
11/15/2011 © 2002-11 Hal Perkins & UW CSE T-1

CSE P 501 – Compilers

Loops

Hal Perkins

Autumn 2011

Agenda

 Loop optimizations
 Dominators – discovering loops

 Loop invariant calculations

 Loop transformations

 A quick look at some memory hierarchy
issues

 Largely based on material in Appel ch. 18, 21; similar
material in other books

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-2

Loops

 Much of he execution time of programs
is spent here

 worth considerable effort to make
loops go faster

 want to figure out how to recognize
loops and figure out how to “improve”
them

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-3

What’s a Loop?

 In a control flow graph, a loop is a set
of nodes S such that:

 S includes a header node h

 From any node in S there is a path of
directed edges leading to h

 There is a path from h to any node in S

 There is no edge from any node outside S
to any node in S other than h

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-4

Entries and Exits

 In a loop

 An entry node is one with some
predecessor outside the loop

 An exit node is one that has a successor
outside the loop

 Corollary of preceding definitions: A
loop may have multiple exit nodes, but
only one entry node

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-5

Reducible Flow Graphs

 In a reducible flow graph, any two loops are
either nested or disjoint

 Roughly, to discover if a flow graph is
reducible, repeatedly delete edges and collapse
together pairs of nodes (x,y) where x is the
only predecessor of y

 If the graph can be reduced to a single node it
is reducible
 Caution: this is the “powerpoint” version of the

definition – see a good compiler book for the
careful details

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-6

Example: Is this Reducible?

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-7

Example: Is this Reducible?

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-8

Reducible Flow Graphs in
Practice

 Common control-flow constructs yield
reducible flow graphs
 if-then[-else], while, do, for, break(!)

 A C function without goto will always be
reducible

 Many dataflow analysis algorithms are
very efficient on reducible graphs, but…

 We don’t need to assume reducible
control-flow graphs to handle loops

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-9

Finding Loops in Flow Graphs

 We use dominators for this

 Recall

 Every control flow graph has a unique start
node s0

 Node x dominates node y if every path
from s0 to y must go through x

 A node x dominates itself

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-10

Calculating Dominator Sets

 D[n] is the set of nodes that dominate n

 D[s0] = { s0 }

 D[n] = { n } (ppred[n] D[p])

 Set up an iterative analysis as usual to
solve this

 Except initially each D[n] must be all nodes
in the graph – updates make these sets
smaller if changed

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-11

Immediate Dominators

 Every node n has a single immediate
dominator idom(n)
 idom(n) differs from n
 idom(n) dominates n
 idom(n) does not dominate any other

dominator of n

 Fact (er, theorem): If a dominates n and b
dominates n, then either a dominates b or
b dominates a
 idom(n) is unique

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-12

Dominator Tree

 A dominator tree is constructed from a
flowgraph by drawing an edge form
every node in n to idom(n)

 This will be a tree. Why?

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-13

Example

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-14

Back Edges & Loops

 A flow graph edge from a node n to a
node h that dominates n is a back edge

 For every back edge there is a
corresponding subgraph of the flow
graph that is a loop

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-15

Natural Loops

 If h dominates n and n->h is a back edge,
then the natural loop of that back edge is
the set of nodes x such that

 h dominates x

 There is a path from x to n not containing h

 h is the header of this loop

 Standard loop optimizations can cope with
loops whether they are natural or not

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-16

Inner Loops

 Inner loops are more important for
optimization because most execution
time is expected to be spent there

 If two loops share a header, it is hard
to tell which one is “inner”

 Common way to handle this is to merge
natural loops with the same header

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-17

Inner (nested) loops

 Suppose

 A and B are loops with headers a and b

 a b

 b is in A

 Then

 The nodes of B are a proper subset of A

 B is nested in A, or B is the inner loop

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-18

Loop-Nest Tree

 Given a flow graph G
1. Compute the dominators of G

2. Construct the dominator tree

3. Find the natural loops (thus all loop-
header nodes)

4. For each loop header h, merge all natural
loops of h into a single loop: loop[h]

5. Construct a tree of loop headers s.t. h1 is
above h2 if h2 is in loop[h1]

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-19

Loop-Nest Tree details

 Leaves of this tree are the innermost
loops

 Need to put all non-loop nodes
somewhere

 Convention: lump these into the root of the
loop-nest tree

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-20

Example

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-21

Loop Preheader

 Often we need a place to park code
right before the beginning of a loop

 Easy if there is a single node preceding
the loop header h

 But this isn’t the case in general

 So insert a preheader node p

 Include an edge p->h

 Change all edges x->h to be x->p

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-22

Loop-Invariant Computations

 Idea: If x := a1 op a2 always does the
same thing each time around the loop,
we’d like to hoist it and do it once
outside the loop

 But can’t always tell if a1 and a2 will
have the same value

 Need a conservative (safe) approximation

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-23

Loop-Invariant Computations

 d: x := a1 op a2 is loop-invariant if for each ai

 ai is a constant, or
 All the definitions of ai that reach d are outside the

loop, or
 Only one definition of ai reaches d, and that

definition is loop invariant

 Use this to build an iterative algorithm
 Base cases: constants and operands defined

outside the loop
 Then: repeatedly find definitions with loop-

invariant operands

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-24

Hoisting

 Assume that d: x := a1 op a2 is loop
invariant. We can hoist it to the loop
preheader if
 d dominates all loop exits where x is live-out,

and
 There is only one definition of x in the loop,

and
 x is not live-out of the loop preheader

 Need to modify this if a1 op a2 could have
side effects or raise an exception

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-25

Hoisting: Possible?

