
11/27/2011 © 2002-11 Hal Perkins & UW CSE R-1

CSE P 501 – Compilers

Dataflow Analysis

Hal Perkins

Autumn 2011

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-2

Agenda

 Initial example: dataflow analysis for
common subexpression elimination

 Other analysis problems that work in
the same framework

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-3

The Story So Far…

 Redundant expression elimination

 Local Value Numbering

 Superlocal Value Numbering

 Extends VN to EBBs

 SSA-like namespace

 Dominator VN Technique (DVNT)

 All of these propagate along forward edges

 None are global

 In particular, can’t handle back edges (loops)

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-4

Dominator Value Numbering
m0 = a0 + b0

n0 = a0 + b0

A

p0 = c0 + d0
r0 = c0 + d0

B
q0 = a0 + b0

r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0

u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0

u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0

z0 = c0 + d0

G

 Most sophisticated
algorithm so far

 Still misses some
opportunities

 Can’t handle loops

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-5

Available Expressions

 Goal: use dataflow analysis to find
common subexpressions whose range
spans basic blocks

 Idea: calculate available expressions at
beginning of each basic block

 Avoid re-evaluation of an available
expression – use a copy operation

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-6

“Available” and Other Terms

 An expression e is defined at point p in the
CFG if its value is computed at p
 Sometimes called definition site

 An expression e is killed at point p if one of
its operands is defined at p
 Sometimes called kill site

 An expression e is available at point p if
every path leading to p contains a prior
definition of e and e is not killed between
that definition and p

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-7

Available Expression Sets

 For each block b, define

 AVAIL(b) – the set of expressions available
on entry to b

 NKILL(b) – the set of expressions not killed
in b

 DEF(b) – the set of expressions defined in
b and not subsequently killed in b

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-8

Computing Available
Expressions

 AVAIL(b) is the set

AVAIL(b) = xpreds(b) (DEF(x)

 (AVAIL(x) NKILL(x)))

 preds(b) is the set of b’s predecessors in
the control flow graph

 This gives a system of simultaneous
equations – a dataflow problem

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-9

Name Space Issues

 In previous value-numbering
algorithms, we used a SSA-like
renaming to keep track of versions

 In global dataflow problems, we use the
original namespace

 The KILL information captures when a
value is no longer available

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-10

GCSE with Available
Expressions

 For each block b, compute DEF(b) and
NKILL(b)

 For each block b, compute AVAIL(b)

 For each block b, value number the
block starting with AVAIL(b)

 Replace expressions in AVAIL(b) with
references to the previously computed
values

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-11

Global CSE Replacement

 After analysis and before
transformation, assign a global name to
each expression e by hashing on e

 During transformation step

 At each evaluation of e, insert copy

 name(e) = e

 At each reference to e, replace e with
name(e)

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-12

Analysis

 Main problem – inserts extraneous copies at
all definitions and uses of every e that
appears in any AVAIL(b)

 But the extra copies are dead and easy to remove

 Useful copies often coalesce away when registers
and temporaries are assigned

 Common strategy

 Insert copies that might be useful

 Let dead code elimination sort it out later

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-13

Computing Available
Expressions

 Big Picture

 Build control-flow graph

 Calculate initial local data – DEF(b) and
NKILL(b)

 This only needs to be done once

 Iteratively calculate AVAIL(b) by repeatedly
evaluating equations until nothing changes

 Another fixed-point algorithm

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-14

Computing DEF and NKILL (1)

 For each block b with operations o1, o2, …, ok

KILLED =

DEF(b) =

for i = k to 1

 assume oi is “x = y + z”

 if (y KILLED and z KILLED)

 add “y + z” to DEF(b)

 add x to KILLED

…

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-15

Computing DEF and NKILL (2)

 After computing DEF and KILLED for a
block b,
NKILL(b) = { all expressions }

for each expression e

 for each variable v e

 if v KILLED then

 NKILL(b) = NKILL(b) - e

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-16

Computing Available
Expressions

 Once DEF(b) and NKILL(b) are
computed for all blocks b:
Worklist = { all blocks b }

while (Worklist)

 remove a block b from Worklist

 recompute AVAIL(b)

 if AVAIL(b) changed

 Worklist = Worklist successors(b)

