CSE P 501 - Compilers

LR Parser Construction

Hal Perkins
Winter 2016

Agenda

- LR(0) state construction
- FIRST, FOLLOW, and nullable
- Variations: SLR, LR(1), LALR

LR State Machine

- Idea: Build a DFA that recognizes handles
- Language generated by a CFG is generally not regular, but
- Language of viable prefixes for a CFG is regular
- So a DFA can be used to recognize handles
- LR Parser reduces when DFA accepts a handle

Prefixes, Handles, \&c (review)

- If S is the start symbol of a grammar G,
- If S =>* α then α is a sentential form of G
$-\gamma$ is a viable prefix of G if there is some derivation $S=>^{*}{ }_{r m} \alpha A w=>^{*}{ }_{r m} \alpha \beta w$ and γ is a prefix of $\alpha \beta$.
- The occurrence of β in $\alpha \beta \mathrm{w}$ is a handle of $\alpha \beta \mathrm{w}$
- An item is a marked production (a . at some position in the right hand side)
- [$A::=. X Y$] [$A::=X . Y$] [$A::=X Y$.]

Building the LR(0) States

- Example grammar

$$
\begin{aligned}
& S^{\prime}::=S ~ \$ \\
& S::=(L) \\
& S::=x \\
& L::=S \\
& L::=L, S
\end{aligned}
$$

- We add a production S^{\prime} with the original start symbol followed by end of file (\$)
- We accept if we reach the end of this production
- Question: What language does this grammar generate?

0. $S^{\prime}::=S \$$
 Start of LR Parse
 1. $S::=(L)$
 2. $S::=x$
 3. $L::=S$
 4. $L::=L, S$

- Initially
- Stack is empty
- Input is the right hand side of S^{\prime}, i.e., $S \$$
- Initial configuration is [$\left.S^{\prime}::=. S \$\right]$
- But, since position is just before S, we are also just before anything that can be derived from S

0. $S^{\prime}::=S \$$
 Initial state
 1. $S::=(L)$
 2. $S::=x$
 3. $L::=S$
 4. $L::=L, S$

- A state is just a set of items
- Start: an initial set of items
- Completion (or closure): additional productions whose left hand side appears to the right of the dot in some item already in the state

Shift Actions (1)

1. $S::=(L)$
2. $S::=x$
3. $L::=S$
4. $L::=L, S$

$$
\begin{aligned}
& S^{\prime}::=. S \$ \\
& S::=.(L) \\
& S::=. x
\end{aligned}
$$

- To shift past the x, add a new state with appropriate item(s), including their closure
- In this case, a single item; the closure adds nothing
- This state will lead to a reduction since no further shift is possible

Shift Actions (2)

1. $S::=(L)$
2. $S::=x$
3. $L::=S$
4. $L::=L, S$

$$
\begin{array}{|l|}
\hline S^{\prime}::=. S \$ \\
S::=.(L) \\
S::=. \mathrm{x}
\end{array} \quad\left(\begin{array}{l}
S::=(. L) \\
L: \because=. L, S \\
L \because=: S \\
S: \because=.(L) \\
S: \because=. \mathrm{x}
\end{array}\right.
$$

- If we shift past the (, we are at the beginning of L
- The closure adds all productions that start with L, which also requires adding all productions starting with S
$\begin{array}{ll}\text { Goto Actions } & \begin{array}{l}\text { 1. } S::=(L) \\ \text { 2. } S:=x \\ \text { 3. } L:=S \\ \text { 4. } \\ L::=L, S\end{array}\end{array}$

$$
\begin{array}{|l|l|}
\hline S^{\prime}::=. S \$ \\
S::=.(L) \\
S::=. \mathrm{x}
\end{array} \quad S \quad S^{\prime}::=S . \$
$$

- Once we reduce S, we'll pop the rhs from the stack exposing the first state. Add a goto transition on S for this.

