
11/15/2011 © 2002-11 Hal Perkins & UW CSE T-1 

CSE P 501 – Compilers 

Loops 

Hal Perkins 

Autumn 2011 



Agenda 

 Loop optimizations 
 Dominators – discovering loops 

 Loop invariant calculations 

 Loop transformations 

 A quick look at some memory hierarchy 
issues 
 

 Largely based on material in Appel ch. 18, 21; similar 
material in other books 
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Loops 

 Much of he execution time of programs 
is spent here 

  worth considerable effort to make 
loops go faster 

  want to figure out how to recognize 
loops and figure out how to “improve” 
them 
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What’s a Loop? 

 In a control flow graph, a loop is a set 
of nodes S such that: 

 S includes a header node h 

 From any node in S there is a path of 
directed edges leading to h 

 There is a path from h to any node in S 

 There is no edge from any node outside S 
to any node in S other than h 
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Entries and Exits 

 In a loop 

 An entry node is one with some 
predecessor outside the loop 

 An exit node is one that has a successor 
outside the loop 

 Corollary of preceding definitions: A 
loop may have multiple exit nodes, but 
only one entry node 
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Reducible Flow Graphs 

 In a reducible flow graph, any two loops are 
either nested or disjoint 

 Roughly, to discover if a flow graph is 
reducible, repeatedly delete edges and collapse 
together pairs of nodes (x,y) where x is the 
only predecessor of y 

 If the graph can be reduced to a single node it 
is reducible 
 Caution: this is the “powerpoint” version of the 

definition – see a good compiler book for the 
careful details 
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Example: Is this Reducible? 
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Example: Is this Reducible? 
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Reducible Flow Graphs in 
Practice 

 Common control-flow constructs yield 
reducible flow graphs 
 if-then[-else], while, do, for, break(!) 

 A C function without goto will always be 
reducible 

 Many dataflow analysis algorithms are 
very efficient on reducible graphs, but… 

 We don’t need to assume reducible 
control-flow graphs to handle loops 
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Finding Loops in Flow Graphs 

 We use dominators for this 

 Recall 

 Every control flow graph has a unique start 
node s0 

 Node x dominates node y if every path 
from s0 to y must go through x 

 A node x dominates itself 
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Calculating Dominator Sets 

 D[n] is the set of nodes that dominate n 

 D[s0] = { s0 } 

 D[n] = { n }  ( ppred[n] D[p] ) 

 Set up an iterative analysis as usual to 
solve this 

 Except initially each D[n] must be all nodes 
in the graph – updates make these sets 
smaller if changed 
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Immediate Dominators 

 Every node n has a single immediate 
dominator  idom(n) 
 idom(n) differs from n 
 idom(n) dominates n 
 idom(n) does not dominate any other 

dominator of n 

 Fact (er, theorem): If a dominates n and b 
dominates n, then either a dominates b or 
b dominates a 
  idom(n) is unique 
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Dominator Tree 

 A dominator tree  is constructed from a 
flowgraph by drawing an edge form 
every node in n to idom(n) 

 This will be a tree.  Why? 
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Example 
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Back Edges & Loops 

 A flow graph edge from a node n to a 
node h that dominates n is a back edge  

 For every back edge there is a 
corresponding subgraph of the flow 
graph that is a loop 
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Natural Loops 

 If h dominates n and n->h is a back edge, 
then the natural loop of that back edge is 
the set of nodes x such that 

 h dominates x 

 There is a path from x to n not containing h 

 h is the header  of this loop 

 Standard loop optimizations can cope with 
loops whether they are natural or not 
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Inner Loops 

 Inner loops are more important for 
optimization because most execution 
time is expected to be spent there 

 If two loops share a header, it is hard 
to tell which one is “inner” 

 Common way to handle this is to merge 
natural loops with the same header 
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Inner (nested) loops 

 Suppose 

 A and B are loops with headers a and b 

 a  b 

 b is in A 

 Then 

 The nodes of B are a proper subset of A 

 B is nested in A, or B is the inner loop  
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Loop-Nest Tree 

