CSE P 501 — Compilers

LR Parser Construction

Hal Perkins
Spring 2018

Agenda

e LR(O) state construction
* FIRST, FOLLOW, and nullable
e Variations: SLR, LR(1), LALR

UW CSE P 501 Spring 2018

E-2

LR State Machine

* |dea: Build a DFA that recognizes handles

— Language generated by a CFG is generally not
regular, but

— Language of viable prefixes for a CFG is regular
* So a DFA can be used to recognize handles

— LR Parser reduces when DFA accepts a handle

UW CSE P 501 Spring 2018

E-3

Prefixes, Handles, &c (review)

* If Sis the start symbol of a grammar G,

— If S =>* o then at is a sentential form of G

— v is a viable prefix of G if there is some derivation
S=>* oAw =>* _aPw andy is a prefix of ap3.

— The occurrence of B in aw is a handle of aw

 Anitem is a marked production (a . at some position
in the right hand side)

—[Ax=.XY] [A:=X.Y] [Au=XY.]

UW CSE P 501 Spring 2018 E-4

Building the LR(O) States

* Example grammar

S’::=8S
S:=(L)
S:i=X
L::=
L::=L,S

— We add a production S’ with the original start symbol
followed by end of file (S)

* We accept if we reach the end of this production
— Question: What language does this grammar generate?

UW CSE P 501 Spring 2018

E-5

0. §"::=5%
Start of LR Parse) eizl®)
431: fﬁ;f,s

* |nitially
— Stack is empty
— Input is the right hand side of §’, i.e., S S
— Initial configurationis [S”::=.S 5]

— But, since position is just before S, we are also just
before anything that can be derived from S

UW CSE P 501 Spring 2018 E-6

0. §"::=5%
Initial state Yot lh)

3. L= 8§

4, L[:=L[, S5

S'ii=.5%— st
S.:=.(L)
Gri= y o« \completion

e A state is just a set of items
— Start: an initial set of items

— Completion (or closure): additional productions whose left
hand side appears to the right of the dot in some item
already in the state

UW CSE P 501 Spring 2018 E-7

Shift Actions (1)

Si=.85%
S::=.(L)
Sii=.X

W= O

Townn

N

NG X ™

n
A

* To shift past the x, add a new state with appropriate item(s),

including their closure

— In this case, a single item; the closure adds nothing

— This state will lead to a reduction since no further shift is possible

UW CSE P 501 Spring 2018

N~
N’

n

E-8

Shift Actions (2)

Sii=
S::
S

. S5$
(L)
. X

e |If we shift past the (, we are at the beginning of L

AN
T

0. §"::=5%
1. S::=(L)
2. Sii=X
3. L::=5
4, [:=L, S

* The closure adds all productions that start with L, which also

requires adding all productions starting with S

UW CSE P 501 Spring 2018

E-9

Goto Actions

5%

0. §"::=5%
1. S::=(L)
2. Sii=X
3. L::=5
4, [:=L, S

1 S'i=5.9%

5/
S::
S

(L)
. X

* Once we reduce S, we’ll pop the rhs from the
stack exposing the first state. Add a goto
transition on S for this.

UW CSE P 501 Spring 2018 E-10

Basic Operations

e Closure (S)

— Adds all items implied by items already in S
e Goto (I, X)

— |is a set of items

— X'is a grammar symbol (terminal or non-terminal)

— Goto moves the dot past the symbol X in all
appropriate items in set /

UW CSE P 501 Spring 2018 E-11

Closure Algorithm

 Closure (S) =
repeat
foranyitem[A:=a.BB]inS
for all productions B ::=7y
add [B::=.vy]to S
until S does not change
return S

* Classic example of a fixed-point algorithm

UW CSE P 501 Spring 2018 E-12

Goto Algorithm

e Goto(l, X) =
set new to the empty set
foreachitem [A:=a.X B]in/
add [A ::=a X. 3] to new
return Closure (new)

* This may create a new state, or may return an
existing one

UW CSE P 501 Spring 2018 E-13

LR(0) Construction

* First, augment the grammar with an extra
start production S”::=SS

e Let T be the set of states

* Let £ be the set of edges
* Initialize T to Closure ([S’::=.55S])
* |nitialize E to empty

UW CSE P 501 Spring 2018 E-14

LR(0) Construction Algorithm

repeat
for each state/in T
foreachitem [A:=a.X B]in/
Let new be Goto(], X)
Add new to T if not present
Add I %5 new to E if not present
until £ and T do not change in this iteration

* Footnote: For symbol S, we don’t compute goto(/, S); instead, we make
this an accept action.