Basic Operations

- Closure (S)
- Adds all items implied by items already in S
- Goto (I, X)
$-I$ is a set of items
$-X$ is a grammar symbol (terminal or non-terminal)
- Goto moves the dot past the symbol X in all appropriate items in set /

Closure Algorithm

- Closure $(S)=$
repeat
for any item $[A::=\alpha . B \beta]$ in S
for all productions $B::=\gamma$
add $[B::=. \gamma]$ to S
until S does not change
return S
- Classic example of a fixed-point algorithm

Goto Algorithm

- Goto $(I, X)=$
set new to the empty set
for each item $[A::=\alpha . X \beta]$ in / $\operatorname{add}[A::=\alpha X, \beta]$ to new
return Closure (new)
- This may create a new state, or may return an existing one

LR(0) Construction

- First, augment the grammar with an extra start production $S^{\prime}::=S$ \$
- Let T be the set of states
- Let E be the set of edges
- Initialize T to Closure ([$\left.S^{\prime}::=. S \$\right]$)
- Initialize E to empty

LR(0) Construction Algorithm

repeat

for each state I in T for each item $[A::=\alpha \cdot X \beta]$ in $/$
Let new be Goto(I, X)
Add new to T if not present
Add $I \xrightarrow{X}$ new to E if not present
until E and T do not change in this iteration

- Footnote: For symbol \$, we don’t compute goto(I, \$); instead, we make this an accept action.

0. $S^{\prime}::=S \$$
 Example: States for
 1. $S::=(L)$
 2. $S::=x$
 3. $L::=S$
 4. $L::=L, S$

Building the Parse Tables (1)

- For each edge $I \xrightarrow{x} J$
- if X is a terminal, put $s j$ in column X, row $/$ of the action table (shift to state j)
- If X is a non-terminal, put $g j$ in column X, row I of the goto table (go to state j)

Building the Parse Tables (2)

- For each state / containing an item [$\left.S^{\prime}::=S . \$\right]$, put accept in column \$ of row $/$
- Finally, for any state containing [$A::=\gamma$.] put action rn (reduce) in every column of row $/$ in the table, where n is the production number (not a state number)

0. $S^{\prime}::=S \$$
 Example: Tables for
 1. $S::=(L)$
 2. $S::=\mathrm{x}$
 3. $L::=S$
 4. $L::=L, S$

Where Do We Stand?

- We have built the LR(0) state machine and parser tables
- No lookahead yet
- Different variations of LR parsers add lookahead information, but basic idea of states, closures, and edges remains the same
- A grammar is LR(0) if its LR(0) state machine (equiv. parser tables) has no shift-reduce or reduce-reduce conflicts.

A Grammar that is not LR(0)

- Build the state machine and parse tables for a simple expression grammar

$$
\begin{aligned}
& S::=E \$ \\
& E::=T+E \\
& E::=T \\
& T::=x
\end{aligned}
$$

How can we solve conflicts like this?

- Idea: look at the next symbol after the handle before deciding whether to reduce
- Easiest: SLR - Simple LR. Reduce only if next input terminal symbol could follow the nonterminal on the left of the production in some possible derivation(s)
- More complex: LR and LALR. Store lookahead symbols in items to keep track of what can follow a particular instance of a reduction
- LALR used by YACC/Bison/CUP; we won't examine in detail - see your favorite compiler book for explanations

SLR Parsers

- Idea: Use information about what can follow a non-terminal to decide if we should perform a reduction; don't reduce if the next input symbol can't follow the resulting non-terminal
- We need to be able to compute $\operatorname{FOLLOW}(A)$ - the set of symbols that can follow A in any possible derivation
- i.e., t is in $\operatorname{FOLLOW}(A)$ if any derivation contains $A t$
- To compute this, we need to compute $\operatorname{FIRST}(\gamma)$ for strings γ that can follow A

Calculating FIRST (γ)

- Sounds easy... If $\gamma=X Y Z$, then $\operatorname{FIRST}(\gamma)$ is FIRST (X), right?
- But what if we have the rule $X::=\varepsilon$?
- In that case, $\operatorname{FIRST}(\gamma)$ includes anything that can follow X, i.e. $\operatorname{FOLLOW}(X)$, which includes $\operatorname{FIRST}(Y)$ and, if Y can derive ε, $\operatorname{FIRST}(Z)$, and if Z can derive ε, \ldots
- So computing FIRST and FOLLOW involves knowing FIRST and FOLLOW for other symbols, as well as which ones can derive ε.