 Example 1

L0: t := 0

L1: i := i + 1

 t := a op b

 M[i] := t

 if i < n goto L1

L2: x := t

 Example 2

L0: t := 0

L1: if i ≥ n goto L2

 i := i + 1

 t := a op b

 M[i] := t

 goto L1

L2: x := t

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-26

Hoisting: Possible?

 Example 3

L0: t := 0

L1: i := i + 1

 t := a op b

 M[i] := t

 t := 0

 M[j] := t

 if i < n goto L1

L2: x := t

 Example 4

L0: t := 0

L1: M[j] := t

 i := i + 1

 t := a op b

 M[i] := t

 if i < n goto L1

L2: x := t

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-27

Induction Variables

 Suppose inside a loop

 Variable i is incremented or decremented

 Variable j is set to i*c+d where c and d are
loop-invariant

 Then we can calculate j’s value without
using i

 Whenever i is incremented by a,
increment j by c*a

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-28

Example

 Original
 s := 0
 i := 0
L1: if i ≥ n goto L2
 j := i*4
 k := j+a
 x := M[k]
 s := s+x
 i := i+1
 goto L1
L2:

 To optimize, do…
 Induction-variable

analysis to discover i
and j are related
induction variables

 Strength reduction to
replace *4 with an
addition

 Induction-variable
elimination to replace i
≥ n

 Assorted copy
propagation

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-29

Result

 Original
 s := 0
 i := 0
L1: if i ≥ n goto L2
 j := i*4
 k := j+a
 x := M[k]
 s := s+x
 i := i+1
 goto L1
L2:

 Transformed
 s := 0
 k’ = a
 b = n*4
 c = a+b
L1: if k’ ≥ c goto L2
 x := M[k’]
 s := s+x
 k’ := k’+4
 goto L1
L2:

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-30

Details are somewhat messy – see your favorite compiler book

Basic and Derived
Induction Variables

 Variable i is a basic induction variable in loop L
with header h if the only definitions of i in L
have the form i:=ic where c is loop invariant

 Variable k is a derived induction variable in L if:
 There is only one definition of k in L of the form

k:=j*c or k:=j+d where j is an induction variable
and c, d are loop-invariant, and

 if j is a derived variable in the family of i, then:
 The only definition of j that reaches k is the one in the

loop, and
 there is no definition of i on any path between the

definition of j and the definition of k

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-31

Optimizating Induction
Variables

 Strength reduction: if a derived induction
variable is defined with j:=i*c, try to replace it
with an addition inside the loop

 Elimination: after strength reduction some
induction variables are not used or are only
compared to loop-invariant variables; delete
them

 Rewrite comparisons: If a variable is used only
in comparisons against loop-invariant variables
and in its own definition, modify the
comparison to use a related induction variable

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-32

Loop Unrolling

 If the body of a loop is small, most of
the time is spent in the “increment and
test” code

 Idea: reduce overhead by unrolling –
put two or more copies of the loop body
inside the loop

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-33

Loop Unrolling

 Basic idea: Given loop L with header
node h and back edges si->h

1. Copy the nodes to make loop L’ with
header h’ and back edges si’->h’

2. Change all backedges in L from si->h to
si->h’

3. Change all back edges in L’ from si’->h’ to
si’->h

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-34

Unrolling Algorithm Results

 Before

L1: x := M[i]

 s := s + x

 i := i + 4

 if i<n goto L1 else L2

L2:

 After

L1: x := M[i]

 s := s + x

 i := i + 4

 if i<n goto L1’ else L2

L1’: x := M[i]

 s := s + x

 i := i + 4

 if i<n goto L1 else L2

L2:

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-35

Hmmmm….

