CSE P 501 – Compilers

Loops Hal Perkins Autumn 2011

Agenda

Loop optimizations

- Dominators discovering loops
- Loop invariant calculations
- Loop transformations
- A quick look at some memory hierarchy issues
- Largely based on material in Appel ch. 18, 21; similar material in other books

Loops

- Much of he execution time of programs is spent here
- ... worth considerable effort to make loops go faster
- ... want to figure out how to recognize loops and figure out how to "improve" them

What's a Loop?

- In a control flow graph, a loop is a set of nodes S such that:
 - Sincludes a *header node* h
 - From any node in S there is a path of directed edges leading to h
 - There is a path from h to any node in S
 - There is no edge from any node outside S to any node in S other than h

Entries and Exits

In a loop

- An *entry node* is one with some predecessor outside the loop
- An *exit node* is one that has a successor outside the loop
- Corollary of preceding definitions: A loop may have multiple exit nodes, but only one entry node

Reducible Flow Graphs

- In a reducible flow graph, any two loops are either nested or disjoint
- Roughly, to discover if a flow graph is reducible, repeatedly delete edges and collapse together pairs of nodes (x,y) where x is the only predecessor of y
- If the graph can be reduced to a single node it is reducible
 - Caution: this is the "powerpoint" version of the definition – see a good compiler book for the careful details

Example: Is this Reducible?

Example: Is this Reducible?

Reducible Flow Graphs in Practice

- Common control-flow constructs yield reducible flow graphs
 - if-then[-else], while, do, for, break(!)
- A C function without goto will always be reducible
- Many dataflow analysis algorithms are very efficient on reducible graphs, but...
- We don't need to assume reducible control-flow graphs to handle loops

Finding Loops in Flow Graphs

- We use *dominators* for this
- Recall
 - Every control flow graph has a unique start node s0
 - Node x dominates node y if every path from s0 to y must go through x
 - A node x dominates itself

Calculating Dominator Sets

- D[n] is the set of nodes that dominate n
 - D[s0] = { s0 }
 - $D[n] = \{ n \} \cup (\cap_{p \in pred[n]} D[p])$
- Set up an iterative analysis as usual to solve this
 - Except initially each D[n] must be all nodes in the graph – updates make these sets smaller if changed

Immediate Dominators

- Every node n has a single *immediate dominator* idom(n)
 - idom(n) differs from n
 - idom(n) dominates n
 - idom(n) does not dominate any other dominator of n
- Fact (er, theorem): If a dominates n and b dominates n, then either a dominates b or b dominates a
 - .:. idom(n) is unique

Dominator Tree

A *dominator tree* is constructed from a flowgraph by drawing an edge form every node in n to idom(n)
 This will be a tree. Why?

Back Edges & Loops

- A flow graph edge from a node n to a node h that dominates n is a *back edge*
- For every back edge there is a corresponding subgraph of the flow graph that is a loop

Natural Loops

- If h dominates n and n->h is a back edge, then the *natural loop* of that back edge is the set of nodes x such that
 - h dominates x
 - There is a path from x to n not containing h
- h is the *header* of this loop
- Standard loop optimizations can cope with loops whether they are natural or not

Inner Loops

- Inner loops are more important for optimization because most execution time is expected to be spent there
- If two loops share a header, it is hard to tell which one is "inner"
 - Common way to handle this is to merge natural loops with the same header

Inner (nested) loops

- Suppose
 - A and B are loops with headers a and b
 - a ≠ b
 - b is in A
- Then
 - The nodes of B are a proper subset of A
 - B is nested in A, or B is the *inner loop*

Loop-Nest Tree

Given a flow graph G

- 1. Compute the dominators of G
- 2. Construct the dominator tree
- 3. Find the natural loops (thus all loopheader nodes)
- 4. For each loop header h, merge all natural loops of h into a single loop: loop[h]
- 5. Construct a tree of loop headers s.t. h1 is above h2 if h2 is in loop[h1]

Loop-Nest Tree details

- Leaves of this tree are the innermost loops
- Need to put all non-loop nodes somewhere
 - Convention: lump these into the root of the loop-nest tree

Loop Preheader

- Often we need a place to park code right before the beginning of a loop
- Easy if there is a single node preceding the loop header h
 - But this isn't the case in general
- So insert a *preheader* node p
 - Include an edge p->h
 - Change all edges x->h to be x->p

Loop-Invariant Computations

- Idea: If x := a1 op a2 always does the same thing each time around the loop, we'd like to *hoist* it and do it once outside the loop
- But can't always tell if a1 and a2 will have the same value
 - Need a conservative (safe) approximation