 Given a flow graph G 
1. Compute the dominators of G 

2. Construct the dominator tree 

3. Find the natural loops (thus all loop-
header nodes) 

4. For each loop header h, merge all natural 
loops of h into a single loop: loop[h] 

5. Construct a tree of loop headers s.t. h1 is 
above h2 if h2 is in loop[h1] 
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Loop-Nest Tree details 

 Leaves of this tree are the innermost 
loops 

 Need to put all non-loop nodes 
somewhere 

 Convention: lump these into the root of the 
loop-nest tree 
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Example 
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Loop Preheader 

 Often we need a place to park code 
right before the beginning of a loop 

 Easy if there is a single node preceding 
the loop header h 

 But this isn’t the case in general 

 So insert a preheader node p 

 Include an edge p->h 

 Change all edges x->h to be x->p 
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Loop-Invariant Computations 

 Idea: If x := a1 op a2 always does the 
same thing each time around the loop, 
we’d like to hoist  it and do it once 
outside the loop 

 But can’t always tell if a1 and a2 will 
have the same value 

 Need a conservative (safe) approximation 
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Loop-Invariant Computations 

 d: x := a1 op a2 is loop-invariant if for each ai 

 ai is a constant, or 
 All the definitions of ai that reach d are outside the 

loop, or 
 Only one definition of ai reaches d, and that 

definition is loop invariant 

 Use this to build an iterative algorithm 
 Base cases: constants and operands defined 

outside the loop 
 Then: repeatedly find definitions with loop-

invariant operands 

11/15/2011  © 2002-11 Hal Perkins & UW CSE T-24 



Hoisting 

 Assume that  d: x := a1 op a2  is loop 
invariant.  We can hoist it to the loop 
preheader if 
 d dominates all loop exits where x is live-out, 

and 
 There is only one definition of x in the loop, 

and 
 x is not live-out of the loop preheader 

 Need to modify this if a1 op a2 could have 
side effects or raise an exception 
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Hoisting: Possible? 

 Example 1 

L0: t := 0 

L1: i := i + 1 

  t := a op b 

  M[i] := t 

  if i < n goto L1 

L2: x := t 

 Example 2 

L0: t := 0 

L1: if i ≥ n goto L2  

  i := i + 1 

  t := a op b 

  M[i] := t 

  goto L1 

L2: x := t 
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Hoisting: Possible? 

 Example 3 

L0: t := 0 

L1: i := i + 1 

  t := a op b 

  M[i] := t 

  t := 0 

  M[j] := t 

  if i < n goto L1 

L2: x := t 

 

 Example 4 

L0: t := 0 

L1: M[j] := t 

  i := i + 1 

  t := a op b 

  M[i] := t 

   if i < n goto L1 

L2: x := t 
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Induction Variables 

 Suppose inside a loop 

 Variable i is incremented or decremented 

 Variable j is set to i*c+d where c and d are 
loop-invariant 

 Then we can calculate j’s value without 
using i  

 Whenever i is incremented by a,  
increment j by c*a 
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Example 

 Original 
  s := 0 
  i := 0 
L1: if i ≥ n goto L2 
  j := i*4 
  k := j+a 
  x := M[k] 
  s := s+x 
  i := i+1 
  goto L1 
L2: 

 To optimize, do… 
 Induction-variable 

analysis to discover i 
and j are related 
induction variables 

 Strength reduction to 
replace *4 with an 
addition 

 Induction-variable 
elimination to replace i 
≥ n 

 Assorted copy 
propagation 
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Result 

 Original 
  s := 0 
  i := 0 
L1: if i ≥ n goto L2 
  j := i*4 
  k := j+a 
  x := M[k] 
  s := s+x 
  i := i+1 
  goto L1 
L2: 

 

