
12/6/2011 © 2002-11 Hal Perkins & UW CSE X1-1

CSE P 501 – Compilers

Inlining and Devirtualization

Hal Perkins

Autumn 2011

References

 Adaptive Online Context-Sensitive
Inlining
Hazelwood and Grove, ICG 2003

 A Study of Devirtualization Techniques
for a Java JIT Compiler
Ishizaki, et al, OOPSLA 2000

 Slides by Vijay Menon, CSE 501, Sp09

12/6/2011 X1-2 © 2002-11 Hal Perkins & UW CSE

Inlining

long res;

void foo(long x)
{
 res = 2 * x;
}

void bar() {
 foo(5);
}

long res;

void foo(long x)
{
 res = 2 * x;
}

void bar() {
 res = 2 * 5;
}

long res;

void foo(long x)
{
 res = 2 * x;
}

void bar() {
 res = 10;
}

12/6/2011 X1-3 © 2002-11 Hal Perkins & UW CSE

Benefits

 Reduction on function invocation
overhead
 No marshalling / unmarshalling parameters

and return values
 Better instruction cache locality

 Expanded optimization opportunities
 CSE, constant propagation, unreachable code

elimination, ...
 Poor man’s interprocedural optimization

12/6/2011 X1-4 © 2002-11 Hal Perkins & UW CSE

Costs

 Code size

 Typically expands overall program size

 Can hurt instruction cache

 Compilation time

 Larger methods can lead to more
expensive compilation, more complex
control flow

12/6/2011 X1-5 © 2002-11 Hal Perkins & UW CSE

Language / runtime aspects

 What is the cost of a function call?
 C: cheap, Java: moderate,

Python: expensive

 Are targets resolved at compile time or
run time?
 C: compile time; Java, Python: run time

 Is the whole program available for
analysis?

 Is profile information available?

12/6/2011 X1-6 © 2002-11 Hal Perkins & UW CSE

When to inline?

 Jikes RVM (with Hazelwood/Grove
adaptations):

 Call Instruction Sequence (CIS) = # of
instructions to make call

 Tiny (function size < 2x call size): Always inline

 Small (2-5x): Inline subject to space constraints

 Medium (5-25x): Inline if hot (subject to space
constraints)

 Large : Never inline

12/6/2011 X1-7 © 2002-11 Hal Perkins & UW CSE

Gathering profile info

 Counter-based: Instrument edges in CFG
 Entry + loop back edges

 Enough edges (enough to get good results
without excessive overhead)

 Expensive - typically removed in optimized
code

 Call stack sampling
 Periodically walk stack

 Interrupt-based or instrumentation-based

12/6/2011 © 2002-11 Hal Perkins & UW CSE X1-8

Object-oriented languages

 OO encourages lots of small methods
 getters, setters, ...

 Inlining is a requirement for performance
 High call overhead wrt total execution

 Limited scope for compiler optimizations
without it

 For Java, if you’re going to anything, do
this!

 But ... virtual methods are a challenge

12/6/2011 © 2002-11 Hal Perkins & UW CSE X1-9

Virtual methods

 In general, we cannot
determine the target
until runtime

 Some languages
(e.g., Java) allow
dynamic class
loading: all
subclasses of A may
not be visible until
runtime

class A {
 int foo() { return 0; }
 int bar() { return 1; }
}

class B extends A {
 int foo() { return 2; }
}

void baz(A x) {
 y = x.foo();
 z = x.bar();
}

12/6/2011 X1-10 © 2002-11 Hal Perkins & UW CSE

Virtual tables

 Object layout in a JVM:

 12/6/2011 X1-11 © 2002-11 Hal Perkins & UW CSE

Virtual method dispatch

 x is the receiver
object

 For a receiver
object with a
runtime type of B,
t2 will refer to
B::foo.

t1 = ldvtable x
t2 = ldvirtfunaddr t1, A::foo
t3 = call [t2] (x)
t4 = ldvtable x
t5 = ldvirtfunaddr t4, A::bar
t6 = call [t4] (x)