 Not so great – just code bloat

 But: use induction variables and various
loop transformations to clean up

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-36

After Some Optimizations

 Before

L1: x := M[i]

 s := s + x

 i := i + 4

 if i<n goto L1’ else L2

L1’: x := M[i]

 s := s + x

 i := i + 4

 if i<n goto L1 else L2

L2:

 After

L1: x := M[i]

 s := s + x

 x := M[i+4]

 s := s + x

 i := i + 8

 if i<n goto L1 else L2

L2:

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-37

Still Broken…

 But in a different, better(?) way

 Good code, but only correct if original
number of loop iterations was even

 Fix: add an epilogue to handle the
“odd” leftover iteration

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-38

Fixed

 Before

L1: x := M[i]

 s := s + x

 x := M[i+4]

 s := s + x

 i := i + 8

 if i<n goto L1 else L2

L2:

 After
 if i<n-8 goto L1 else L2
L1: x := M[i]
 s := s + x
 x := M[i+4]
 s := s + x
 i := i + 8
 if i<n-8 goto L1 else L2
L2: x := M[i]
 s := s+x
 i := i+4
 if i < n goto L2 else L3
L3:

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-39

Postscript

 This example only unrolls the loop by a
factor of 2

 More typically, unroll by a factor of K

 Then need an epilogue that is a loop like
the original that iterates up to K-1 times

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-40

Memory Heirarchies

 One of the great triumphs of computer
design

 Effect is a large, fast memory

 Reality is a series of progressively larger,
slower, cheaper stores, with frequently
accessed data automatically staged to
faster storage (cache, main storage, disk)

 Programmer/compiler typically treats it as
one large store. Bug or feature?

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-41

Memory Issues (review)

 Byte load/store is often slower than whole
(physical) word load/store
 Unaligned access is often extremely slow

 Temporal locality: accesses to recently
accessed data will usually find it in the (fast)
cache

 Spatial locality: accesses to data near recently
used data will usually be fast
 “near” = in the same cache block

 But – alternating accesses to blocks that map
to the same cache block will cause thrashing

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-42

Data Alignment

 Data objects (structs) often are similar in
size to a cache block (≈ 8 words)
 Better if objects don’t span blocks

 Some strategies
 Allocate objects sequentially; bump to next

block boundary if useful

 Allocate objects of same common size in
separate pools (all size-2, size-4, etc.)

 Tradeoff: speed for some wasted space

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-43

Instruction Alignment

 Align frequently executed basic blocks on cache
boundaries (or avoid spanning cache blocks)

 Branch targets (particularly loops) may be
faster if they start on a cache line boundary

 Try to move infrequent code (startup,
exceptions) away from hot code

 Optimizing compiler should have a basic-block
ordering phase (& maybe even loader)

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-44

Loop Interchange

 Watch for bad cache patterns in inner
loops; rearrange if possible

 Example
 for (i = 0; i < m; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < p; k++)
 a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k]
 b[i,j+1,k] is reused in the next two iterations,

but will have been flushed from the cache by
the k loop

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-45

Loop Interchange

 Solution for this example: interchange j
and k loops
 for (i = 0; i < m; i++)
 for (k = 0; k < p; k++)
 for (j = 0; j < n; j++)
 a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k]
 Now b[i,j+1,k] will be used three times on

each cache load
 Safe here because loop iterations are

independent

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-46

Loop Interchange

 Need to construct a data-dependency
graph showing information flow between
loop iterations

 For example, iteration (j,k) depends on
iteration (j’,k’) if (j’,k’) computes values
used in (j,k) or stores values overwritten
by (j,k)
 If there is a dependency and loops are

interchanged, we could get different results –
so can’t do it

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-47

Blocking

 Consider matrix multiply
for (i = 0; i < n; i++)
 for (j = 0; j < n; j++) {
 c[i,j] = 0.0;
 for (k = 0; k < n; k++)
 c[i,j] = c[i,j] + a[i,k]*b[k,j]
 }

 If a, b fit in the cache together, great!
 If they don’t, then every b[k,j] reference will be a cache

miss
 Loop interchange (i<->j) won’t help; then every a[i,k]

reference would be a miss

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-48

Blocking

 Solution: reuse rows of A and columns
of B while they are still in the cache

 Assume the cache can hold 2*c*n
matrix elements (1 < c < n)

 Calculate c c blocks of C using c rows
of A and c columns of B

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-49

Blocking

 Calculating c c blocks of C

for (i = i0; i < i0+c; i++)

 for (j = j0; j < j0+c; j++) {

 c[i,j] = 0.0;

 for (k = 0; k < n; k++)

 c[i,j] = c[i,j] + a[i,k]*b[k,j]

 }

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-50

Blocking

 Then nest this inside loops that calculate
successive c c blocks
for (i0 = 0; i0 < n; i0+=c)
 for (j0 = 0; j0 < n; j0+=c)
 for (i = i0; i < i0+c; i++)
 for (j = j0; j < j0+c; j++) {
 c[i,j] = 0.0;
 for (k = 0; k < n; k++)
 c[i,j] = c[i,j] + a[i,k]*b[k,j]
 }

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-51

Parallelizing Code

 There is a long literature about how to
rearrange loops for better locality and to
detect parallelism

 Some starting points
 Latest edition of Dragon book, ch. 11

 Allen & Kennedy Optimizing Compilers for
Modern Architectures

 Wolfe, High-Performance Compilers for
Parallel Computing

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-52

