
CSE	P	501	18sp	Homework	4	

Due:	Monday,	May	21	by	11	pm.	No	late	submissions	accepted	this	time	so	we	can	distribute	sample	solutions	
the	next	day	before	class.		As	with	previous	assignments,	please	use	Gradescope	(linked	from	the	CSE	P	501	
web	page)	to	submit	your	homework	online.		
	
- Unreadable	solutions	cannot	be	graded--no	blurry	photos,	poor	contrast,	or	illegible	handwriting,	please.	
- Type-written	solutions	are	encouraged	but	not	required.	
- If	possible,	don't	split	the	solution	to	a	problem	across	a	page	break.	
	
We	suggest	you	show	your	work	to	help	us	award	partial	credit	if	appropriate,	and	for	TA	sanity.	You	should	
do	this	assignment	individually.	
	
1.		(value	numbering,	based	on	Cooper/Torczon		ex	1,	p.	471)		For	the	following	program,	(i)	apply	local	
value	numbering	to	the	statements	in	the	block,	and	(ii)	rewrite	the	code	to	eliminate	redundant	
expressions	using	the	value	numbering	information.	
	
t1 = a + b 
t2 = t1 + c 
t3 = t2 + d 
t4 = b + a 
t5 = t3 + e 
t6 = t4 + f 
t7 = a + b 
	
2.	(dataflow;	a	similar	problem	appears	as	#8	on	the	CSE	P	501	08wi	exam)		Consider	the	following	small	
program	that	we	used	as	a	dataflow	example	for	live	variable	analysis.		This	time	all	of	the	statements	are	
labeled	and	we	want	to	compute	reaching	definitions.	
	
L0: a = 0 
L1: b = a + 1 
L2:  c = c + b 
L3: a = b * 2 
L4: if a < N goto L1 
L5: return c 
	
The	reaching	definitions	dataflow	problem	is	to	determine	for	each	variable	definition	which	other	blocks	in	
the	control	flow	graph	could	potentially	see	the	value	of	the	variable	that	was	assigned	in	that	definition.		To	
simplify	things	we	will	treat	each	individual	statement	above	as	a	separate	block,	and	use	the	statement	
labels	as	the	names	of	both	the	blocks	and	the	definitions	in	them.		So,	for	example,	reaching	definition	
analysis	would	allow	us	to	determine	that	definition	L0,	which	assigns	to	a,	can	reach	block	L1.	
	
A	definition	d	in	block	p	reaches	block	q	if	there	is	at	least	one	path	from	p	to	q	along	which	definition	d	is	not	
killed.		
	
This	can	be	set	up	as	a	dataflow	problem	as	follows:		For	each	block	b	in	the	control	flow	graph,	define	
GEN(b)	to	be	the	set	of	definitions	generated	in	that	block	and	not	subsequently	killed	in	the	block,	and	
KILL(b)	to	be	the	definitions	killed	by	that	block.		These	sets	can	be	computed	once,	statically,	for	each	block.		
If	block	b	contains	d:	x	=	a	op	b,	then	GEN(b)	contains	d,	provided	that	d	is	not	killed	later	in	block	b.		KILL(b)	
contains	all	other	definitions	d’	elsewhere	in	the	program	that	define	the	same	variable	x.			
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Given	the	GEN	and	KILL	sets	for	the	blocks,	we	can	compute	the	IN	and	OUT	sets	of	definitions	that	reach	
each	block	as	follows:	
	
	 IN(b)	=	⋃p∈pred(b)	OUT(p)	
	
	 OUT(b)	=	GEN(b)	⋃	(IN(b)	–	KILL(b))	
	
For	this	problem,	compute	the	reaching	definitions	for	the	blocks	in	the	given	program	(treating	each	
statement	as	a	separate	block).		You	should	give	a	table	with	a	row	for	each	block		showing	the	GEN	and	
KILL	sets	for	that	block,	and	then	compute	IN	and	OUT	sets	using	successive	iterations	until	you	there	are	no	
further	changes	to	any	IN	or	OUT	set.	
	
Note	that	this	is	a	forward	dataflow	problem	so	the	answer	will	converge	faster	if	you	start	computing	with	
L0,	L1,	…	
	
3.	(loops)		Compute	the	dominator	tree	for	the	following	CFG,	then	compute	the	dominance	frontiers	for	
nodes	B2,	B5,	and	B6.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
4.	(ssa,	Cooper/Torczon	ex.	6,	p.	536-537).		Translate	the	code	(CFG)	from	the	previous	problem	into	SSA	
form.		You	only	need	to	show	the	final	code	after	both	Φ-insertions	and	renaming.		(If	you	want	to	edit	your	
answer	on	a	computer,	the	assignment	page	contains	a	link	to	the	original	ppt	slide	with	the	above	image.		
However,	don’t	feel	obligated	to	do	this	–	it	might	turn	into	quite	a	time	sink.)	

a = k + 2 
c = d – b 
d = a + b 

B0 

f = b – d 
k = d >> 2 
e = c + a 

B1 
f = i – d  
e = k >> 2 
b = a + f 

B2 

d = b * 2 
g = 2 * 2 

B3 d = b + 1 B4 

i = i + 1 
c = d >> 4 

B5 

k = a – e 
f = e + k 
d = c + b 

B6 


