
CSE P 501 – Compilers

Threads and Memory Models
Hal Perkins
Winter 2016

UW CSE P 501 Winter 2016 X3-1

References

n  Threads	Cannot	Be	Implemented	as	a	Library	
	Boehm,	PLDI	2005	

	

n  Founda8ons	of	the	C++	Concurrency	Memory	Model																																																																			
Boehm	and	Adve,	PLDI	2008	

n  The	Java	Memory	Model																													
	Manson,	Pugh,	and	Adve,	POPL	2005	

	
Credits:	Earlier	versions	of	lecture	by		
	Vijay	Menon,	CSE	501,	Sp09	
	Dan	Grossman,	CSE	401,	Wi10	

UW CSE P 501 Winter 2016 X3-2

Threads	and	shared	memory	

•  MulOthreading	lets	mulOple	threads	run	
concurrently	
– Each	thread	has	its	own	local	variables	(stack	and	
registers),	but...	

– All	threads	share	one	memory		
•  globals	/	staOcs	+	heap	objects	

– Use	memory	to	communicate	J	or	interfere	L	
•  Becoming	more	common	to	exploit	mulOcore	
hardware	

UW CSE P 501 Winter 2016 X3-3

Naïve	view	

The	following	almost	works	
1.  Define	your	programming	language	“as	usual”	
–  Don’t	think	about	>	1	thread	

2.  Compile	the	code	like	you’ve	learned	all	quarter	
–  Don’t	think	about	>	1	thread	

3.  Provide	a	run-Ome	library	that	provides	threading	
–  Create	thread	
–  Create/acquire/release	mutual-exclusion	locks	
–  Etc.	

4.  Profit	

UW CSE P 501 Winter 2016 X3-4

This	lecture	on	one	slide	

The	naïve	approach,	followed	for	decades,	is	fatally	flawed	
•  Compiler	must	know	threads	&	shared-memory	exist	
–  Else	it	may	perform	incorrect	op1miza1ons	

•  Programmer	must	know	threads	&	shared-memory	exist	
–  The	natural	definiOon	(“sequen1al	consistency”)	of	how	
shared-memory	works	(“the	memory	model”)	is	not	
tractably	implementable	by	compilers	or	hardware	

–  So	we	have	less-natural	weaker	definiOons	to	make	language	
implementaOon	easier.		Usually	defined	so	that:	
•  If	programmers	avoid	data	races	then	they	can	ignore	this	
• Most	compiler	opOmizaOons	remain	legal	

UW CSE P 501 Winter 2016 X3-5

Safety	of	opOmizaOon	

•  The	standard	rule	for	opOmizaOon:	
If,	in	some	program	context,	the	result	of	evalua8ng	e1	
cannot	be	dis8nguished	from	the	result	of	evalua8ng	e2,	
the	compiler	can	subs8tute	e2	for	e1	in	that	context	

•  Now:	Three	gotchas	that	arise	only	with	mulOple	
threads	and	shared	memory	
–  Examples	use	global	variables	to	keep	them	short;	
same	issues	arise	with	shared	objects	in	the	heap	

–  Examples	are	illegal	op1miza1ons	in,	e.g.,	Java	

UW CSE P 501 Winter 2016 X3-6

Gotcha #1: Speculation

(Probably the least common / well-motivated, but the
easiest to understand)

// x and y are globals, initially 0

void foo() {
 ++x;
 if(y==1)
 ++x;
}

UW CSE P 501 Winter 2016 X3-7

Gotcha #1: Speculation

// x and y are globals, initially 0

void foo() { optimized void foo() {
 ++x; ========> x += 2;
 if(y==1) if(y!=1)
 ++x; --x;
} }

