
CSE	P	501	–	Compilers	

LR	Parsing	
Hal	Perkins	
Winter	2016	

UW CSE P 501 Winter 2016 D-1

Agenda	

•  LR	Parsing	
•  Table-driven	Parsers	
•  Parser	States	
•  ShiD-Reduce	and	Reduce-Reduce	conflicts	

UW CSE P 501 Winter 2016 D-2

BoIom-Up	Parsing	

•  Idea:	Read	the	input	leD	to	right		
•  Whenever	we’ve	matched	the	right	hand	side	
of	a	producPon,	reduce	it	to	the	appropriate	
non-terminal	and	add	that	non-terminal	to	the	
parse	tree	

•  The	upper	edge	of	this	parPal	parse	tree	is	
known	as	the	fron%er	

UW CSE P 501 Winter 2016 D-3

Example	

•  Grammar	
		
	S	::=	aAB	e	
	A	::=	Abc	|	b	
	B	::=	d	

	
	

•  BoIom-up	Parse	
	
	
	
	
	
	
a				b				b				c				d				e	

UW CSE P 501 Winter 2016 D-4

LR(1)	Parsing	

•  We’ll	look	at	LR(1)	parsers	
– LeD	to	right	scan,	Rightmost	derivaPon,	1	symbol	
lookahead	

– Almost	all	pracPcal	programming	languages	have	
a	LR(1)	grammar	

– LALR(1),	SLR(1),	etc.	–	subsets	of	LR(1)	
•  LALR(1)	can	parse	most	real	languages,	tables	are	more	
compact,	and	is	used	by	YACC/Bison/CUP/etc.	

UW CSE P 501 Winter 2016 D-5

LR	Parsing	in	Greek	

•  The	boIom-up	parser	reconstructs	a	reverse	
rightmost	derivaPon	

•  Given	the	rightmost	derivaPon	
S	=>β1=>β2=>…=>βn-2=>βn-1=>βn	=	w	

	the	parser	will	first	discover	βn-1=>βn		,	then	
βn-2=>βn-1	,	etc.	

•  Parsing	terminates	when		
–  β1	reduced	to	S		(start	symbol,	success),	or	
–  No	match	can	be	found	(syntax	error)	

UW CSE P 501 Winter 2016 D-6

How	Do	We	Parse	with	This?	

•  Key:	given	what	we’ve	already	seen	and	the	next	
input	symbol	(the	lookahead),	decide	what	to	do.			

•  Choices:	
–  Perform	a	reducPon	
–  Look	ahead	further	

•  Can	reduce	A=>β	if	both	of	these	hold:	
–  A=>β	is	a	valid	producPon,	and	
–  A=>β	is	a	step	in	this	rightmost	derivaPon	

•  This	is	known	as	a	shi2-reduce	parser	

UW CSE P 501 Winter 2016 D-7

SentenPal	Forms	

•  If	S	=>*	α,	the	string	α	is	called	a	senten%al	form	of	
the	grammar	

•  In	the	derivaPon		
S	=>β1=>β2=>…=>βn-2=>βn-1=>βn	=	w	
	each	of	the	βi		are	sentenPal	forms	
•  A	sentenPal	form	in	a	rightmost	derivaPon	is	called	a	
right-sentenPal	form	(similarly	for	leDmost	and	leD-
sentenPal)	

UW CSE P 501 Winter 2016 D-8

Handles	

•  Informally,	a	producPon	whose	right	hand	
side	matches	a	substring	of	the	tree	fronPer	
that	is	part	of	the	rightmost	deriva%on	of	the	
current	input	string	(i.e.,	the	“correct”	
producPon)	
– Even	if	A	::=	β	is	a	producPon,	it	is	a	handle	only	if	
β	matches	the	fronPer	at	a	point	where	A	::=	β	
was	used	in	this	specific	derivaPon	

