
Name: __________________________________

There are 7 questions, worth a total of 100 points. Attempt all 7 questions. Keep your answers brief and to the

point.

You may refer to the following materials:

 Your primary compiler textbook – Cooper&Torczon

 Course lecture slides

You may use electronic copies of these materials but may not access any other information on the Internet, or

other resources on your computer.

No other books or other materials, including old exams or homework, are allowed.

The exam booklet is printed on one side only. Use the blank pages for temporary scribbles, or for any answers

that ‘overflow’ the original space. Please score out any working scribbles afterwards, so we do not mistake

them for part of you answer!

If you run out of space in the exam booklet for your actual answers, grab an extra sheet from the invigilator (Nat

at UW; me at MS) and staple it to this exam booklet.

All answers must be your own. (This examination is not a joint project)

Please wait to turn the page until we tell you to begin.

Overall Score _________________

1 _______ / 15

2 _______ /10

3 _______ / 25

4 _______ / 15

5 _______ / 20

6 _______ / 5

7 _______ / 10

Question 1: Regular Expressions – 15 points

Write down a regular expression that recognize the strings below. Use only:

 Concatenation

 choice (|)

 repetition (* and + and ?)

 simple character classes like [a-d0-5] and [^a-h]

 abbreviations such as: decDigits = [0-9] if you prefer

A. 3 points. All the 3-digit number in the range 100 to 234 (inclusive).

B. 4 points. Currency values. Start with ‘$’. Insert a comma between each group of digits to the left of the

decimal point. Include two digits after decimal point.

Eg: $1,234,567.89

Eg: $12.34

C. 8 points. Pascal defines real (floating-point) numeric constants as follows:

digit = [0-9]

digits = digit+

real = digits . digits | digits . digits E scale | digits E scale

scale = digits | (+ | -) digits

Draw a DFA that accepts Pascal’s real constants. (No need to construct an NFA or use algorithms to

convert into a DFA. Just draw the DFA)

Question 2: Context Free Grammars – 10 points

A Give a single sentence describing each of the following terms, as they relate to a Context-Free Grammar.

1. Terminal

2. Non-Terminal

3. Start Symbol

4. Production (sometimes called a “rule”)

5. Top-Down Parse

6. Bottom-Up Parse

7. Ambiguous grammar

8. Predictive parser

9. LR(0) grammar

10. Follow set

Question 3: LR Parser – 25 points

In this question, we will construct the LR(0) State Machine (or Discrete Finite Automaton) for the following

grammar:

1. S’ S $ (recall that $ represents end-of-file)

2. S (L)

3. S x

4. L S

5. L L , S

A. 2 points. List all the “dotted items” for production number 2: just the core items – no need to include the

closure.

B. 3 points. Show the initial state for the DFA. Remember to show its start-item (or core), as well as its

completion (or closure).

C. 15 points. Complete drawing the State Machine for this Grammar. (Recall, in lectures, we also called it the

“Handles-DFA”).

D. 2 points. Is the grammar LR(0)?

E. 3 points. Justify your answer to part D – why is the grammar LR(0) or why not?

Question 4: Flowgraph – 15 points

A. 10 points. For each node in the above flowgraph (or control-flow graph), list its Predecessors, Successors;

the nodes that it dominates; the nodes that dominate it – by filling in the table below:

0

1

3

4

2

6

5

Node Predecessors Successors Dominates Dominated-By
0

1

2

3

4

5

6

There is no need to show any algorithms or interim work – just fill in the table with your answers.

B. 5 points. Draw the Dominator Tree for the above flowgraph.

Question 5: Stack Frames and Objects – 20 points

A. 15 points. Consider the following short program:

class Point {

 int x;

 int y;

 public int distSquaredTo(int tox, int toy) {

 int dx = tox – this.x;

 int dy = toy = this.y;

 int d = dx * dx + dy * dy

 return d;

 }

}

class App {

 public static void main(String[] args) {

 Point p;

 p = new Point();

 p.x = 10;

 p.y = 20;

 p.distSquaredTo(100, 100);

 }

}

Draw a picture of the stack frame (also called the “activation record”) at the point where the method

p.distSquaredTo is about to execute its first statement. (ie, just after the prolog code in method

distSquaredTo has executed). Assume we are compiling for the x86 chip using the cdecl calling convention

that passes all arguments on the stack (ie, the calling convention we used in class lectures, and for the

MiniJava project).

Your drawing should include:

 Position and values of the arguments supplied to the distSquaredTo method

 Position and values of all variables that are local to the distSquaredTo method

 Position of the return address from the distSquaredTo method

 To which stack-slot the EBP (Extended Base Pointer) register is pointing; and what that stack-slot

contains (a description, not its numeric value)

 To which stack-slot the ESP (Extended Stack Pointer) register is pointing; and what that stack-slot

contains

You may draw the stack as growing up the page, or down the page – whichever you find easier. It is

important, however, to state which direction you chose!

(Note that the cdecl calling convention does not specify the order in which locals are stored in the stack

frame. You may choose any order that works – just label which slots you chose for which local variables)

B. 1 point. How did you choose to pass the “this” pointer?

C. 4 points. Draw a picture of the object p as it appears in memory. Your drawing should include:

 Position and size of each field within the object

 Position and size of the object’s Vtable pointer

 Contents of the vtable (assume class Point has no implicit base class)

Question 6: SSA Form – 5 points

A. 5 points. By adding a subscript to each variable in the following basic block, convert it to SSA form. Any

variables that are “live-in” to the basic block should be assigned SSA number 0 (zero).

 a = b + c

 b = 3

 d = a * b

 a = a - a

 b = d

 a = x

Question 7: Cache – 10 points

A. 5 points. The following loop is written in a language like C or C++ that supports 2-dimensional arrays.

These arrays are stored, in memory, in Row-Major form: all the elements of the first row, followed by all

the elements of the second row, etc.

Here is a simple program loop that sets every element of the 2-dimensional, integer array called “a”, to

hold the value 42.

int row;

int col;

int a[50, 100];

for (row = 0; row < 50; ++row) {

 for (col = 0; col < 100; ++col) {

 a[row, col] = 42;

 }

}

This program seems to run slowly. Why? (include a drawing of the array memory layout to help explain

your answer)

B. 3 points. Write a modified version of this loop that will run much faster, and explain why it will run much

faster.

C. 2 points. You have just mimicked an optimization that a compiler might perform automatically, on your

behalf. What is the name of this particular optimization?

D. 0 points. Name that book, TV series or movie: why is “42” used so often in computer-science examples?

