
11/15/2011 © 2002-11 Hal Perkins & UW CSE U-1

CSE P 501 – Compilers

SSA

Hal Perkins

Autumn 2011

Agenda

 Overview of SSA IR

 Constructing SSA graphs

 SSA-based optimizations

 Converting back from SSA form

 Source: Appel ch. 19, also an extended discussion in Cooper-

Torczon sec. 9.3

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-2

Def-Use (DU) Chains

 Common dataflow analysis problem: Find
all sites where a variable is used, or find
the definition site of a variable used in an
expression

 Traditional solution: def-use chains –
additional data structure on top of the
dataflow graph
 Link each statement defining a variable to all

statements that use it
 Link each use of a variable to its definition

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-3

DU-Chain Drawbacks

 Expensive: if a typical variable has N
uses and M definitions, the total cost is
O(N * M)

 Would be nice if cost were proportional to
the size of the program

 Unrelated uses of the same variable are
mixed together

 Complicates analysis

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-4

SSA: Static Single Assignment

 IR where each variable has only one
definition in the program text

 This is a single static definition, but that
definition can be in a loop that is executed
dynamically many times

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-5

SSA in Basic Blocks

 Original

a := x + y

b := a – 1

a := y + b

b := x * 4

a := a + b

 SSA

a1 := x + y

b1 := a1 – 1

a2 := y + b1

b2 := x * 4

a3 := a2 + b2

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-6

We’ve seen this before when looking at value numbering

Merge Points

 The issue is how to handle merge
points

 Solution: introduce a Φ-function

a3 := Φ(a1, a2)

 Meaning: a3 is assigned either a1or a2

depending on which control path is
used to reach the Φ-function

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-7

Example

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-8

b := M[x]
a := 0

if b < 4

a := b

c := a + b

Original

b1 := M[x0]
a1 := 0

if b1 < 4

a2 := b1

a3 := Φ(a1, a2)
c1 := a3 + b1

SSA

How Does Φ “Know”
What to Pick?

 It doesn’t

 When we translate the program to
executable form, we can add code to copy
either value to a common location on each
incoming edge

 For analysis, all we may need to know is
the connection of uses to definitions – no
need to “execute” anything

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-9

Example With Loop

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-10

a := 0

b := a + 1
c := c + b
a := b * 2
if a < N

return c

Original
a1 := 0

a3 := Φ(a1, a2)
b1 := Φ(b0, b2)
c2 := Φ(c0, c1)
b2 := a3 + 1
c1 := c2 + b2
a2 := b2 * 2
if a2 < N

return c1

SSA
Notes:
•a0, b0, c0 are initial
values of a, b, c on
block entry
•b1 is dead – can
delete later
•c is live on entry –
either input parameter
or uninitialized

Converting To SSA Form

 Basic idea

 First, add Φ-functions

 Then, rename all definitions and uses of
variables by adding subscripts

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-11

Inserting Φ-Functions

 Could simply add Φ-functions for every
variable at every join point(!)

 But

 Wastes way too much space and time

 Not needed

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-12

Path-convergence criterion

 Insert a Φ-function for variable a at point z
when:
 There are blocks x and y, both containing

definitions of a, and x y

 There are nonempty paths from x to z and
from y to z

 These paths have no common nodes other
than z

 z is not in both paths prior to the end (it may
appear in one of them)

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-13

Details

 The start node of the flow graph is
considered to define every variable
(even if to “undefined”)

 Each Φ-function itself defines a
variable, so we need to keep adding
Φ-functions until things converge

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-14

Dominators and SSA

 One property of SSA is that definitions
dominate uses; more specifically:

 If x := Φ(…,xi,…) is in block n, then the
definition of xi dominates the ith
predecessor of n

 If x is used in a non-Φ statement in block
n, then the definition of x dominates
block n

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-15

Dominance Frontier (1)

 To get a practical algorithm for placing
Φ-functions, we need to avoid looking
at all combinations of nodes leading
from x to y