– β	may	appear	in	many	other	places	in	the	fronPer	
without	designaPng	a	handle	

•  BoIom-up	parsing	is	all	about	finding	handles	

UW CSE P 501 Winter 2016 D-9

Handle	Examples	

•  In	the	derivaPon	
S	=>	aABe	=>	aAde	=>	aAbcde	=>	abbcde	
– abbcde	is	a	right	sentenPal	form	whose	handle	is	
A::=b	at	posiPon	2	

– aAbcde	is	a	right	sentenPal	form	whose	handle	is	
A::=Abc	at	posiPon	4	
•  Note:	some	books	take	the	leD	end	of	the	match	as	the	
posiPon	

UW CSE P 501 Winter 2016 D-10

Handles	–	The	Dragon	Book	Defn.	

•  Formally,	a	handle	of	a	right-sentenPal	form	γ	
is	a	producPon	A	::=	β	and	a	posiPon	in	γ	
where	β	may	be	replaced	by	A	to	produce	the	
previous	right-sentenPal	form	in	the	rightmost	
derivaPon	of	γ	

UW CSE P 501 Winter 2016 D-11

ImplemenPng	ShiD-Reduce	Parsers	

•  Key	Data	structures	
– A	stack	holding	the	fronPer	of	the	tree	
– A	string	with	the	remaining	input	(tokens)	

•  We	also	need	something	to	encode	the	rules	
that	tell	us	what	acPon	to	take	next,	given	the	
state	of	the	stack	and	the	lookahead	symbol	
– Typically	a	table	that	encodes	a	finite	automata	

UW CSE P 501 Winter 2016 D-12

ShiD-Reduce	Parser	OperaPons	

•  Reduce	–	if	the	top	of	the	stack	is	the	right	
side	of	a	handle	A::=β,	pop	the	right	side	β	
and	push	the	leD	side	A	

•  Shi2	–	push	the	next	input	symbol	onto	the	
stack	

•  Accept	–	announce	success	
•  Error	–	syntax	error	discovered	

UW CSE P 501 Winter 2016 D-13

ShiD-Reduce	Example	
Stack 	 	 	Input 	 	 	AcPon	
$ 	 	 	 	abbcde$ 	 	shi2	

UW CSE P 501 Winter 2016 D-14

S ::= aABe
A ::= Abc | b
B ::= d

How	Do	We	Automate	This?	

•  Cannot	use	clairvoyance	in	a	real	parser	(alas…)	
•  Defn.	Viable	prefix	–	a	prefix	of	a	right-sentenPal	
form	that	can	appear	on	the	stack	of	the	shiD-reduce	
parser	
–  Equivalent:	a	prefix	of	a	right-sentenPal	form	that	does	not	
conPnue	past	the	rightmost	handle	of	that	sentenPal	form	

–  In	Greek:	γ	is	a	viable	prefix	of	G	if	there	is	some	derivaPon		
S	=>*rm	αAw	=>*rm	αβw	and	γ	is	a	prefix	of	αβ.	

–  The	occurrence	of	β	in	αβw	is	a	handle	of	αβw	

UW CSE P 501 Winter 2016 D-15

How	Do	We	Automate	This?	

•  Fact:	the	set	of	viable	prefixes	of	a	CFG	is	a	
regular	language(!)	

•  Idea:	Construct	a	DFA	to	recognize	viable	prefixes	
given	the	stack	and	remaining	input	
–  Perform	reducPons	when	we	recognize	them	

UW CSE P 501 Winter 2016 D-16

DFA	for	prefixes	of	

UW CSE P 501 Winter 2016 D-17

S ::= aABe
A ::= Abc | b
B ::= d

1 2 3 6 7

4 5

8 9

start a

A ::= b B ::= d

b d

A b c
A ::= Abc

B

e

S ::= aABe accept

$

Trace	

Stack 	 	Input	
$ 	 	 	abbcde$	

UW CSE P 501 Winter 2016 D-18

S ::= aABe
A ::= Abc | b
B ::= d

1 2 3 6 7

4 5

8 9

start a

A ::= b B ::= d

b d

A b c A ::= Abc

B

e S ::= aABe accept

$

ObservaPons	

•  Way	too	much	backtracking	
– We	want	the	parser	to	run	in	Pme	proporPonal	to	
the	length	of	the	input	

