems 
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Dataflow Analysis (2) 

 Usually formulated as a set of 
simultaneous equations (dataflow 
problem) 
 Sets attached to nodes and edges 

 Need a lattice (or semilattice) to describe 
values 
 In particular, has an appropriate operator to 

combine values and an appropriate “bottom” or 
minimal value 
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Dataflow Analysis (3) 

 Desired solution is usually a meet over 
all paths (MOP) solution 

 “What is true on every path from entry” 

 “What can happen on any path from entry” 

 Usually relates to safety of optimization 
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Dataflow Analysis (4) 

 Limitations 
 Precision – “up to symbolic execution” 

 Assumes all paths taken 

 Sometimes cannot afford to compute full solution 

 Arrays – classic analysis treats each array as a 
single fact 

 Pointers – difficult, expensive to analyze 
 Imprecision rapidly adds up 

 For scalar values we can quickly solve simple 
problems 
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Example:  
Available Expressions 

 This is the analysis we did earlier to 
eliminate redundant expression 
evaluations 

 Equation: 

AVAIL(b) = xpreds(b) (DEF(x)  

     (AVAIL(x)  NKILL(x)) ) 
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Characterizing Dataflow 
Analysis 

 All of these algorithms involve sets of facts 
about each basic block b 
 IN(b) – facts true on entry to b 
 OUT(b) – facts true on exit from b 
 GEN(b) – facts created and not killed in b 
 KILL(b) – facts killed in b 

 These are related by the equation 
  OUT(b) = GEN(b)  (IN(b) – KILL(b)) 
 Solve this iteratively for all blocks 
 Sometimes information propagates forward; 

sometimes backward 
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Example:Live Variable Analysis 

 A variable v  is live at point p  iff there is any 
path from p  to a use of v  along which v  is 
not redefined 

 Some uses: 
 Register allocation – only live variables need a 

register (or temporary) 

 Eliminating useless stores 

 Detecting uses of uninitialized variables 

 Improve SSA construction – only need Φ-function 
for variables that are live in a block (later) 



Liveness Analysis Sets 

 For each block b, define 

 use[b] = variable used in b before any def 

 def[b] = variable defined in b & not killed 

 in[b] = variables live on entry to b 

 out[b] = variables live on exit from b 
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Equations for Live Variables 

 Given the preceding definitions, we 
have 

 in[b] = use[b]  (out[b] – def[b]) 

 out[b] = ssucc[b] in[s] 

 Algorithm 

 Set in[b] = out[b] =  

 Update in, out until no change 
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Example (1 stmt per block) 

 Code 

  a := 0 

L:  b := a+1 

  c := c+b 

  a := b*2 

  if a < N goto L 

  return c 

11/27/2011  © 2002-11 Hal Perkins & UW CSE T-36 

1: a:= 0 

2: b:=a+1 

3: c:=c+b 

4: a:=b+2 

5: a < N 

6: return c 



Calculation 
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1: a:= 0 

2: b:=a+1 

3: c:=c+b 

4: a:=b+2 

5: a < N 

6: return c 

in[b] = use[b]  (out[b] – def[b]) 
out[b] = ssucc[b] in[s] 
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Equations for Live Variables v2 

 Many problems have more than one 
formulation.  For example, Live Variables… 

 Sets 
 USED(b) – variables used in b before being 

defined in b 
 NOTDEF(b) – variables not defined in b 
 LIVE(b) – variables live on exit  from b 

 Equation 
 LIVE(b) = ssucc(b) USED(s)   
     (LIVE(s)  NOTDEF(s)) 
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Example: Reaching Definitions 

 A definition d  of some variable v 
reaches operation i  iff i  reads the 
value of v  and there is a path from d  
to i  that does not define v 

 Use: 

 Find all of the possible definition points for 
a variable in an expression 
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Equations for Reaching 
Definitions 

 Sets 

 DEFOUT(b) – set of definitions in b that reach the 
end of b (i.e., not subsequently redefined in b) 

 SURVIVED(b) – set of all definitions not obscured 
by a definition in b 

 REACHES(b) – set of definitions that reach b 

 Equation 

 REACHES(b) = ppreds(b) DEFOUT(p)   

    (REACHES(p)  SURVIVED(p)) 
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Example: Very Busy 
Expressions 

 An expression e is considered very busy 
at some point p if e  is evaluated and 
used along every path that leaves p, 
and evaluating e  at p would produce 
the same result as evaluating it at the 
original locations 

 Use: 
 Code hoisting – move e to p (reduces code 

size; no effect on execution time) 
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Equations for Very Busy 
Expressions 

 Sets 
 USED(b) – expressions used in b before they are 

killed 

 KILLED(b) – expressions redefined in b before 
they are used 

 VERYBUSY(b) – expressions very busy on exit 
from b 

 Equation 
 VERYBUSY(b) = ssucc(b) USED(s)   

