CSE P 501 — Compilers

LR Parsing
Hal Perkins
Spring 2018

Ly CSE P 501 Spring 2018

0O-1

Agenda

* LR Parsing

L

* Parser States

L]

Table-driven Parsers

Shift-Reduce and Reduce-Reduce conflicts

Ly CSE P 501 Spring 2018

bo-2

Bottom-Up Parsing /KL\\K

-

ALl to— ——

* |dea: Read the input left to right

* Whenever we’ve matched the right hand side
of a production, reduce it to the appropriate
non-terminal and add that non-terminal to

the parse tree

* The upper edge of this partial parse tree is
known as the frontier

L CSE P 501 Spring 2018

0-3

Example

* Grammar

S::=aABe
Au=Abc | b
B:=d

* Bottom-up Parse

Ly CSE P 501 Spring 2018

D-4

LR(1) Parsing

. We;II look at LR{1) parsers

— Left to right scan, Rightmost derivation, 1 symbol
lookahead

— Almost all practical programming languages have a
LR(1) grammar

— LALR(1), SLR(1), etc. —subsets of LR(1)

* LALR({1) can parse most real languages, tables are more
compact, and is used by YACC/Bison/CUP/etc.

L CSE P 501 Spring 2018 O-5

LR Parsing in Greek

* The bottom-up parser reconstructs a reverse
rightmost derivation

* Given the rightmost derivation

.‘5.:}[31:}[32:}"':}Bn—zzj}_ﬁn—lz}ﬁn =w
the parser will first discover B,,=>pB, , then B,,=>0,
, etc.
* Parsing terminates when
— P, reduced to § (start symbol, success), or

— No match can be found (syntax error)

L CSE P 501 Spring 2018 0-6

How Do We Parse with This?
—t

* Key: given what we’ve already seen and the next
input symbol (the lookahead), decide what to do.

* Choices:
— Perform a reduction
— Look ahead further

* Canreduce A=>[} if both of these hold:
— A=>[is a valid production, and
— A=>Pis a step in this rightmost derivation

* This is known as a shift-reduce parser

Ly CSE P 501 Spring 2018

o-7

Sentential Forms

* IfS=>* ¢, the string o is called a sentential form of
the grammar

* |n the derivation
S=>B1=>B=>...=>B,,=>P, 1=>p, = w

.

each of the [3; are sentential forms

* Asentential form in a rightmost derivation is called a
right-sentential form (similarly for leftmost and left-

sentential)

L CSE P 501 Spring 2018 b-8

Handles

————e————

* Informally, a production whose right hand side
matches a substring of the tree frontier that is
part of the rightmost derivation of the current
input string (i.e., the “correct” production)
—Even if A::= [is a production, it is a handle only if

B matches the frontier at a point where A ::= [3
was used in this specific derivation

— B may appear in many other places in the frontier
without designating a handle

* Bottom-up parsing is all about finding handles

L CSE P 501 Spring 2018 (I

Handle Examples

* In the derivation | .

-8 -:=- aABe => aAde => aAbcde => abbcde

— abbcde is a right sentential form whose handle is
A::=b at position 2

— aAbcde is a right sentential form whose handle is
A::=Abc at position 4
* Note: some books take the left end of the match as the
position

L CSE P 501 Spring 2018 O-10

10

Handles — The Dragon Book Defn.

* Formally, a handle of a right-sentential form v
is @ production A ::= [and a position iny
where [may be replaced by A to produce the
previous right-sentential form in the rightmost
derivation of y

L CSE P 501 Spring 2018 0-11

11

Implementing Shift-Reduce Parsers

* Key Data structures
— A stack holding the frontier of the tree

— A string with the remaining input (tokens)

* We also need something to encode the rules
that tell us what action to take next, given the
state of the stack and the lookahead symbol

— Typically a table that encodes a finite automata

Ly CSE P 501 Spring 2018 b-12

12

Shift-Reduce Parser Operations

* Reduce —if the top of the stack is the right
side of a handle A::=[3, pop the right side [3
and push the left side A

* Shift — push the next input symbol onto the
stack

* Accept —announce success

* Error — syntax error discovered

Ly CSE P 501 Spring 2018

0-13

13

. 5= adbe
Shift-Reduce Example 4= e b
Bii=

Stack Input Action

S abbcde$S shift
pon Lbode? fhjff*

C'K-E‘_ ¢ PR

iii ::Ja g shpw
e Al cde? j_k::#--—;
tafbe o j} el M
$o A 55 /
i o A

- -E,jl j‘%ﬂzﬂ'
‘ﬁoﬂg d elce
f%ﬂiﬁ—dr-— % a (C

?S

Ly CSE P 501 Spring 2018 O-14

14

How Do We Automate This?

* Cannot use clairvoyance in a real parser (alas...)