 Transformed 
  s := 0 
  k’ = a 
  b = n*4 
  c = a+b 
L1: if k’ ≥ c goto L2 
  x := M[k’] 
  s := s+x 
  k’ := k’+4 
  goto L1 
L2: 
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Basic and Derived 
Induction Variables 

 Variable i is a basic induction variable in loop L 
with header h if the only definitions of i in L 
have the form i:=ic where c is loop invariant 

 Variable k is a derived induction variable in L if: 
 There is only one definition of k in L of the form 

k:=j*c or k:=j+d where j is an induction variable 
and c, d are loop-invariant, and 

 if j is a derived variable in the family of i, then: 
 The only definition of j that reaches k is the one in the 

loop, and 
 there is no definition of i on any path between the 

definition of j and the definition of k 
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Optimizating Induction 
Variables 

 Strength reduction: if a derived induction 
variable is defined with j:=i*c, try to replace it 
with an addition inside the loop 

 Elimination: after strength reduction some 
induction variables are not used or are only 
compared to loop-invariant variables; delete 
them 

 Rewrite comparisons:  If a variable is used only 
in comparisons against loop-invariant variables 
and in its own definition, modify the 
comparison to use a related induction variable 
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Loop Unrolling 

 If the body of a loop is small, most of 
the time is spent in the “increment and 
test” code 

 Idea: reduce overhead by unrolling – 
put two or more copies of the loop body 
inside the loop 
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Loop Unrolling 

 Basic idea: Given loop L with header 
node h and back edges si->h 

1. Copy the nodes to make loop L’ with 
header h’ and back edges si’->h’ 

2. Change all backedges in L from si->h to 
si->h’ 

3. Change all back edges in L’ from si’->h’ to 
si’->h 
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Unrolling Algorithm Results 

 Before 

L1: x := M[i] 

  s := s + x 

  i := i + 4 

 if i<n goto L1 else L2 

L2: 

 After 

L1: x := M[i] 

  s := s + x 

  i := i + 4 

  if i<n goto L1’ else L2 

L1’: x := M[i] 

  s := s + x 

  i := i + 4 

 if i<n goto L1 else L2 

L2: 
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Hmmmm…. 

 Not so great – just code bloat 

 But: use induction variables and various 
loop transformations to clean up 
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After Some Optimizations 

 Before 

L1: x := M[i] 

  s := s + x 

  i := i + 4 

  if i<n goto L1’ else L2 

L1’: x := M[i] 

  s := s + x 

  i := i + 4 

 if i<n goto L1 else L2 

L2: 

 

 After 

L1: x := M[i] 

  s := s + x 

  x := M[i+4] 

  s := s + x 

  i := i + 8 

  if i<n goto L1 else L2 

L2: 
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Still Broken… 

 But in a different, better(?) way 

 Good code, but only correct if original 
number of loop iterations was even 

 Fix: add an epilogue to handle the 
“odd” leftover iteration 
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Fixed 

 Before 

L1: x := M[i] 

  s := s + x 

  x := M[i+4] 

  s := s + x 

  i := i + 8 

 if i<n goto L1 else L2 

L2: 

 After 
  if i<n-8 goto L1 else L2 
L1: x := M[i] 
  s := s + x 
  x := M[i+4] 
  s := s + x 
  i := i + 8 
  if i<n-8 goto L1 else L2 
L2: x := M[i] 
  s := s+x 
  i := i+4 
  if i < n goto L2 else L3 
L3: 
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Postscript 

 This example only unrolls the loop by a 
factor of 2 

 More typically, unroll by a factor of K 

 Then need an epilogue that is a loop like 
the original that iterates up to K-1 times 
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Memory Heirarchies 

 One of the great triumphs of computer 
design 

 Effect is a large, fast memory 

 Reality is a series of progressively larger, 
slower, cheaper stores, with frequently 
accessed data automatically staged to 
faster storage (cache, main storage, disk) 

 Programmer/compiler typically treats it as 
one large store.  Bug or feature?  
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Memory Issues (review) 

 Byte load/store is often slower than whole 
(physical) word load/store 
 Unaligned access is often extremely slow 