     (VERYBUSY(s) - KILLED(s)) 
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Efficiency of Dataflow Analysis 

 The algorithms eventually terminate, 
but the expected time needed can be 
reduced by picking a good order to visit 
nodes in the CFG depending on how 
information flows 

 Forward problems – reverse postorder 

 Backward problems - postorder 



Using Dataflow Information 

 A few examples of possible 
tranformations… 
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Classic Common-
Subexpression Elimination 

 In a statement s: t := x op y, if x op y 
is available at s then it need not be 
recomputed 

 Analysis: compute reaching expressions 
i.e., statements n: v := x op y such that 
the path from n to s does not compute 
x op y or define x or y 
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Classic CSE 

 If x op y is defined at n and reaches s 
 Create new temporary w 

 Rewrite n as 
n: w := x op y 

n’: v := w 

 Modify statement s to be 
s: t := w 

 

 (Rely on copy propagation to remove extra 
assignments if not really needed) 
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Constant Propagation 

 Suppose we have 

 Statement d: t := c, where c is constant 

 Statement n that uses t 

 If d reaches n and no other definitions 
of t reach n, then rewrite n to use c 
instead of t  
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Copy Propagation 

 Similar to constant propagation 

 Setup: 
 Statement d: t := z 

 Statement n uses t 

 If d reaches n and no other definition of 
t reaches n, and there is no definition of 
z on any path from d to n, then rewrite 
n to use z instead of t 
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Copy Propagation Tradeoffs 

 Downside is that this can increase the 
lifetime of variable z and increase need for 
registers or memory traffic 
 Not worth doing if only reason is to eliminate 

copies – let the register allocate deal with that 

 But it can expose other optimizations, e.g., 
a := y + z 
u := y 
c := u + z 

 After copy propagation we can recognize the 
common subexpression 
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Dead Code Elimination 

 If we have an instruction 

  s: a := b op c 

 and a is not live-out after s, then s can 
be eliminated 

 Provided it has no implicit side effects that 
are visible (output, exceptions, etc.) 
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Aliases 

 A variable or memory location may 
have multiple names or aliases  

 Call-by-reference parameters 

 Variables whose address is taken (&x) 

 Expressions that dereference pointers  
(p.x, *p) 

 Expressions involving subscripts (a[i]) 

 Variables in nested scopes 

11/27/2011  © 2002-11 Hal Perkins & UW CSE R-51 



Aliases vs Optimizations 

 Example: 

  p.x := 5;  q.x := 7;  a := p.x; 

 

 Does reaching definition analysis show that 
the definition of p.x reaches a?   

 (Or: do p and q refer to the same 
variable/object?) 

 (Or: can p and q refer to the same thing?) 
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Aliases vs Optimizations 

 Example 
 void f(int *p, int *q) { 

   *p = 1; *q = 2; 

   return *p; 

 } 

 How do we account for the possibility that 
p and q might refer to the same thing? 

 Safe approximation: since it’s possible, 
assume it is true (but rules out a lot) 
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Types and Aliases (1) 

 In Java, ML, MiniJava, and others, if 
two variables have incompatible types 
they cannot be names for the same 
location 

 Also helps that programmer cannot create 
arbitrary pointers to storage in these 
languages 
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Types and Aliases (2) 

 Strategy: Divide memory locations into 
alias classes based on type information 
(every type, array, record field is a class) 

 Implication: need to propagate type 
information from the semantics pass to 
optimizer 
 Not normally true of a minimally typed IR 

 Items in different alias classes cannot refer 
to each other 
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Aliases and Flow Analysis 

 Idea: Base alias classes on points where a 
value is created 
 Every new/malloc and each local or global 

variable whose address is taken is an alias 
class 

 Pointers can refer to values in multiple alias 
classes (so each memory reference is to a set 
of alias classes) 

 Use to calculate “may alias” information (e.g., 
p “may alias” q at program point s) 
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Using “may-alias” information 

 Treat each alias class as a “variable” in 
dataflow analysis problems 

 Example: framework for available 
expressions 

 Given statement   s: M[a]:=b, 

  gen[s] = { } 

  kill[s] = { M[x] | a may alias x at s } 
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May-Alias Analysis 

 Without alias analysis, 
#2 kills M[t] since x 
and t might be related 

 If analysis determines 
that “x may-alias t” is 
false, M[t] is still 
available at #3; can 
eliminate the common 
subexpression and 
use copy propagation 

 Code 

1:  u := M[t] 

2:  M[x] := r 

3:  w := M[t] 

4:  b := u+w 
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Where are we now? 

 Dataflow analysis is the core of classical 
optimizations 

 Still to explore: 

 Discovering and optimizing loops 

 SSA – Static Single Assignment form 
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