Memory Heirarchies

= One of the great triumphs of computer
design

= Effectis a large, fast memory

= Reality is a series of progressively larger,
slower, cheaper stores, with frequently
accessed data automatically staged to
faster storage (cache, main storage, disk)

= Programmer/compiler typically treats it as
one large store. Bug or feature?

11/30/2011 @ 200211 Hal Perkire & Ly CSE T-41

i Memory Issues (review)

Byte load/store is often slower than whole
[(physical) word load/store

= Unalighed access is often extremely slow

= Temporal locality: accesses to recently
aCEﬁSSEd data will usually find it in the (fast)
cache

= Spatial localit }/ accesses to data near recently
used data will usually be fast

“near” = in the same cache block

5 But — alternating accesses to blocks that map
to the same cache block will cause thrashing

11/30/2011 @ 2002-11 Hal Perkins & Ly CSE T-42

Data Alignment

= Data objects (structs) often are similar in
size to a cache block (& 8 words)

= .. Better if objects don't span blocks

= Some strategies

= Allocate objects sequentially; bump to next
block boundary if useful

= Allocate objects of same common size in
separate pools (all size-2, size-4, etc.)

= [radeoff: speed for some wasted space

11/30/2011 @ 2002-11 Hal Perkins & Ly CSE T-43

Instruction Alignment

Align frequently executed basic blocks on cache
boundaries (or avoid spanning cache blocks)

Branch targets (particularly loops) may be
faster if they start on a cache line boundary

Try to move infrequent code (startup,
exceptions) away from hot code

Optimizing compiler should have a basic-block
ordering phase (& maybe even loader)

11/30/2011 @ 200211 Hal Perkire & Ly CSE T-44

Loop Interchange

= Watch for bad cache patterns in inner
loops; rearrange if possible

= Example
for(i=0;i<m; i++)
for(j=0;j <n;j++)
for(k=0; k < p; k++)
ali,k,j] = bli,j-1,k] + b[ij,k] + b[ij+1,k]
= b[i,j+1,k] is reused in the next two iterations,

but will have been flushed from the cache by
the k loop

11/30/2011 @ A002-11 Hal Perkins & Ly CSE T-43

Loop Interchange

= Solution for this example: interchange j
and k loops
for(i=0;i<m i++)
for(k=0; k < p; k++)
for(G =0;j <n;j++)
[afi ki1 = blij-1 K] + blijk] + blij+1,k]
= Now b[ij+1,k] will be used three times on
each cache loac

=« Safe here because loop iterations are
independent

11/30/2011 @ 2002-11 Hal Perkins & Ly CSE T-46

Loop Interchange

= Need to construct a data-dependency
raph showing information flow between
oop iterations

= For example, iteration (j,k) depends on
iteration (j', k') if (k') computes values
used in (j,k) or stores values overwritten
by (k)

= If there is a dependency and loops are
interchanged, we could get different results —
so cantdo it

11/30/2011 @ 2002-11 Hal Perkins & Ly CSE T-47

& g

i Blocking _{%— ¥

____)_""'""—'-.-

s Consider matrix multiply
for (i =0;i<n;i++)
for G=0;j<n;j++){
cli,jl =0.0;
for (k = 0; k < n; k++)
clijl = clij] + alik]*blk,j]
h
= If &, b fit in the cache together, great!
= If they don't, then every b[k,j] reference will be a cache
miss
= Loop interchange (i<->j) won't help; then every ali k]
reference would be a miss

11/30/2011 @ 2002-11 Hal Perkins & Ly CSE T-45

c g . PO __Qﬁ

O = D

Blocking ,

s Solution: reuse rows of A and columns
of B while they are still in the cache

s Assume the cache can hold 2*c*n
matrix elements (1 < ¢ < n)

= Calculate ¢ x ¢ blocks of C using c rows
of A and c columns of B

11/30/2011 @ A002-11 Hal Perkins & Ly CSE T-49

‘) 2
$ Blocking - "

= Calculating ¢ x ¢ blocks of C
for (i =i0; i < i0+c; i++)
for (j =j0; j < jO+c; j++){
cli,jl = 0.0;
for(k =0; k < n; k++)
clijl = clijl + ali,k]*b[k,j]
h

11/30/2011 @ 2002-11 Hal Perkins & Ly CSE T-30

i Blocking

= Then nest this inside loops that calculate
successive ¢ - ¢ blocks

—for (i0 = 0; i0 <n; i0+=c)
_ for (j0 = 0; jO < n; jO+=c)
— _for (i=1i0; i <i0+c; i++)
- for (j =j0; j <jO+c; j++) {
cfij] = 0.0;
for(k=0; k <n; k++)
\, clij] = clijl + a[i k]*b[k,j]
h

11/30/2011 @ 2002-11 Hal Perkins & Ly CSE T-31

Parallelizing Code

= There is a long literature about how to
rearrange loops for better locality and to
detect parallelism

= Some starting points
= Latest edition of Dragon book, ch. 11

= Allen & Kennedy Optimizing Compilers for
Modern Architectures

= Wolfe, High-Performance Compilers for
Parallel Computing

11/30/2011 @ 2002-11 Hal Perkins & Ly CSE T-22