 Temporal locality: accesses to recently 
accessed data will usually find it in the (fast) 
cache 

 Spatial locality: accesses to data near recently 
used data will usually be fast 
 “near” = in the same cache block 

 But – alternating accesses to blocks that map 
to the same cache block will cause thrashing 
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Data Alignment 

 Data objects (structs) often are similar in 
size to a cache block (≈ 8 words) 
  Better if objects don’t span blocks 

 Some strategies 
 Allocate objects sequentially; bump to next 

block boundary if useful 

 Allocate objects of same common size in 
separate pools (all size-2, size-4, etc.) 

 Tradeoff: speed for some wasted space 
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Instruction Alignment 

 Align frequently executed basic blocks on cache 
boundaries (or avoid spanning cache blocks) 

 Branch targets (particularly loops) may be 
faster if they start on a cache line boundary 

 Try to move infrequent code (startup, 
exceptions) away from hot code 

 Optimizing compiler should have a basic-block 
ordering phase (& maybe even loader) 
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Loop Interchange 

 Watch for bad cache patterns in inner 
loops; rearrange if possible 

 Example 
 for (i = 0; i < m; i++) 
   for (j = 0; j < n; j++) 
     for (k = 0; k < p; k++) 
       a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k] 
 b[i,j+1,k] is reused in the next two iterations, 

but will have been flushed from the cache by 
the k loop 
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Loop Interchange 

 Solution for this example: interchange j 
and k loops 
 for (i = 0; i < m; i++) 
   for (k = 0; k < p; k++) 
     for (j = 0; j < n; j++) 
       a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k] 
 Now b[i,j+1,k] will be used three times on 

each cache load 
 Safe  here because loop iterations are 

independent 
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Loop Interchange 

 Need to construct a data-dependency 
graph showing information flow between 
loop iterations 

 For example, iteration (j,k) depends on 
iteration (j’,k’) if (j’,k’) computes values 
used in (j,k) or stores values overwritten 
by (j,k) 
 If there is a dependency and loops are 

interchanged, we could get different results – 
so can’t do it 
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Blocking 

 Consider matrix multiply 
for (i = 0; i < n; i++) 
  for (j = 0; j < n; j++) { 
    c[i,j] = 0.0; 
    for (k = 0; k < n; k++) 
      c[i,j] = c[i,j] + a[i,k]*b[k,j] 
  } 

 If a, b fit in the cache together, great! 
 If they don’t, then every b[k,j] reference will be a cache 

miss 
 Loop interchange (i<->j) won’t help; then every a[i,k] 

reference would be a miss 
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Blocking 

 Solution: reuse rows of A and columns 
of B while they are still in the cache 

 Assume the cache can hold 2*c*n 
matrix elements (1 < c < n) 

 Calculate c  c blocks of C using c rows 
of A and c columns of B 
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Blocking 

 Calculating c  c blocks of C 

for (i = i0; i < i0+c; i++) 

  for (j = j0; j < j0+c; j++) { 

    c[i,j] = 0.0; 

    for (k = 0; k < n; k++) 

      c[i,j] = c[i,j] + a[i,k]*b[k,j] 

  } 
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Blocking 

 Then nest this inside loops that calculate 
successive c  c blocks 
for (i0 = 0; i0 < n; i0+=c) 
  for (j0 = 0; j0 < n; j0+=c) 
    for (i = i0; i < i0+c; i++) 
      for (j = j0; j < j0+c; j++) { 
        c[i,j] = 0.0; 
        for (k = 0; k < n; k++) 
          c[i,j] = c[i,j] + a[i,k]*b[k,j] 
      } 
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Parallelizing Code 

 There is a long literature about how to 
rearrange loops for better locality and to 
detect parallelism 

 Some starting points 
 Latest edition of Dragon book, ch. 11 

 Allen & Kennedy Optimizing Compilers for 
Modern Architectures  

 Wolfe, High-Performance Compilers for 
Parallel Computing 
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