CSE P 501 - Compilers

Parsing \& Context-Free Grammars
 Hal Perkins
 Winter 2016

Administrivia

- Project partner signup: please find a partner and fill out the signup form by noon tomorrow if not done yet (only one form per group, please)
- Watch for spam from CSE GitLab as repos are set up (save and ignore for now)
- Written HW2 out now, due in a week
- HW1 solution posted in a couple of days
- First part of project - scanner - out later this week, due in two weeks
- Programming is fairly simple; this is the infrastructure shakedown cruise

Agenda for Today

- Parsing overview
- Context free grammars
- Ambiguous grammars
- Reading: Cooper \& Torczon 3.1-3.2
- Dragon book is also particularly strong on grammars and languages

Syntactic Analysis / Parsing

- Goal: Convert token stream to an abstract syntax tree
- Abstract syntax tree (AST):
- Captures the structural features of the program
- Primary data structure for next phases of compilation
- Plan
- Study how context-free grammars specify syntax
- Study algorithms for parsing and building ASTs

Context-free Grammars

- The syntax of most programming languages can be specified by a context-free grammar (CGF)
- Compromise between
- REs: can't nest or specify recursive structure
- General grammars: too powerful, undecidable
- Context-free grammars are a sweet spot
- Powerful enough to describe nesting, recursion
- Easy to parse; restrictions on general CFGs improve speed
- Not perfect
- Cannot capture semantics, like "must declare every variable" or "must be int" - requires later semantic pass
- Can be ambiguous (something we'll deal with)

Derivations and Parse Trees

- Derivation: a sequence of expansion steps, beginning with a start symbol and leading to a sequence of terminals
- Parsing: inverse of derivation
- Given a sequence of terminals (aka tokens) recover (discover) the nonterminals and structure, i.e., the parse tree (concrete syntax)

Old Example

$$
\begin{aligned}
& \text { program }::=\text { statement | program statement } \\
& \text { statement }::=\text { assignStmt } \mid \text { ifStmt } \\
& \text { assignStmt }::=\text { id = expr; } \\
& \text { ifStmt }::=\text { if (expr }) \text { statement } \\
& \text { expr }::=\text { id } \mid \text { int } \mid \text { expr }+ \text { expr } \\
& \text { id }::=\mathrm{a}|\mathrm{~b}| \mathrm{c}|\mathrm{i}| \mathrm{j}|\mathrm{k}| \mathrm{n}|\mathrm{x}| \mathrm{y} \mid \mathrm{z} \\
& \text { int }::=0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

Parsing

- Parsing: Given a grammar G and a sentence w in $L(G)$, traverse the derivation (parse tree) for w in some standard order and do something useful at each node
- The tree might not be produced explicitly, but the control flow of the parser will correspond to a traversal

"Standard Order"

- For practical reasons we want the parser to be deterministic (no backtracking), and we want to examine the source program from left to right.
- (i.e., parse the program in linear time in the order it appears in the source file)

Common Orderings

- Top-down
- Start with the root
- Traverse the parse tree depth-first, left-to-right (leftmost derivation)
- LL(k), recursive-descent
- Bottom-up
- Start at leaves and build up to the root
- Effectively a rightmost derivation in reverse(!)
- LR(k) and subsets (LALR(k), SLR(k), etc.)

"Something Useful"

- At each point (node) in the traversal, perform some semantic action
- Construct nodes of full parse tree (rare)
- Construct abstract syntax tree (AST) (common)
- Construct linear, lower-level representation (often produced in later phases of production compilers by traversing initial AST)
- Generate target code on the fly (done in 1-pass compilers; not common in production compilers)
- Can't generate great code in one pass, - but useful if you need a quick ' n dirty working compiler

Context-Free Grammars

- Formally, a grammar G is a tuple $\langle N, \Sigma, P, S>$ where
$-N$ is a finite set of non-terminal symbols
$-\Sigma$ is a finite set of terminal symbols (alphabet)
$-P$ is a finite set of productions
- A subset of $N \times(N \cup \Sigma)^{*}$
$-S$ is the start symbol, a distinguished element of N
- If not specified otherwise, this is usually assumed to be the non-terminal on the left of the first production

Standard Notations

a, b, c elements of Σ
w, x, y, z elements of Σ^{*}
A, B, C elements of N
X, Y, Z elements of $N \cup \Sigma$
α, β, γ elements of $(N \cup \Sigma)^{*}$
$A \rightarrow \alpha$ or $A::=\alpha$ if $\langle A, \alpha\rangle \in P$

Derivation Relations (1)

- $\alpha \mathrm{A} \gamma=>\alpha \beta$ iff $\mathrm{A}::=\beta$ in P
- derives
- $A=>^{*} \alpha$ if there is a chain of productions starting with A that generates α
- transitive closure

Derivation Relations (2)

- $w A \gamma=>_{\operatorname{lm}} w \beta \gamma$ iff $A::=\beta$ in P
- derives leftmost
- $\alpha \mathrm{Aw}=>_{r m} \alpha \beta \mathrm{w}$ iff $\mathrm{A}::=\beta$ in P
- derives rightmost
- We will only be interested in leftmost and rightmost derivations - not random orderings

Languages

- For A in $N, L(\mathrm{~A})=\left\{\mathrm{w} \mid \mathrm{A}=>^{*} \mathrm{w}\right\}$
- If S is the start symbol of grammar G, define $L(G)=L(S)$
- Nonterminal on left of first rule is taken to be the start symbol if one is not specified explicitly