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-17

Comparing Algorithms
m = a + b

n = a + b

A

p = c + d
r = c + d

B
q = a + b

r = c + d

C

e = b + 18
s = a + b

u = e + f

D
e = a + 17
t = c + d

u = e + f

E

v = a + b

w = c + d

x = e + f

F

y = a + b

z = c + d

G

 LVN – Local Value
Numbering

 SVN – Superlocal Value
Numbering

 DVN – Dominator-based
Value Numbering

 GRE – Global Redundancy
Elimination

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-18

Comparing Algorithms (2)

 LVN => SVN => DVN form a strict hierarchy
– later algorithms find a superset of previous
information

 Global RE finds a somewhat different set

 Discovers e+f in F (computed in both D and E)

 Misses identical values if they have different
names (e.g., a+b and c+d when a=c and b=d)

 Value Numbering catches this

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-19

Scope of Analysis

 Larger context (EBBs, regions, global,
interprocedural) sometimes helps

 More opportunities for optimizations

 But not always

 Introduces uncertainties about flow of control

 Usually only allows weaker analysis

 Sometimes has unwanted side effects

 Can create additional pressure on registers, for example

Code Replication

 Sometimes replicating code increases
opportunities – modify the code to
create larger regions with simple control
flow

 Two examples

 Cloning

 Inline substitution

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-20

Cloning

 Idea: duplicate blocks with multiple
predecessors

 Tradeoff

 More local optimization possibilities – larger
blocks, fewer branches

 But: larger code size, may slow down if it
interacts badly with cache

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-21

Original VN Example

11/27/2011 © 2002-11 Hal Perkins & UW CSE Q-22

m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D
e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G

Example with cloning

11/27/2011 © 2002-11 Hal Perkins & UW CSE Q-23

m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D
e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G
y = a + b
z = c + d

G

Inline Substitution

 Problem: an optimizer has to treat a
procedure call as if it (could have)
modified all globally reachable data

 Plus there is the basic expense of calling
the procedure

 Inline Substitution: replace each call
site with a copy of the called function
body

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-24

Inline Substitution Issues

 Pro
 More effective optimization – better local

context and don’t need to invalidate local
assumptions

 Eliminate overhead of normal function call

 Con
 Potential code bloat

 Need to manage recompilation when either
caller or callee changes

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-25

Dataflow analysis

 Global redundancy elimination is the
first example of a dataflow analysis
problem

 Many similar problems can be
expressed in a similar framework

 Only the first part of the story – once
we’ve discovered facts, we then need to
use them to improve code

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-26

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-27

Dataflow Analysis (1)

 A collection of techniques for compile-
time reasoning about run-time values

 Almost always involves building a graph

 Trivial for basic blocks

 Control-flow graph or derivative for global
problems

 Call graph or derivative for whole-program
problems

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-28

Dataflow Analysis (2)

 Usually formulated as a set of
simultaneous equations (dataflow
problem)
 Sets attached to nodes and edges

 Need a lattice (or semilattice) to describe
values
 In particular, has an appropriate operator to

combine values and an appropriate “bottom” or
minimal value

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-29

Dataflow Analysis (3)

 Desired solution is usually a meet over
all paths (MOP) solution

 “What is true on every path from entry”

 “What can happen on any path from entry”

 Usually relates to safety of optimization

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-30

Dataflow Analysis (4)

 Limitations
 Precision – “up to symbolic execution”

 Assumes all paths taken

 Sometimes cannot afford to compute full solution

 Arrays – classic analysis treats each array as a
single fact

 Pointers – difficult, expensive to analyze
 Imprecision rapidly adds up

 For scalar values we can quickly solve simple
problems

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-31

Example:
Available Expressions

 This is the analysis we did earlier to
eliminate redundant expression
evaluations