FIRST, FOLLOW, and nullable

- nullable (X) is true if X can derive the empty string
- Given a string γ of terminals and non-terminals, $\operatorname{FIRST}(\gamma)$ is the set of terminals that can begin any strings derived from γ
- For SLR we only need this for single terminal or nonterminal symbols, not arbitrary strings γ
- $\operatorname{FOLLOW}(X)$ is the set of terminals that can immediately follow X in some derivation
- All three of these are computed together

Computing FIRST, FOLLOW, and nullable (1)

- Initialization
set FIRST and FOLLOW to be empty sets
set nullable to false for all non-terminals
set FIRST[a] to a for all terminal symbols a
- Repeatedly apply four simple observations to update these sets
- Stop when there are no further changes
- Another fixed-point algorithm

Computing FIRST, FOLLOW, and nullable (2)

repeat
for each production $X:=Y_{1} Y_{2} \ldots Y_{\mathrm{k}}$
if $Y_{1} \ldots Y_{\mathrm{k}}$ are all nullable (or if $k=0$)
set nullable $[X]=$ true
for each i from 1 to k and each j from $i+1$ to k
if $Y_{1} \ldots Y_{i-1}$ are all nullable (or if $i=1$) add FIRST[Y_{i}] to FIRST[X]
if $Y_{\mathrm{i}+1} \ldots Y_{\mathrm{k}}$ are all nullable (or if $i=k$) add FOLLOW $[X]$ to FOLLOW[$\left.Y_{i}\right]$
if $Y_{\mathrm{i}+1} \ldots Y_{\mathrm{j}-1}$ are all nullable (or if $\mathrm{i}+1=\mathrm{j}$) add FIRST $\left[Y_{j}\right]$ to FOLLOW[Y_{i}]
Until FIRST, FOLLOW, and nullable do not change

Example

- Grammar
nullable FIRST FOLLOW

$$
\begin{aligned}
& Z::=\mathrm{d} \\
& Z::=X Y Z \\
& Y::=\varepsilon \\
& Y::=\mathrm{c} \\
& X::=Y \\
& X::=\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& x \\
& y \\
& y \\
& z
\end{aligned}
$$

LR(0) Reduce Actions (review)

- In a $\operatorname{LR}(0)$ parser, if a state contains a reduction, it is unconditional regardless of the next input symbol
- Algorithm:

Initialize R to empty
for each state I in T
for each item [$A::=\alpha$.] in I
add $(I, A::=\alpha)$ to R

SLR Construction

- This is identical to $\operatorname{LR}(0)$ - states, etc., except for the calculation of reduce actions
- Algorithm:

Initialize R to empty
for each state I in T
for each item [A ::= α.] in I for each terminal a in $\operatorname{FOLLOW}(A)$ add $(I, ~ a, ~ A::=\alpha)$ to R

- i.e., reduce α to A in state I only on lookahead a

On To LR(1)

- Many practical grammars are SLR
- LR(1) is more powerful yet
- Similar construction, but notion of an item is more complex, incorporating lookahead information

LR(1) Items

- An $\operatorname{LR}(1)$ item $[A::=\alpha$. $\beta, a]$ is
- A grammar production ($A::=\alpha \beta$)
- A right hand side position (the dot)
- A lookahead symbol (a)
- Idea: This item indicates that α is the top of the stack and the next input is derivable from β a.
- Full construction: see the book

LR(1) Tradeoffs

- LR(1)
- Pro: extremely precise; largest set of grammars
- Con: potentially very large parse tables with many states

LALR(1)

- Variation of LR(1), but merge any two states that differ only in lookahead
- Example: these two would be merged

$$
\begin{aligned}
& {[A::=x ., ~ a]} \\
& {[A::=x ., b]}
\end{aligned}
$$

LALR(1) vs LR(1)

- LALR(1) tables can have many fewer states than LR(1)
- Somewhat surprising result: will actually have same number of states as SLR parsers, even though LALR(1) is more powerful
- After the merge step, acts like SLR parser with "smarter" FOLLOW sets (can be specific to particular handles)
- LALR(1) may have reduce conflicts where $\operatorname{LR}(1)$ would not (but in practice this doesn't happen often)
- Most practical bottom-up parser tools are LALR(1) (e.g., yacc, bison, CUP, ...)

Language Heirarchies

Coming Attractions

Rest of Parsing...

- LL(k) Parsing - Top-Down
- Recursive Descent Parsers
- What you can do if you want a parser in a hurry

Then...

- AST construction - what do do while you parse!
- Visitor Pattern - how to traverse ASTs for further processing (type checking, code generation, ...)

