
12/6/2011 © 2002-11 Hal Perkins & UW CSE W-1

CSE P 501 – Compilers

Memory Management
and Garbage Collection

Hal Perkins

Autumn 2011

References

 Uniprocessor Garbage Collection
Techniques
Wilson, IWMM 1992 (longish survey)

 The Garbage Collection Handbook
Jones, Hosking, Moss, 2012 (book)

 Adapted from slides by Vijay Menon, CSE
501, Sp09

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-2

Program Memory

 Typically divided into 3 regions:

 Global / Static: fixed-size at compile time;
exists throughout program lifetime

 Stack / Automatic: per function, automatically
allocated and released (local variables)

 Heap: Explicitly allocated by programmer
(malloc/new/cons)

 Need to recover storage for reuse when no longer
needed

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-3

Manual Heap Management

 Programmer calls free/delete when
done with storage

 Pro
 Cheap

 Precise

 Con
 How do we enumerate the ways?

 Buggy, huge debugging costs, …

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-4

Garbage Collection

 Automatically reclaim heap memory no
longer in use by the program

 Simplify programming

 Better modularity, concurrency

 Avoids huge problems with dangling pointers

 Almost required for type safety

 But not a panacea – still need to watch for
stale pointers, GC’s version of “memory leaks”

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-5

Heap Characteristics

 Most objects are small (< 128 bytes)

 Object-oriented and functional code
allocates a huge number of short-lived
objects

 Want allocation, recycling to be fast and
low overhead

 Serious engineering required

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-6

What is Garbage?

 An object is live if it is still in use

 Need to be conservative

 OK to keep memory no longer in use

 Not ok to reclaim something that is live

 An object is garbage if it is not live

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-7

Reachability

 Root set : the set of global and local
(stack/register) variables visible to active
procedures

 Heap objects are reachable if:
 They are directly accessible from the root set
 They are accessible from another reachable

heap object (pointers/references)

 Liveness implies reachability (conservative
approximation)

 Not reachable implies garbage

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-8

Reachability

 Compiler produces:

 A stack-map at GC safe points
 Stack map: enumerate global variables, stack

variables, live registers (tricky stuff! Why?)

 GC safe points: new(), method entry, method
exit, back edges (thread switch points)

 Type information blocks
 Identifies reference fields in objects (to trace

the heap)

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-9

Tracing Collectors

 Mark the objects reachable from the
root set, then perform a transitive
closure to find all reachable objects

 All unmarked objects are dead and can
be reclaimed

 Various algorithms: mark-sweep,
copying, generational…

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-10

Mark-Sweep Allocation

 Multiple free lists organized by size for
small objects (8, 16, 24, 32, … depends on
alignment); additional list for large blocks

 Regular malloc does exactly the same

 Allocation

 Grab a free object from the right free list

 No more memory of the right size triggers a
collection

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-11

Mark-Sweep Collection

 Mark phase – find the live objects

 Transitive closure from root set marking all
live objects

 Sweep phase

 Sweep memory for unmarked objects and
return to appropriate free list(s)

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-12

Mark-Sweep Evaluation

 Pro
 Space efficiency

 Incremental object reclamation

 Con
 Relatively slower allocation time

 Poor locality of objects allocated at around the
same time

 Redundant work rescanning long-lived objects

 “Stop the world I want to collect”

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-13

Semispace Copying Collector

 Idea: Divide memory in half

 Storage allocated from one half of memory

 When full, copy live objects from old half
(“from space”) to unused half (“to space”)
& swap semispaces

 Fast allocation – next chunk of to-space

 Requires copying collection of entire
heap when collection needed

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-14

Semispace collection

 Same notion of root set and reachable as
in mark-sweep collector

 Copy each object when first encountered

 Install forwarding pointers in from-space
referring to new copy in to-space

 Transitive closure: follow pointers, copy,
and update as it scans

 Reclaims entire “from space” in one shot
 Swap from- and to-space when copy done

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-15

Semispace Copying Collector
Evaluation

 Pro
 Fast allocation
 Locality of objects allocated at same time
 Locality of objects connected by pointers (can

use depth-first or other strategies during the
mark-copy phase)

 Con
 Wastes half of memory
 Redundant work rescanning long-lived objects
 “Stop the world I want to collect”

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-16

Generational Collectors

 Generational hypothesis: young objects
die more quickly than older ones
(Lieberman & Hewitt ‘83, Ungar ‘84)

 Most pointers are from younger to older
objects (Appel ‘89, Zorn ‘90)

 So, organize heap into young and old
regions, collect young space more often

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-17

Generational Collector

 Divide heap into two spaces: young, old
 Allocate new objects in young space
 When young space fills up, collect it and

copy surviving objects to old space
 Engineering: use barriers to avoid having to

scan all of old space on quick collections
 Refinement: require objects to survive at least

a few collections before copying

 When old space fills, collect both
 Can generalize to multiple generations

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-18

GC Tradeoffs

 Performance
 Mark-sweep often faster than semispace

 Generational better than both

 Mutator performance
 Semispace is often fastest

 Generational is better than mark-sweep

 Overall: generational is a good balance

 But: we still “stop the world” to collect

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-19

Open Research Areas

 Parallel/concurrent garbage collection

 Found in some production collectors now

 Tricky stuff – can’t debug it into correctness –
there be theorems here

 Locality issues

 Object collocation

 GC-time analysis

 Distributed GC

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-20

Compiler & Runtime Support

 GC tightly coupled with safe runtime
(e.g., Java, CLR, functional languages)

 Total knowledge of pointers (type safety)

 Tagged objects with type information

 Compiler maps for information

 Objects can be moved; forwarding pointers

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-21

What about unsafe
languages? (e.g., C/C++)

 Boehm/Weiser collector: GC still
possible without compiler/runtime
cooperation(!)

 If it looks like a pointer, it’s a pointer

 Mark-sweep only – GC doesn’t move
anything

 Allows GC in C/C++ but constraints on
pointer bit-twiddling

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-22

Boehm/Weiser Collector

 Useful for development/debugging

 Less burden on compiler/runtime
implementor

 Used in various Java and .net
implementations

 Similar ideas for various tools to detect
memory leaks, etc.

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-23

And a bit of perspective…

 Automatic GC has been around since
LISP I in 1958

 Ubiquitous in functional and object-
oriented programming communities for
decades

 Mainstream since Java(?) (mid-90s)

 Now conventional wisdom?

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-24