 Equation:

AVAIL(b) = xpreds(b) (DEF(x)

 (AVAIL(x) NKILL(x)))

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-32

Characterizing Dataflow
Analysis

 All of these algorithms involve sets of facts
about each basic block b
 IN(b) – facts true on entry to b
 OUT(b) – facts true on exit from b
 GEN(b) – facts created and not killed in b
 KILL(b) – facts killed in b

 These are related by the equation
 OUT(b) = GEN(b) (IN(b) – KILL(b))
 Solve this iteratively for all blocks
 Sometimes information propagates forward;

sometimes backward

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-33

Example:Live Variable Analysis

 A variable v is live at point p iff there is any
path from p to a use of v along which v is
not redefined

 Some uses:
 Register allocation – only live variables need a

register (or temporary)

 Eliminating useless stores

 Detecting uses of uninitialized variables

 Improve SSA construction – only need Φ-function
for variables that are live in a block (later)

Liveness Analysis Sets

 For each block b, define

 use[b] = variable used in b before any def

 def[b] = variable defined in b & not killed

 in[b] = variables live on entry to b

 out[b] = variables live on exit from b

11/27/2011 © 2002-11 Hal Perkins & UW CSE T-34

Equations for Live Variables

 Given the preceding definitions, we
have

 in[b] = use[b] (out[b] – def[b])

 out[b] = ssucc[b] in[s]

 Algorithm

 Set in[b] = out[b] =

 Update in, out until no change

11/27/2011 © 2002-11 Hal Perkins & UW CSE T-35

Example (1 stmt per block)

 Code

 a := 0

L: b := a+1

 c := c+b

 a := b*2

 if a < N goto L

 return c

11/27/2011 © 2002-11 Hal Perkins & UW CSE T-36

1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b+2

5: a < N

6: return c

Calculation

11/27/2011 © 2002-11 Hal Perkins & UW CSE T-37

1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b+2

5: a < N

6: return c

in[b] = use[b] (out[b] – def[b])
out[b] = ssucc[b] in[s]

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-38

Equations for Live Variables v2

 Many problems have more than one
formulation. For example, Live Variables…

 Sets
 USED(b) – variables used in b before being

defined in b
 NOTDEF(b) – variables not defined in b
 LIVE(b) – variables live on exit from b

 Equation
 LIVE(b) = ssucc(b) USED(s)
 (LIVE(s) NOTDEF(s))

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-39

Example: Reaching Definitions

 A definition d of some variable v
reaches operation i iff i reads the
value of v and there is a path from d
to i that does not define v

 Use:

 Find all of the possible definition points for
a variable in an expression

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-40

Equations for Reaching
Definitions

 Sets

 DEFOUT(b) – set of definitions in b that reach the
end of b (i.e., not subsequently redefined in b)

 SURVIVED(b) – set of all definitions not obscured
by a definition in b

 REACHES(b) – set of definitions that reach b

 Equation

 REACHES(b) = ppreds(b) DEFOUT(p)

 (REACHES(p) SURVIVED(p))

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-41

Example: Very Busy
Expressions

 An expression e is considered very busy
at some point p if e is evaluated and
used along every path that leaves p,
and evaluating e at p would produce
the same result as evaluating it at the
original locations

 Use:
 Code hoisting – move e to p (reduces code

size; no effect on execution time)

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-42

Equations for Very Busy
Expressions

 Sets
 USED(b) – expressions used in b before they are

killed

 KILLED(b) – expressions redefined in b before
they are used

 VERYBUSY(b) – expressions very busy on exit
from b

 Equation
 VERYBUSY(b) = ssucc(b) USED(s)

 (VERYBUSY(s) - KILLED(s))

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-43

Efficiency of Dataflow Analysis

 The algorithms eventually terminate,
but the expected time needed can be
reduced by picking a good order to visit
nodes in the CFG depending on how
information flows

 Forward problems – reverse postorder

 Backward problems - postorder

Using Dataflow Information

 A few examples of possible
tranformations…

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-44

Classic Common-
Subexpression Elimination

 In a statement s: t := x op y, if x op y
is available at s then it need not be
recomputed