•  Where	the	heck	did	this	DFA	come	from	
anyway?	
– From	the	underlying	grammar	
– Defer	construcPon	details	for	now	

UW CSE P 501 Winter 2016 D-19

Avoiding	DFA	Rescanning	

•  ObservaPon:	no	need	to	restart	DFA	aDer	a	shiD.		
Stay	in	the	same	state	and	process	next	token.	

•  ObservaPon:	aDer	a	reducPon,	the	contents	of	the	
stack	are	the	same	as	before	except	for	the	new	non-
terminal	on	top	
– ∴	Scanning	the	stack	will	take	us	through	the	same	
transiPons	as	before	unPl	the	last	one	

– ∴	If	we	record	state	numbers	on	the	stack,	we	can	go	
directly	to	the	appropriate	state	when	we	pop	the	right	
hand	side	of	a	producPon	from	the	stack	

UW CSE P 501 Winter 2016 D-20

Stack	
•  Change	the	stack	to	contain	pairs	of	states	and	
symbols	from	the	grammar	
$s0	X1	s1	X2	s2	…	Xn	sn		
–  State	s0	represents	the	accept	(start)	state	

(Not	always	explicitly	on	stack	–	depends	on	parPcular	presentaPon)	

– When	we	push	a	symbol	on	the	stack,	push	the	
symbol	plus	the	FA	state	

– When	we	reduce,	popping	the	handle	will	reveal	the	
state	of	the	FA	just	prior	to	reading	the	handle	

•  ObservaPon:	in	an	actual	parser,	only	the	state	numbers	are	needed	since	
they	implicitly	contain	the	symbol	informaPon.		But	for	explanaPons	/	
examples	it	can	help	to	show	both.	

UW CSE P 501 Winter 2016 D-21

Encoding	the	DFA	in	a	Table	

•  A	shiD-reduce	parser’s	DFA	can	be	encoded	in	
two	tables	
– One	row	for	each	state	
– ac%on	table	encodes	what	to	do	given	the	current	
state	and	the	next	input	symbol	

– goto	table	encodes	the	transiPons	to	take	aDer	a	
reducPon	

UW CSE P 501 Winter 2016 D-22

AcPons	(1)	

•  Given	the	current	state	and	input	symbol,	the	
main	possible	acPons	are	
– si	–	shiD	the	input	symbol	and	state	i	onto	the	
stack	(i.e.,	shiD	and	move	to	state	i)	

–  rj	–	reduce	using	grammar	producPon	j	
•  The	producPon	number	tells	us	how	many		
<symbol,	state>	pairs	to	pop	off	the	stack		
(=	number	of	symbols	on	rhs	of	producPon)	

UW CSE P 501 Winter 2016 D-23

AcPons	(2)	

•  Other	possible	ac%on	table	entries	
– accept		
– blank	–	no	transiPon	–	syntax	error	

•  A	LR	parser	will	detect	an	error	as	soon	as	possible	on	a	
leD-to-right	scan	
•  A	real	compiler	needs	to	produce	an	error	message,	
recover,	and	conPnue	parsing	when	this	happens	

UW CSE P 501 Winter 2016 D-24

Goto	

•  When	a	reducPon	is	performed	using	A	::=	β,	
we	pop	|β|	<symbol,	state>	pairs	from	the	
stack	revealing	a	state	uncovered_s	on	the	top	
of	the	stack	

•  goto[uncovered_s	,	A]	is	the	new	state	to	push	
on	the	stack	when	reducing	producPon	A	::=	β	
(aDer	popping	handle	β	and	pushing	A)	