* Defn. Viable prefix — a prefix of a right-sentential

form that can appear on the stack of the shift-reduce
parser

— Equivalent: a prefix of a right-sentential form that does not
continue past the rightmost handle of that sentential form

— In Greek: v is a viable prefix of G if there is some derivation
S=>%, 0Aw =>% o.pw and v is a prefix of ap.
— The occurrence of P in wpw is a handle of upw

oS

J—

L CSE P 501 Spring 2018 bO-15

15

How Do We Automate This?

* Fact: the set of viable prefixes of a CFG is a
regular language(!)

* |dea: Construct a DFA to recognize viable prefixes
given the stack and remaining input

— Perform reductions when we recognize them

Ly CSE P 501 Spring 2018 b-16

16

DFA for prefixes of

Ly CSE P 501 Spring 2018

S::=aAbe
A::=Abc| b

bo-17

17

—
Q)
O
(D
vy I RV

5 accept
Stack Input > 5 s

5 abbcdes i 5tart$ 5 5 //
ﬁ et ot D20 OO
fg::& fOCl"‘l'ﬁ- ﬁ ediet b d
; ; Ledt$ shif
ic;qb ce b shifF Au=b Bz
i-ﬂ- 6C CI'E'E ;,,..qq:fr\.,{“f';
;:%ﬂ Jaf shift
ok ¥ R)
v”ic«f:;;_ o} m:%
o~ e -t
ED_“_;Eﬁ-i_' ‘;“ ettt
S

Lny CSE P 501 Spring 2018 b-18

18

Observations

* Way too much backtracking

— We want the parser to run in time proportional to
the length of the input

* Where the heck did this DFA come from
anyway?
— From the underlying grammar

— Defer construction details for now

L CSE P 501 Spring 2018 0-19

19

Avoiding DFA Rescanning

* Observation: no need to restart DFA after a shift.
Stay in the same state and process next token.

* Observation: after a reduction, the contents of the
stack are the same as before except for the new non-
terminal on top

— .. Scanning the stack will take us through the same
transitions as before until the last one

— .. If we record state numbers on the stack, we can go
directly to the appropriate state when we pop the right
hand side of a production from the stack

Ly CSE P 501 Spring 2018 0-20

20

Stack

* Change the stack to contain pairs of states and
symbols from the grammar
DS K1s 51 K8 v 88,
— State s, represents the accept (start) state
INot always explicitly on stack — depends on particular presentation)

— When we push a symbol on the stack, push the
symbol plus the FA state

— When we reduce, popping the handle will reveal the
state of the FA just prior to reading the handle

* Observation: in an actuzal parser, only the state numbers are needed since they
implicitly contain the symbaol information. But for explanations / examples it
can help to show both.

L CSE P 501 Spring 2018 0-21

21

Encoding the DFA in a Table *|

* Ashift-reduce parser’s DFA can be encoded in
two tables

— One row for each state

— action table encodes what to do given the current
state and the next input symbol

— goto table encodes the transitions to take after a
reduction

L CSE P 501 Spring 2018 0-22

22

Actions (1)

* Given the current state and input symbol, the
main possible actions are

— si —shift the input symbol and state i onto the
stack (i.e., shift and move to state i)
— rj—reduce using grammar production j

* The production number tells us how many
<symbol, state> pairs to pop off the stack
(= number of symbols on rhs of production)

L CSE P 501 Spring 2018 O-Z3

23

Actions (2)

* Other possible action table entries
— accept

— blank — no transition — syntax error

* A LR parser will detect an error as soon as possible on a

left-to-right scan

* A real compiler needs to produce an error message,
recover, and continue parsing when this happens

L CSE P 501 Spring 2018

O-24

24

Goto

* When a reduction is performed using A ::= 3,

we pop |B| <symbol, state> pairs from the

stack revealing a state uncovered s on the top

of the stack

» goto[uncovered s, A] is the new state to push
on the stack when reducing production A ::= 3

(after popping handle B and pushing A)

L CSE P 501 Spring 2018

O-Z3

25

Ly CSE P 501 Spring 2018 D-26

26

1. S::=aAbe
LR Parse Table for g: j;;_ 'Sbc
4. Bi=d
State action goto
a b C d e $ A B S
0 acc
1 s2 go
2 s4 as
3 s6 s5 g8
4 r3 r3 r3 r3 r3 r3
5 r4 r4 r4 r4 r4 r4
6 s/
7 r2 r2 r2 r2 r2 r2
8 s9
9 ri ri ri ri ri ri
Ly CSE P 501 Spring 2018 D-Z7

27

LR Parsing Algorithm

tok = scanner.getToken();
while (true) {

5 = top of stack;
if (action[s, tok] =si) {
push tok; push i (state);
tok = scanner. getToken();

i) {

} elseif (action[s, tok]

pop 2 * length of right side of

productionj (2*%|pB|);

uncovered s

push left side A of production ;

push state goto[uncovered_s, A];

1
)

top of stack;

refum;
telse {
/ noentry in action table
report synitax ernor;
halt or attempt recovery;