UW CSE P 501 Winter 2016 X3-8

Before optimization

// x and y are globals, initially 0

Thread 1 Thread 2

void foo() { void bar() {
 ++x; if(x==2)
 if(y==1) commence_evil();
 ++x; }
}

UW CSE P 501 Winter 2016 X3-9

After optimization

// x and y are globals, initially 0

Thread 1 Thread 2

void foo() { void bar() {
 x += 2; if(x==2)
 if(y!=1) commence_evil();
 --x; }
}

UW CSE P 501 Winter 2016 X3-10

Recap	

So	our	compiler	made	a	change	that:	
•  Is	legal	for	all	single-threaded	programs	
•  Caused	execuOon	to	“make	up”	a	new	value	for	x	

So	either:	
•  Our	compiler	must	not	do	this	(thread-aware)	
•  Or	we	must	change	our	language	definiOon	to	
allow	this	(bad	idea	in	this	example)	

UW CSE P 501 Winter 2016 X3-11

Gotcha #2: Register promotion

UW CSE P 501 Winter 2016 X3-12

// x is global, initially 0

void foo(int* a, int n) {
 for(int i=0; i<n; ++i)
 x += a[i];
}

void foo(int* a, int n) {
 int reg = x;
 for(int i=0; i<n; ++i)
 reg += a[i];
 x = reg;
}

Before optimization

UW CSE P 501 Winter 2016 X3-13

// x is global, initially 0

// Thread 1

void foo(int* a, int n) {
 for (int i = 0; i < n; ++i)
 x += a[i];
}

// Thread 2

void bar() {
 x = 10;
 ...
}

What happens when n == 0?

After optimization

UW CSE P 501 Winter 2016 X3-14

// x is global, initially 0

// Thread 1

void foo(int* a, int n) {
 int reg = x;
 for (int i = 0; i < n; ++i)
 reg += a[i];
 x = reg;
}

// Thread 2

void bar() {
 x = 10;
 ...
}

What happens (sometimes) when n == 0?

Recap	

•  In	execuOons	where	n==0,	the	compiler	
opOmizaOon	can	“lose	an	update”	

– Original	code:		x==10	is	guaranteed	for	code	aier	
both	threads	finish	

– OpOmized	code:		new	write	of	x	=	0	creates	new	
possible	result	

UW CSE P 501 Winter 2016 X3-15

Gotcha #3: Adjacent data

UW CSE P 501 Winter 2016 X3-16

char arr[4];

void foo() {
 arr[0] = (char)0;
 arr[1] = (char)0;
 arr[2] = (char)0;
}

Natural assembly for body:
movb $0, _arr
movb $0, _arr+1
movb $0, _arr+2

Assembly with one store:
movl _arr, %eax
andl $0x000000FF, %eax
movl %eax, _arr

Before optimization

UW CSE P 501 Winter 2016 X3-17

char arr[4];

// Thread 1:
movb $0, _arr
movb $0, _arr+1
movb $0, _arr+2

// Thread 2
// arr[3] = ‘a’;
movb $98, _arr+3

After optimization

UW CSE P 501 Winter 2016 X3-18

char arr[4];

// Thread 1:
movl _arr, %eax
andl $0x000000FF, %eax
movl %eax, _arr

// Thread 2
// arr[3] = ‘a’;
movb $98, _arr+3

Recap	
The	clever	compiler	is	adding	the	assignment	
“arr[3]=arr[3];”	
–  That’s	fine	in	single-threaded	code	

In	pracOce,	this	is	a	problem	if:	
•  Your	architecture	doesn’t	have	byte-stores	
–  Leave	space	between	string	characters??	

•  You	have	bit-fields	in	C	(and	no	bit-stores)	
–  C++	specifically	allows	the	“clever”	code	because	
there	is	no	other	way	(so	programmer	must	avoid	
simultaneous	write	to	bit-fields	in	same	struct)	

UW CSE P 501 Winter 2016 X3-19

Where	are	we	

•  So	far	have	emphasized	that	the	compiler	must	
limit	itself	in	order	to	be	correct	in	the	presence	
of	threads	
–  This	is	CSE	P	501	aier	all	

•  You	should	also	understand	that	the	programmer	
must	accept	unintuiOve	language	definiOons	
– Otherwise	efficient	compiler/hardware		too	difficult	
–  Simple	answer:	Never	write	code	with	a	data	race	
– Must	discuss	memory-consistency	models	

UW CSE P 501 Winter 2016 X3-20

Dekker’s	example	

•  IniOally,	x==0	&&	y==0	

•  What	are	possible	execuOons?	