Loop-Invariant Computations

d: x := a1 op a2 is *loop-invariant* if for each a_i

- a_i is a constant, or
- All the definitions of a_i that reach d are outside the loop, or
- Only one definition of a_i reaches d, and that definition is loop invariant
- Use this to build an iterative algorithm
 - Base cases: constants and operands defined outside the loop
 - Then: repeatedly find definitions with loopinvariant operands

Hoisting

- Assume that d: x := a1 op a2 is loop invariant. We can hoist it to the loop preheader if
 - d dominates all loop exits where x is live-out, and
 - There is only one definition of x in the loop, and
 - x is not live-out of the loop preheader
- Need to modify this if a1 op a2 could have side effects or raise an exception

Hoisting: Possible?

Example 1 L0:t := 0 L1: i := i + 1 t := a op b M[i] := t if i < n goto L1 L2:x := t Example 2

 L0:t := 0
 L1:if i ≥ n goto L2
 i := i + 1
 t := a op b
 M[i] := t
 goto L1
 L2:x := t

Hoisting: Possible?

Example 3 L0:t := 0L1: i := i + 1t := a op b M[i] := t t := 0 M[j] := tif i < n goto L1 L2:x := t

Example 4 L0:t := 0L1:M[j] := ti := i + 1t := a op b M[i] := t if i < n goto L1 L2:x := t

Induction Variables

Suppose inside a loop

- Variable i is incremented or decremented
- Variable j is set to i*c+d where c and d are loop-invariant
- Then we can calculate j's value without using i
 - Whenever i is incremented by a, increment j by c*a

Example

Original s := 0i := 0 L1: if $i \ge n$ goto L2 j := i*4 k := j+a x := M[k]S := S + Xi := i+1goto L1 L2:

- To optimize, do...
 - Induction-variable analysis to discover i and j are related induction variables
 - Strength reduction to replace *4 with an addition
 - Induction-variable elimination to replace i ≥ n
 - Assorted copy propagation

Result

Original s := 0 i := 0 L1: if $i \ge n$ goto L2 j := i*4 k := j+a x := M[k]S := S + Xi := i+1goto L1 L2:

Transformed s := 0 $\mathbf{k}' = \mathbf{a}$ b = n*4c = a+bL1: if $k' \ge c$ goto L2 x := M[k']S := S + Xk' := k'+4goto L1 L2:

Details are somewhat messy – see your favorite compiler book

© 2002-11 Hal Perkins & UW CSE

Basic and Derived Induction Variables

- Variable i is a *basic induction variable* in loop L with header h if the only definitions of i in L have the form i:=i±c where c is loop invariant
- Variable k is a *derived induction variable* in L if:
 - There is only one definition of k in L of the form k:=j*c or k:=j+d where j is an induction variable and c, d are loop-invariant, and
 - if j is a derived variable in the family of i, then:
 - The only definition of j that reaches k is the one in the loop, and
 - there is no definition of i on any path between the definition of j and the definition of k

Optimizating Induction Variables

- Strength reduction: if a derived induction variable is defined with j:=i*c, try to replace it with an addition inside the loop
- Elimination: after strength reduction some induction variables are not used or are only compared to loop-invariant variables; delete them
- Rewrite comparisons: If a variable is used only in comparisons against loop-invariant variables and in its own definition, modify the comparison to use a related induction variable

Loop Unrolling

- If the body of a loop is small, most of the time is spent in the "increment and test" code
- Idea: reduce overhead by *unrolling* put two or more copies of the loop body inside the loop

Loop Unrolling

 Basic idea: Given loop L with header node h and back edges s_i->h

- 1. Copy the nodes to make loop L' with header h' and back edges $s_i' h'$
- 2. Change all backedges in L from s_i ->h to s_i ->h'
- 3. Change all back edges in L' from $s_i' ->h'$ to $s_i' ->h$

Unrolling Algorithm Results

Before

 L1:x := M[i]
 s := s + x
 i := i + 4
 if i<n goto L1 else L2
 L2:

After L1: x := M[i]S := S + Xi := i + 4if i<n goto L1' else L2 L1':x := M[i]S := S + Xi := i + 4if i<n goto L1 else L2 L2:

- Not so great just code bloat
- But: use induction variables and various loop transformations to clean up

After Some Optimizations

Before After L1: x := M[i]L1: x := M[i]s := s + xS := S + Xi := i + 4x := M[i+4]if i<n goto L1' else L2 s := s + xL1':x := M[i]i := i + 8if i<n goto L1 else L2 S := S + Xi := i + 4L2: if i<n goto L1 else L2 L2:

Still Broken...