Reduced Grammars

- Grammar G is reduced iff for every production $A::=\alpha$ in G there is a derivation

$$
\text { S =>* x A z => x } \alpha z=>^{*} x y z
$$

- i.e., no production is useless
- Convention: we will use only reduced grammars
- There are algorithms for pruning useless productions from grammars - see a formal language or compiler book for details

Ambiguity

- Grammar G is unambiguous iff every w in L(G) has a unique leftmost (or rightmost) derivation
- Fact: unique leftmost or unique rightmost implies the other
- A grammar without this property is ambiguous
- Note that other grammars that generate the same language may be unambiguous, i.e., ambiguity is a property of grammars, not languages
- We need unambiguous grammars for parsing

Example: Ambiguous Grammar for Arithmetic Expressions

$$
\begin{aligned}
& \text { expr }::=\text { expr }+ \text { expr | expr }- \text { expr } \\
& \mid \text { expr }{ }^{*} \text { expr | expr } / \text { expr | int } \\
& \text { int }::=0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

- Exercise: show that this is ambiguous
- How? Show two different leftmost or rightmost derivations for the same string
- Equivalently: show two different parse trees for the same string

expr ::= expr + expr | expr - expr | expr * expr | expr/expr|int
 Example (cont) int ::=0|1|2|3|4|5|6|7|8|9

- Give a leftmost derivation of $2+3 * 4$ and show the parse tree

Example (cont)
 $$
\begin{aligned} & \text { expr }::=\text { expr }+ \text { expr | expr - expr } \\ & \mid \text { expr }{ }^{*} \text { expr } \mid \text { expr } / \text { expr |int } \\ & \text { int }::=0|1| 2|3| 4|5| 6|7| 8 \mid 9 \end{aligned}
$$

- Give a different leftmost derivation of $2+3 * 4$ and show the parse tree

expr ::= expr + expr | expr - expr | expr * expr | expr / expr | int
 Another example int:=0|1|2|3|14|56|7|18|9

- Give two different derivations of 5+6+7

What's going on here?

- The grammar has no notion of precedence or associatively
- Traditional solution
- Create a non-terminal for each level of precedence
- Isolate the corresponding part of the grammar
- Force the parser to recognize higher precedence subexpressions first
- Use left- or right-recursion for left- or right-associative operators (non-associative operators are not recursive)

Classic Expression Grammar

 (first used in ALGOL 60)```
expr ::= expr + term | expr-term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int::=0|1|2|3|4|5|6|7
```


## Check:

Derive $2+3$ * 4
expr ::= expr + term | expr - term | term term ::= term * factor | term / factor | factor factor ::= int | ( expr )
int ::=0|1|2|3|4|5|6|7

## Check: <br> Derive 5 + 6 + 7

```
expr ::= expr + term | expr-term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0| 1| 2| 3|4|5|6|7
```

- Note interaction between left- vs right-recursive rules and resulting associativity


## Check: <br> Derive 5 + (6 + 7)

expr $::=$ expr + term | expr-term | term term ::= term * factor | term / factor | factor factor ::= int | ( expr )
int ::=0|1|2|3|4|5|6|7

## Another Classic Example

- Grammar for conditional statements
stmt $::=$ if ( expr ) stmt
| if ( expr ) stmt else stmt
(This is the "dangling else" problem found in many, many grammars for languages beginning with Algol 60)
- Exercise: show that this is ambiguous
- How?


## One Derivation

## Another Derivation

if (expr) if (expr) stmt else stmt

## Solving "if" Ambiguity

- Fix the grammar to separate if statements with else clause and if statements with no else
- Done in Java reference grammar
- Adds lots of non-terminals
- or, Change the language
- But it'd better be ok to do this - you need to "own" the language or get permission from owner
- or, Use some ad-hoc rule in the parser
- "else matches closest unpaired if"


## Resolving Ambiguity with Grammar (1)

Stmt ::= MatchedStmt | UnmatchedStmt
MatchedStmt ::= ... |
if ( Expr ) MatchedStmt else MatchedStmt
UnmatchedStmt ::= ... |

```
 if (Expr) Stmt |
if (Expr) MatchedStmt else UnmatchedStmt
```

- formal, no additional rules beyond syntax
- can be more obscure than original grammar

Stmt ::= MatchedStmt | UnmatchedStmt

## Check

if ( Expr ) MatchedStmt else MatchedStmt
UnmatchedStmt ::= if (Expr ) Stmt |
if ( Expr ) MatchedStmt else UnmatchedStmt
if (expr) if (expr) stmt else stmt

## Resolving Ambiguity with Grammar (2)

- If you can (re-)design the language, just avoid the problem entirely

Stmt ::= ... |
if Expr then Stmt end |
if Expr then Stmt else Stmt end

- formal, clear, elegant
- allows sequence of Stmts in then and else branches, no
\{ , \} needed
- extra end required for every if
(But maybe this is a good idea anyway?)


## Parser Tools and Operators

- Most parser tools can cope with ambiguous grammars
- Makes life simpler if used with discipline
- Usually can specify precedence \& associativity
- Allows simpler, ambiguous grammar with fewer nonterminals as basis for parser - let the tool handle the details (but only when it makes sense)
- (i.e., expr ::= expr+expr | expr*expr \| ... with assoc. \& precedence declarations can be the best solution)


## Parser Tools and Ambiguous

## Grammars

- Possible rules for resolving other problems:
- Earlier productions in the grammar preferred to later ones (some danger here if grammar changes)
- Longest match used if there is a choice (good solution for dangling if)
- Parser tools normally allow for this
- But be sure that what the tool does is really what you want
- And that it's part of the tool spec, so that v2 won't do something different (that you don't want!)


## Coming Attractions

- Next topic: LR parsing
- Continue reading ch. 3