UW CSE P 501 Winter 2016 X3-21

Thread 1
 x = 1; (a)
 r1 = y; (b)

Thread 2
 y = 1; (c)
 r2 = x; (d)

Dekker’s	example	

•  IniOally,	x==0	&&	y==0	

•  What	are	possible	execuOons?	
•  Consider	interleavings	of	thread	1	&	2:	
–  abcd,	acbd,	acdb,	cdab,	cadb,	cabd	
–  (24	permutaOons,	but	need	a	before	b	and	c	before	d)	

UW CSE P 501 Winter 2016 X3-22

Thread 1
 x = 1; (a)
 r1 = y; (b)

Thread 2
 y = 1; (c)
 r2 = x; (d)

Dekker’s	example	

•  IniOally,	x==0	&&	y==0	

•  Can	r1	==	0	&&	r2	==	0	?	
– No	interleaving	gives	this	results,	but...	
– Most	hardware	will	allow	it	(store	buffers)	
– Most	compilers	will	allow	it	

•  Why...	

UW CSE P 501 Winter 2016 X3-23

Thread 1
 x = 1;
 r1 = y;

Thread 2
 y = 1;
 r2 = x;

Compiler	reordering	
•  Almost	every	compiler	opOmizaOon	has	the	
implicit	effect	of	reordering	reads	and	writes!	
– Obvious	example:	InstrucOon	scheduling	
–  Less-obvious	example:	Common-subexpression	
eliminaOon		
	 	 	 	x=a+b;	
	 	 	 	y=a;	
	 	 	 	z=a+b;			//opOmize	to	z=x	

–  Replacing	with	z=x	has	the	effect	of	moving	the	store	
to	z	to	before	the	store	to	y!	
•  y	could	see	a	later	write	to	a	by	another	thread	than	z	sees	

UW CSE P 501 Winter 2016 X3-24

SequenOal	consistency	

•  The	interleaving	model	is	called	sequenOal	
consistency	and	was	defined	in	1979	by	Lamport:	
“...	the	result	of	any	execu8on	is	the	same	as	if	the	
opera8ons	of	all	the	processors	were	executed	in	some	
sequen8al	order,	and	the	opera8ons	of	each	individual	
processor	appear	in	this	sequence	in	the	order	specified	
by	its	program.”	

•  But	no	“real”	hardware	or	compiler	implements	it	
•  So	we	have	to	tell	programmers	what	they	can	
assume	

UW CSE P 501 Winter 2016 X3-25

Refined	noOon	

•  Guarantee	sequenOal	consistency	only	for	
correctly	synchronized	programs	(Adve)	
– Give	the	programmer	rules	to	follow	
– Promise	interleaving	semanOcs	if	rules	are	obeyed	

•  Correctly	synchronized	
– Must	be	intuiOve	to	programmer	
– Must	not	be	restricOve	for	compiler/hardware	

UW CSE P 501 Winter 2016 X3-26

Data	races	
•  Two	operaOons	conflict	if	they	both	access	a	
memory	locaOon	and	one	is	a	write		

•  A	execuOon	contains	a	data	race	if	two	adjacent	
operaOons	from	two	different	threads	conflict	

	x	=	1;	y	=	1;	r1	=	y;	r2	=	x;	

•  A	program	is	data-race-free	if	no	sequenOally	
consistent	execuOon	(i.e.,	interleaving)	has	a	data	
race	

UW CSE P 501 Winter 2016 X3-27

Correct	synchronizaOon	

•  We	call	a	program	correctly	synchronized	if	it	
is	data	race	free	

•  Basic	contract	–	“The	Grand	Compromise”:	
–  If	programmers	write	data-race-free	programs,	
implementers	will	provide	sequenOally	consistent	
semanOcs	

– This	is	the	fundamental	property	of	the	Java	and		
C++	memory	models	

UW CSE P 501 Winter 2016 X3-28

How	do	we	avoid	races?	