UW CSE P 501 Winter 2016 D-25

Reminder:	DFA	for	

UW CSE P 501 Winter 2016 D-26

S ::= aABe
A ::= Abc | b
B ::= d

1 2 3 6 7

4 5

8 9

start a

A ::= b B ::= d

b d

A b c
A ::= Abc

B

e
S ::= aABe accept

$

LR	Parse	Table	for	

State
action goto

a b c d e $ A B S

0 acc

1 s2 g0

2 s4 g3

3 s6 s5 g8

4 r3 r3 r3 r3 r3 r3

5 r4 r4 r4 r4 r4 r4

6 s7

7 r2 r2 r2 r2 r2 r2

8 s9

9 r1 r1 r1 r1 r1 r1
UW CSE P 501 Winter 2016 D-27

1. S ::= aABe
2. A ::= Abc
3. A ::= b
4. B ::= d

LR	Parsing	Algorithm	

tok	=	scanner.getToken();	
while	(true)	{	

	s	=	top	of	stack;	
	if	(acPon[s,	tok]	=	si)	{	
				push	tok;	push	i		(state);	
				tok	=	scanner.getToken();	
	}	else	if	(acPon[s,	tok]	=	rj)	{	
				pop	2	*	length	of	right	side	of	
	 	producPon	j		(2*|β|);	
				uncovered_s	=	top	of	stack;	
				push	leD	side	A	of	producPon	j	;	
				push	state	goto[uncovered_s,	A];	
	}	

UW CSE P 501 Winter 2016 D-28

} else if (action[s, tok] = accept) {
 return;

} else {
 // no entry in action table
 report syntax error;
 halt or attempt recovery;

}

Example	

Stack	 	 																				Input	
$ 	 	 															 	 				abbcde$	

S
action goto

a b c d e $ A B S

0 s2 ac

1 s2 g0

2 s4 g3

3 s6 s5 g8

4 r3 r3 r3 r3 r3 r3

5 r4 r4 r4 r4 r4 r4

6 s7

7 r2 r2 r2 r2 r2 r2

8 s9

9 r1 r1 r1 r1 r1 r1

UW CSE P 501 Winter 2016 D-29

1. S ::= aABe
2. A ::= Abc
3. A ::= b
4. B ::= d

LR	States	

•  Idea	is	that	each	state	encodes	
– The	set	of	all	possible	producPons	that	we	could	
be	looking	at,	given	the	current	state	of	the	parse,	
and	

– Where	we	are	in	the	right	hand	side	of	each	of	
those	producPons	

UW CSE P 501 Winter 2016 D-30

Items	

•  An	item	is	a	producPon	with	a	dot	in	the	right	
hand	side	

•  Example:	Items	for	producPon	A	::=	X	Y	
			A	::=	.	X	Y	
			A	::=	X	.	Y	
			A	::=	X	Y	.	
•  Idea:	The	dot	represents	a	posiPon	in	the	
producPon	

UW CSE P 501 Winter 2016 D-31

DFA	for	

UW CSE P 501 Winter 2016 D-32

S ::= aABe
A ::= Abc | b
B ::= d

S ::= .aABe

S ::= a.ABe
A ::= .Abc
A ::= .b

A ::= b.

accept $

a

b

S ::= aA.Be
A ::= A.bc
B ::= .d

A

B ::= d.

d

b
A ::= Ab.c

A ::= Abc.

c

B
S ::= aAB.e e S ::= aABe.

1

2

4

3

5

6

7

8 9

Problems	with	Grammars	

•  Grammars	can	cause	problems	when	
construcPng	a	LR	parser	
– ShiD-reduce	conflicts	
– Reduce-reduce	conflicts	

UW CSE P 501 Winter 2016 D-33

ShiD-Reduce	Conflicts	

•  SituaPon:	both	a	shiD	and	a	reduce	are	
possible	at	a	given	point	in	the	parse	
(equivalently:	in	a	parPcular	state	of	the	DFA)	