 Instead, use the dominator tree in the
flow graph

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-16

Dominance Frontier (2)

 Definitions
 x strictly dominates y if x dominates y and

x y
 The dominance frontier of a node x is the set

of all nodes w such that x dominates a
predecessor of w, but x does not strictly
dominate w

 Essentially, the dominance frontier is the
border between dominated and
undominated nodes

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-17

Example

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-18

1

2

3

4

13

5

6 7

8

9

10 11

12

Dominance Frontier Cirterion

 If a node x contains the definition of
variable a, then every node in the
dominance frontier of x needs a Φ-
function for a
 Since the Φ-function itself is a definition, this

needs to be iterated until it reaches a fixed-
point

 Theorem: this algorithm places exactly the
same set of Φ-functions as the path
criterion given previously

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-19

Placing Φ-Functions: Details

 The basic steps are:
1. Compute the dominance frontiers for

each node in the flowgraph

2. Insert just enough Φ-functions to satisfy
the criterion. Use a worklist algorithm to
avoid reexamining nodes unnecessarily

3. Walk the dominator tree and rename the
different definitions of variable a to be a1,
a2, a3, …

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-20

Efficient Dominator Tree
Computation

 Goal: SSA makes optimizing compilers
faster since we can find definitions/uses
without expensive bit-vector algorithms

 So, need to be able to compute SSA
form quickly

 Computation of SSA from dominator
trees are efficient, but…

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-21

Lengauer-Tarjan Algorithm

 Iterative set-based algorithm for finding
dominator trees is slow in worst case

 Lengauer-Tarjan is near linear time

 Uses depth-first spanning tree from start
node of control flow graph

 See books for details

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-22

SSA Optimizations

 Given the SSA form, what can we do
with it?

 First, what do we know? (i.e., what
information is kept in the SSA graph?)

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-23

SSA Data Structures

 Statement: links to containing block, next
and previous statements, variables
defined, variables used.
 Statement kinds are: ordinary, Φ-function,

fetch, store, branch

 Variable: link to definition (statement) and
use sites

 Block: List of contained statements,
ordered list of predecessors, successor(s)

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-24

Dead-Code Elimination

 A variable is live iff its list of uses is not
empty(!)

 Algorithm to delete dead code:
while there is some variable v with no uses

 if the statement that defines v has no
 other side effects, then delete it

 Need to remove this statement from the list of
uses for its operand variables – which may
cause those variables to become dead

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-25

Simple Constant Propagation

 If c is a constant in v := c, any use of v
can be replaced by c
 Then update every use of v to use constant c

 If the ci’s in v := Φ(c1, c2, …, cn) are all
the same constant c, we can replace this
with v := c

 Can also incorporate copy propagation,
constant folding, and others in the same
worklist algorithm

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-26

Simple Constant Propagation

W := list of all statements in SSA program

while W is not empty

 remove some statement S from W

 if S is v:=Φ(c, c, …, c), replace S with v:=c

 if S is v:=c

 delete S from the program

 for each statement T that uses v

 substitute c for v in T

 add T to W

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-27

Converting Back from SSA

 Unfortunately, real machines do not
include a Φ instruction

 So after analysis, optimization, and
transformation, need to convert back to
a “Φ-less” form for execution

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-28

Translating Φ-functions

 The meaning of x := Φ(x1, x2, …, xn) is
“set x := x1 if arriving on edge 1, set
x:= x2 if arriving on edge 2, etc.”

 So, for each i, insert x := xi at the end
of predecessor block i

 Rely on copy propagation and
coalescing in register allocation to
eliminate redundant moves

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-29

SSA Wrapup

 More details in recent compiler books
(but not the new dragon book!)

 Allows efficient implementation of many
optimizations

 Used in many new compiler (e.g. llvm)
& retrofitted into many older ones (gcc)

 Not a silver bullet – some optimizations
still need non-SSA forms

11/15/2011 © 2002-11 Hal Perkins & UW CSE U-30