•  Mutual	exclusion:	
–  Thread	acquires	lock	before	accessing	a	shared	
variable	

–  Locks	exist	to	avoid	races	

•  Java’s	volaOle	variables	(atomics	in	C++)	
– Data	races	allowed;	compiler	can’t	reorder	

UW CSE P 501 Winter 2016 X3-29

Thread 1
 lock (mutex);
 tmp1 = x;
 tmp2 = tmp1 + 1;
 x = tmp2
 unlock (mutex);

Thread 2
 lock (mutex);
 tmp3 = x;
 tmp4 = tmp3 + 1;
 x = tmp4
 unlock (mutex);

What	this	means	for	compilers	
•  In	the	absence	of	synchronizaOon,	compilers	may	
almost	operate	as	if	programs	were	single-
threaded	

•  Compilers	must	respect	ordering	due	to	
synchronizaOon	(locks,	volaOles,	etc.)	
–  Even	if	“hidden”	inside	a	funcOon/method	call	

•  Compilers	must	not	introduce	data	races	into	
correctly	synchronized	code		
–  This	is	why	Gotchas	#2	and	#3	are	illegal	for	
compilers!	

–  They	add	writes	that	race	with	the	program!	

UW CSE P 501 Winter 2016 X3-30

What	happens	on	a	race?	
•  In	C++,	undefined	semanOcs	

•  Valid	results:	
–  r1	==	0	and	r2	==	0	
–  r1	==	0	and	r2	==	42	
–  system(rm	–rf	/*);	

•  No	such	thing	as	a	benign	data	race	in	C++!	
–  Hence	Gotcha	#1	is	legal	in	C++	because	the	original	program	
had	a	data	race	

UW CSE P 501 Winter 2016 X3-31

Thread 1
 x = 1; (a)
 r1 = y; (b)

Thread 2
 y = 1; (c)
 r2 = x; (d)

Type-safety	issues	

•  In	Java,	data	races	cannot	violate	type	safety	
–  Java	promises	a	measure	of	security	
– Cannot	allow	data	races	to	be	used	on	purpose	by	
untrusted	code	to	open	/	exploit	holes	

–  Java	memory	model	must	provide	some	
guarantees	even	in	the	presence	of	races	
•  Gotcha	#1	is	illegal	in	Java;	cannot	make	up	values	

UW CSE P 501 Winter 2016 X3-32

Java	reality	
•  The	actual	“memory	model”	(what	can	and	can’t	
happen	with	reads/writes)	is	very	complicated	
–  Took	years	by	brilliant	people	and	sOll	had	problems	

•  Programmers	willing	to	avoid	data	races	do	not	
need	to	understand	the	definiOon	
–  There	is	a	theorem	about	the	definiOon	that	all	data-
race	free	programs	behave	as	in	the	interleaving	
semanOcs	

•  But	compiler	writers	must	avoid	gotchas	
–  Very	roughly	speaking,	don’t	make	up	values	or	
introduce	data	races	

UW CSE P 501 Winter 2016 X3-33

This	lecture	on	one	slide	

The	naïve	approach,	followed	for	decades,	is	fatally	flawed	
•  Compiler	must	know	threads	&	shared-memory	exist	
–  Else	it	may	perform	incorrect	op1miza1ons	

•  Programmer	must	know	threads	&	shared-memory	exist	
–  The	natural	definiOon	(“sequen1al	consistency”)	of	how	
shared-memory	works	(“the	memory	model”)	is	not	
tractably	implementable	by	compilers	or	hardware	

–  So	we	have	less-natural	weaker	definiOons	to	make	language	
implementaOon	easier.		Usually	defined	so	that:	
•  If	programmers	avoid	data	races	then	they	can	ignore	this	
• Most	compiler	opOmizaOons	remain	legal	

UW CSE P 501 Winter 2016 X3-34