•  Classic	example:	if-else	statement	
	 	S	::=	iDhen	S		|	iDhen	S	else	S	

UW CSE P 501 Winter 2016 D-34

Parser	States	for	

•  State	3	has	a	shiD-
reduce	conflict	
–  Can	shiD	past	else	into	
state	4	(s4)	

–  Can	reduce	(r1)	
S	::=	iDhen	S		

	(Note:	other	S	::=	.	iDhen	items	
not	included	in	states	2-4	to	save	
space)	

UW CSE P 501 Winter 2016 D-35

1. S ::= ifthen S
2. S ::= ifthen S else S

S ::= . ifthen S
S ::= . ifthen S else S

ifthen

1

S ::= ifthen . S
S ::= ifthen . S else S

S

2

S ::= ifthen S .
S ::= ifthen S . else S

else

3

S ::= ifthen S else . S 4

Solving	ShiD-Reduce	Conflicts	

•  Fix	the	grammar	
– Done	in	Java	reference	grammar,	others	

•  Use	a	parse	tool	with	a	“longest	match”	rule	–	
i.e.,	if	there	is	a	conflict,	choose	to	shiD	
instead	of	reduce	
– Does	exactly	what	we	want	for	if-else	case	
– Guideline:	a	few	shiD-reduce	conflicts	are	fine,	but	
be	sure	they	do	what	you	want	(and	that	this	
behavior	is	guaranteed	by	the	tool	specificaPon)	

UW CSE P 501 Winter 2016 D-36

Reduce-Reduce	Conflicts	

•  SituaPon:	two	different	reducPons	are	
possible	in	a	given	state	

•  Contrived	example	
	 	S	::=	A	
	 	S	::=	B	
	 	A	::=	x	
	 	B	::=	x	

UW CSE P 501 Winter 2016 D-37

Parser	States	for	

•  State	2	has	a	reduce-
reduce	conflict	(r3,	r4)	

UW CSE P 501 Winter 2016 D-38

S ::= .A
S ::= .B
A ::= .x
B ::= .x

x

1

A ::= x.
B ::= x.

2

1. S ::= A
2. S ::= B
3. A ::= x
4. B ::= x

Handling	Reduce-Reduce	Conflicts	

•  These	normally	indicate	a	serious	problem	
with	the	grammar.			

•  Fixes	
– Use	a	different	kind	of	parser	generator	that	takes	
lookahead	informaPon	into	account	when	
construcPng	the	states	
•  Most	pracPcal	tools	use	this	informaPon	

– Fix	the	grammar	

UW CSE P 501 Winter 2016 D-39

Another	Reduce-Reduce	Conflict	

•  Suppose	the	grammar	tries	to	separate	
arithmePc	and	boolean	expressions	

	expr	::=	aexp	|	bexp	
	aexp	::=	aexp	*	aident	|	aident		
	bexp	::=	bexp	&&	bident	|	bident		
	aident	::=	id	

	 	bident	::=	id		

•  This	will	create	a	reduce-reduce	conflict	aDer	
recognizing	id		

UW CSE P 501 Winter 2016 D-40

Covering	Grammars	

•  A	soluPon	is	to	merge	aident	and	bident	into	a	single	
non-terminal	like	ident	(or	just	use	id	in	place	of	
aident	and	bident	everywhere	they	appear)	

•  This	is	a	covering	grammar	
– Will	generate	some	programs	(sentences)	that	are	not	
generated	by	the	original	grammar	

–  Use	the	type	checker	or	other	staPc	semanPc	analysis	to	
weed	out	illegal	programs	later	

UW CSE P 501 Winter 2016 D-41

Coming	AIracPons	

•  ConstrucPng	LR	tables	
– We’ll	present	a	simple	version	(SLR(0))	in	lecture,	
then	talk	about	adding	lookahead	and	then	a	liIle	
bit	about	how	this	relates	to	LALR(1)	used	in	most	
parser	generators		

•  LL	parsers	and	recursive	descent	
•  ConPnue	reading	ch.	3	

UW CSE P 501 Winter 2016 D-42