12/6/2011 X1-12 © 2002-11 Hal Perkins & UW CSE

 Source:
 y = x.foo();
 z = x.bar();

Devirtualization

 Goal: virtual calls to static calls in
compiler

 Benefits: enables inlining, lowers call
overhead, better branch prediction on
calls

 Often optimistic:
 Make guess at compile time

 Test guess at run time

 Fall back to virtual call if necessary

12/6/2011 X1-13 © 2002-11 Hal Perkins & UW CSE

Guarded devirtualization

 Guess receiver type is
B (based on profile or
other information)

 Call to B::foo is
statically known - can
be inlined

 But guard inhibits
optimization

t1 = ldvtable x
t7 = getvtable B
if t1 == t7
 t3 = call B::foo(x)
else
 t2 = ldvirtfunaddr t1, A::foo
 t3 = call [t2] (x)
...

12/6/2011 X1-14 © 2002-11 Hal Perkins & UW CSE

Guarded by method test

 Guess that method is
B:foo outside guard

 More robust, but
more overhead

 Harder to optimize
redundant guards

t1 = ldvtable x
t2 = ldvirtfunaddr t1
t7 = getfunaddr B::foo
if t2 == t7
 t3 = call B::foo(x)
else
 t2 = ldvirtfunaddr t1, A::foo
 t3 = call [t2] (x)
...

12/6/2011 X1-15 © 2002-11 Hal Perkins & UW CSE

How to guess receiver?

 Profile information

 Record call site targets and / or
frequently executed methods at run time

 Class hierarchy analysis

 Walk class hierarchy at compile time

 Type analysis

 Intra / interprocedural data flow analysis

12/6/2011 X1-16 © 2002-11 Hal Perkins & UW CSE

Class hierarchy analysis

 Walk class hierarchy at compilation
time

 If only one implementation of a method
(i.e., in the base class), devirtualize to
that target

 Not guaranteed in the presence of
class loading

 Still need runtime test / fallback

12/6/2011 X1-17 © 2002-11 Hal Perkins & UW CSE

Flow sensitive type analysis

 Perform a forward
dataflow analysis
propagating type
information.

 At each use site,
compute the possible set
of types.

 At call sites, use type
information of receiver
to narrow targets.

A a1 = new B();
a1.foo();

if (a2 instanceof C)
 a2.bar();

12/6/2011 X1-18 © 2002-11 Hal Perkins & UW CSE

Alternatives to guarding

 Guarding impose overheads
 run-time test on every call, merge points

impede optimization

 Often “know” only one target is
invoked
 call site is monomorphic

 Alternative: compile without guards
 recover as assumption is violated (e.g,

class load)
 cheaper runtime test vs more costly

recovery

12/6/2011 X1-19 © 2002-11 Hal Perkins & UW CSE

Recompilation approach

 Optimistically assume current class
hierarchy will never change wrt a call

 Devirtualize and/or inline call sites
without guard

 On violating class load, recompile caller
method
 Recompiled code installed before new class

 New invocations will call de-optimized code

 What about current invocations?

12/6/2011 X1-20 © 2002-11 Hal Perkins & UW CSE

Preexistence analysis

 Idea: if the receiver object pre-existed the caller
method invocation, then the call site is only
affected by a class load in future invocations.

 If new class C is loaded during execution of baz,
x cannot have type C:

void baz(A x) {
 ...
 // C loaded here
 x.bar();
}

12/6/2011 X1-21 © 2002-11 Hal Perkins & UW CSE

Code-patching

 Pre-generate fallback virtual call out of
line

 On invalidating class load, overwrite
direct call / inlined code with a jump to
the fallback code
 Must be thread-safe!

 On x86, single write within a cache line is
atomic

 No recompilation necessary

12/6/2011 X1-22 © 2002-11 Hal Perkins & UW CSE

Patching

 t3 = 2 // B::foo
next:
 ...

fallback:
 t2 = ldvirtfunaddr t1, A::foo
 t3 = call [t2] (x)
 goto next

goto fallback

12/6/2011 X1-23 © 2002-11 Hal Perkins & UW CSE