- But in a different, better(?) way
- Good code, but only correct if original number of loop iterations was even
- Fix: add an epilogue to handle the "odd" leftover iteration

Before L1:x := M[i]s := s + xx := M[i+4]s := s + xi := i + 8if i<n goto L1 else L2 L2:

After if i<n-8 goto L1 else L2 L1: x := M[i]s := s + xx := M[i+4]s := s + xi := i + 8if i<n-8 goto L1 else L2 L2: x := M[i]S := S + Xi := i+4 if i < n goto L2 else L3 L3:

Fixed

Postscript

- This example only unrolls the loop by a factor of 2
- More typically, unroll by a factor of K
 - Then need an epilogue that is a loop like the original that iterates up to K-1 times

Memory Heirarchies

- One of the great triumphs of computer design
- Effect is a large, fast memory
- Reality is a series of progressively larger, slower, cheaper stores, with frequently accessed data automatically staged to faster storage (cache, main storage, disk)
- Programmer/compiler typically treats it as one large store. Bug or feature?

Memory Issues (review)

- Byte load/store is often slower than whole (physical) word load/store
 - Unaligned access is often extremely slow
- Temporal locality: accesses to recently accessed data will usually find it in the (fast) cache
- Spatial locality: accesses to data near recently used data will usually be fast
 - "near" = in the same cache block
- But alternating accesses to blocks that map to the same cache block will cause thrashing

Data Alignment

- Data objects (structs) often are similar in size to a cache block (≈ 8 words)
 - Better if objects don't span blocks
- Some strategies
 - Allocate objects sequentially; bump to next block boundary if useful
 - Allocate objects of same common size in separate pools (all size-2, size-4, etc.)

Tradeoff: speed for some wasted space

Instruction Alignment

- Align frequently executed basic blocks on cache boundaries (or avoid spanning cache blocks)
- Branch targets (particularly loops) may be faster if they start on a cache line boundary
- Try to move infrequent code (startup, exceptions) away from hot code
- Optimizing compiler should have a basic-block ordering phase (& maybe even loader)

Loop Interchange

- Watch for bad cache patterns in inner loops; rearrange if possible
- Example

the k loop

Loop Interchange

 Solution for this example: interchange j and k loops

for
$$(k = 0; k < p; k++)$$

- for (j = 0; j < n; j++) a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k]
- Now b[i,j+1,k] will be used three times on each cache load
- Safe here because loop iterations are independent

Loop Interchange

- Need to construct a data-dependency graph showing information flow between loop iterations
- For example, iteration (j,k) depends on iteration (j',k') if (j',k') computes values used in (j,k) or stores values overwritten by (j,k)
 - If there is a dependency and loops are interchanged, we could get different results – so can't do it

- Consider matrix multiply for (i = 0; i < n; i++) for (j = 0; j < n; j++) { c[i,j] = 0.0; for (k = 0; k < n; k++) c[i,j] = c[i,j] + a[i,k]*b[k,j] }
- If a, b fit in the cache together, great!
- If they don't, then every b[k,j] reference will be a cache miss
- Loop interchange (i<->j) won't help; then every a[i,k] reference would be a miss

- Solution: reuse rows of A and columns of B while they are still in the cache
- Assume the cache can hold 2*c*n matrix elements (1 < c < n)
- Calculate c × c blocks of C using c rows of A and c columns of B

Calculating c × c blocks of C for (i = i0; i < i0+c; i++)for (j = j0; j < j0+c; j++) { c[i,j] = 0.0;for (k = 0; k < n; k++)c[i,j] = c[i,j] + a[i,k]*b[k,j]

Then nest this inside loops that calculate successive $c \times c$ blocks for (i0 = 0; i0 < n; i0+=c) for (j0 = 0; j0 < n; j0+=c)for (i = i0; i < i0+c; i++) for (j = j0; j < j0+c; j++) { c[i,j] = 0.0;for (k = 0; k < n; k++)c[i,j] = c[i,j] + a[i,k]*b[k,j]}

Parallelizing Code

- There is a long literature about how to rearrange loops for better locality and to detect parallelism
- Some starting points
 - Latest edition of *Dragon book*, ch. 11
 - Allen & Kennedy Optimizing Compilers for Modern Architectures
 - Wolfe, High-Performance Compilers for Parallel Computing