Ly CSE P 501 Spring 2018

telse if (action[s, tok] = accept) 1

D-28

28

Example

Input

abbcdes /%

bicde?
Lbeded

ch{}
cdet

Jeh
ded
ef
eb
¥
$

L CSE P 501 Spring 2018

1. S::=aAbe
2. A= Abc
4, Aii=b
4. D=1
aclion | Goto
= a b ¢ d e $|A B 5
0 |52 z
1 |32 g0
z s EE
3 56 55 g8
4 |3 k3 B3 k3 ras 3
r4 r4 rd4 rd rd4 rd
& 57
Folr2 r2 o r2 ré orZ2 rZ
g 53
29rl r1 rl1 rl rl1 rl
D-29

29

LR States

* |dea is that each state encodes

— The set of all possible productions that we could
be looking at, given the current state of the parse,
and

— Where we are in the right hand side of each of
those productions

L CSE P 501 Spring 2018 O-A

30

ltems

* Anitem is a production with a dot in the right
hand side

* Example: Items for production A::= X Y
A:=.XY
A:=X.Y
Au=XY.

* |dea: The dot represents a position in the
production

L CSE P 501 Spring 2018 031

31

D 0

TR
%%
-

J 5= adbe.

€y
5= adse |2 .accept Sii= adBe
o : Tl B
@ ! 3 [
Su=aA A | Sni=adle @
: A:=:.A:> = 4::= Abc WA= A
A= b B:=:d ® .
b d ¥
@ i) @ . ‘A:::Abc.
A::=b. B::i=d

Ly CSE P 501 Spring 2018

b-32

32

Problems with Grammars

* Grammars can cause problems when
constructing a LR parser

— Shift-reduce conflicts

— Reduce-reduce conflicts

Ly CSE P 501 Spring 2018 0-33

33

Shift-Reduce Conflicts

* Situation: both a shift and a reduce are
possible at a given point in the parse
(equivalently: in a particular state of the DFA)

* Classic example: if-else statement
S:u=ifthen S | ifthenSelseS

Ly CSE P 501 Spring 2018 0-34

34

|
Parser States for 1. S::=ifthen S
2. S::=ifthen Selse S

» State 3 has a shift-

Sii= .ifthen & -
@ i S . reduce conflict
ifthen “ — Can shift past else into
@ Si=ifthen. 5 state 4 (s4)
S5:u=ifthen . Selse § — Can reduce (r1)
51) S:u=ifthen S
@ S::=ifthen 5.
S:=ifthen 5.else 5
alse l (Note: other S ::= . ifthen items
not included in states 2-4 to save
@ 5::=ifthen Selse . 5§ space)
LW CSE P 501 Syring 2018 0-35

35

Solving Shift-Reduce Conflicts

* Fix the grammar

— Done in Java reference grammar, others

* Use a parse tool with a “longest match” rule —
i.e., if there is a conflict, choose to shift
instead of reduce
— Does exactly what we want for if-else case

— Guideline: a few shift-reduce conflicts are fine, but
be sure they do what you want (and that this
behavior is guaranteed by the tool specification)

L CSE P 501 Spring 2018 O-3

36

Reduce-Reduce Conflicts

* Situation: two different reductions are
possible in a given state

* Contrived example

S:=A
$:=8
A =X
B =X

Ly CSE P 501 Spring 2018 0-37

37

Parser States for

Su= .4
@ 5= .8B
A= X
2 B

X
@ Aii=X,
B.=X,

Uy 0

A
X X

* State 2 has a reduce-
reduce conflict (r3, rd)

Ly CSE P 501 Spring 2018

bO-38

38

Handling Reduce-Reduce Conflicts

* These normally indicate a serious problem
with the grammar.

* Fixes

— Use a different kind of parser generator that takes
lookahead information into account when
constructing the states

* Most practical tools use this information

— Fix the grammar

L CSE P 501 Spring 2018 0-3

39

Another Reduce-Reduce Conflict

* Suppose the grammar tries to separate
arithmetic and boolean expressions
expr ::=aexp | bexp
aexp ::= aexp * aident | Ef_-:;fgf_rt
bexp ::= bexp && bident | bident
aident ::= id o -
bident ::= id
* This will create a reduce-reduce conflict after
recognizing id

Ly CSE P 501 Spring 2018 O-40

40

Covering Grammars

* Asolutionis to merge aident and bident into a single
non-terminal like ident (or just use id in place of
aident and bident everywhere they appear)

* This is a covering grammar

— Will generate some programs (sentences) that are not
generated by the original grammar

— Use the type checker or other static semantic analysis to
weed out illegal programs later

L CSE P 501 Spring 2018 O-41

41

Coming Attractions

* Constructing LR tables

— We'll present a simple version (SLR(0)) in lecture,
then talk about adding lookahead and then a little
bit about how this relates to LALR(1) used in most
parser generators

* LL parsers and recursive descent

* Continue reading ch. 3

Ly CSE P 501 Spring 2018 O-42

42