 Analysis: compute reaching expressions
i.e., statements n: v := x op y such that
the path from n to s does not compute
x op y or define x or y

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-45

Classic CSE

 If x op y is defined at n and reaches s
 Create new temporary w

 Rewrite n as
n: w := x op y

n’: v := w

 Modify statement s to be
s: t := w

 (Rely on copy propagation to remove extra
assignments if not really needed)

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-46

Constant Propagation

 Suppose we have

 Statement d: t := c, where c is constant

 Statement n that uses t

 If d reaches n and no other definitions
of t reach n, then rewrite n to use c
instead of t

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-47

Copy Propagation

 Similar to constant propagation

 Setup:
 Statement d: t := z

 Statement n uses t

 If d reaches n and no other definition of
t reaches n, and there is no definition of
z on any path from d to n, then rewrite
n to use z instead of t

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-48

Copy Propagation Tradeoffs

 Downside is that this can increase the
lifetime of variable z and increase need for
registers or memory traffic
 Not worth doing if only reason is to eliminate

copies – let the register allocate deal with that

 But it can expose other optimizations, e.g.,
a := y + z
u := y
c := u + z

 After copy propagation we can recognize the
common subexpression

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-49

Dead Code Elimination

 If we have an instruction

 s: a := b op c

 and a is not live-out after s, then s can
be eliminated

 Provided it has no implicit side effects that
are visible (output, exceptions, etc.)

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-50

Aliases

 A variable or memory location may
have multiple names or aliases

 Call-by-reference parameters

 Variables whose address is taken (&x)

 Expressions that dereference pointers
(p.x, *p)

 Expressions involving subscripts (a[i])

 Variables in nested scopes

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-51

Aliases vs Optimizations

 Example:

 p.x := 5; q.x := 7; a := p.x;

 Does reaching definition analysis show that
the definition of p.x reaches a?

 (Or: do p and q refer to the same
variable/object?)

 (Or: can p and q refer to the same thing?)

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-52

Aliases vs Optimizations

 Example
 void f(int *p, int *q) {

 *p = 1; *q = 2;

 return *p;

 }

 How do we account for the possibility that
p and q might refer to the same thing?

 Safe approximation: since it’s possible,
assume it is true (but rules out a lot)

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-53

Types and Aliases (1)

 In Java, ML, MiniJava, and others, if
two variables have incompatible types
they cannot be names for the same
location

 Also helps that programmer cannot create
arbitrary pointers to storage in these
languages

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-54

Types and Aliases (2)

 Strategy: Divide memory locations into
alias classes based on type information
(every type, array, record field is a class)

 Implication: need to propagate type
information from the semantics pass to
optimizer
 Not normally true of a minimally typed IR

 Items in different alias classes cannot refer
to each other

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-55

Aliases and Flow Analysis

 Idea: Base alias classes on points where a
value is created
 Every new/malloc and each local or global

variable whose address is taken is an alias
class

 Pointers can refer to values in multiple alias
classes (so each memory reference is to a set
of alias classes)

 Use to calculate “may alias” information (e.g.,
p “may alias” q at program point s)

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-56

Using “may-alias” information

 Treat each alias class as a “variable” in
dataflow analysis problems

 Example: framework for available
expressions

 Given statement s: M[a]:=b,

 gen[s] = { }

 kill[s] = { M[x] | a may alias x at s }

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-57

May-Alias Analysis

 Without alias analysis,
#2 kills M[t] since x
and t might be related

 If analysis determines
that “x may-alias t” is
false, M[t] is still
available at #3; can
eliminate the common
subexpression and
use copy propagation

 Code

1: u := M[t]

2: M[x] := r

3: w := M[t]

4: b := u+w

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-58

Where are we now?

 Dataflow analysis is the core of classical
optimizations

 Still to explore:

 Discovering and optimizing loops

 SSA – Static Single Assignment form

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-59