UW CSE P 501 Spring 2018 E-15

0. §"::=5%
Example: States for ;Y

3. Li:=5

4, L:=1,5

UW CSE P 501 Spring 2018 E-16

Building the Parse Tables (1)

* Foreach edge ! 2>

— if X is a terminal, put sj in column X, row / of the
action table (shift to state j)

— If X is a non-terminal, put gj in column X, row / of
the goto table (go to state j)

UW CSE P 501 Spring 2018 E-17

Building the Parse Tables (2)

* For each state / containing an item
S’ :=5.5], put accept in column S of row |

* Finally, for any state containing

A ::=v.] put action rn (reduce) in every
column of row / in the table, where n is the
production number (not a state number)

UW CSE P 501 Spring 2018

E-18

0. §"::=5%
Example: Tables for ;Y

3. Li:=5

4, L:=1,5

UW CSE P 501 Spring 2018 E-19

Where Do We Stand?

* We have built the LR(0) state machine and
parser tables
— No lookahead yet

— Different variations of LR parsers add lookahead
information, but basic idea of states, closures, and
edges remains the same

A grammar is LR(O) if its LR(O) state machine
(equiv. parser tables) has no shift-reduce or
reduce-reduce conflicts.

UW CSE P 501 Spring 2018 E-20

A Grammar that is not LR(O)

* Build the state machine and parse tables for a
simple expression grammar

S::=ES
E:=T+E
E:=T

T =X

UW CSE P 501 Spring 2018 E-21

0. S::=EF£%
1. Ex:=T+ E
LR(O) Parser for > Eu=T
3. T::=X
@ @ X + $ E T
S::=.E$ is:.=E.$ 1 S 92 63
E::=.T+E 2 acc
E::=.T .I.@ 3 2 s4r2
T::=.X >EE'iT.+E 4 S5 g6 G3
@ l : : 5 r3 r3 r3
Tz @ \'l' ‘T 6 ri rl ri
E::=T+.E = State 3 is has two possible
(& I E:= $+E actions on +
Eu=T+E v—— ", = shift 4, or reduce 2

= .. Grammar is not LR(0)

UW CSE P 501 Spring 2018 E-22

How can we solve conflicts like this?

* |dea: look at the next symbol after the handle before
deciding whether to reduce

e Easiest: SLR — Simple LR. Reduce only if next input
terminal symbol could follow the nonterminal on the
left of the production in some possible derivation(s)

e More complex: LR and LALR. Store lookahead symbols
in items to keep track of what can follow a particular
instance of a reduction

— LALR used by YACC/Bison/CUP; we won’t examine in detail
— see your favorite compiler book for explanations

UW CSE P 501 Spring 2018 E-23

SLR Parsers

* |dea: Use information about what can follow a
non-terminal to decide if we should perform a
reduction; don’t reduce if the next input symbol
can’t follow the resulting non-terminal

 We need to be able to compute FOLLOW(A) — the
set of symbols that can follow A in any possible
derivation
— i.e., tisin FOLLOW(A) if any derivation contains At

— To compute this, we need to compute FIRST(y) for
strings y that can follow A

UW CSE P 501 Spring 2018 E-24

Calculating FIRST(y)

* Sounds easy...Ify=XYZ, then FIRST(y) is
FIRST(X), right?

— But what if we have the rule X ::= €?

— In that case, FIRST(y) includes anything that can follow
X, i.e. FOLLOW(X), which includes FIRST(Y) and, if Y
can derive g, FIRST(Z), and if Z can derive &, ...

— So computing FIRST and FOLLOW involves knowing
FIRST and FOLLOW for other symbols, as well as which
ones can derive €.

UW CSE P 501 Spring 2018 E-25

FIRST, FOLLOW, and nullable

* nullable(X) is true if X can derive the empty string

* Given a string y of terminals and non-terminals,
FIRST(y) is the set of terminals that can begin any
strings derived from vy

— For SLR we only need this for single terminal or non-
terminal symbols, not arbitrary strings y

* FOLLOW(X) is the set of terminals that can
immediately follow X in some derivation

* All three of these are computed together

UW CSE P 501 Spring 2018 E-26

Computing FIRST, FOLLOW, and
nullable (1)

* |nitialization
set FIRST and FOLLOW to be empty sets
set nullable to false for all non-terminals
set FIRST[a] to a for all terminal symbols a
* Repeatedly apply four simple observations to
update these sets
— Stop when there are no further changes
— Another fixed-point algorithm

UW CSE P 501 Spring 2018 E-27

Computing FIRST, FOLLOW, and
nullable (2)

repeat
for each production X:=VY, Y, ... Y,
if Y, ... Y, are all nullable (or if k = 0)
set nullable[X] = true
for eachi from 1to k and eachj fromi+1to k
if Y, ... Y., are all nullable (orif i=1)
add FIRST[Y,] to FIRST[X]
if Y.,, ... Y, areall nullable (orifi=k)
add FOLLOWI[X] to FOLLOWT[Y;]
if Yi,; ... Y;; are all nullable (or if i+1=j)
add FIRST[Y;] to FOLLOW[Y]
Until FIRST, FOLLOW, and nullable do not change

UW CSE P 501 Spring 2018

E-28

Example

nullable FIRST FOLLOW
e Grammar

Z:=d X
=XYZ
RS y
= C
=Y

..=d

X X < < N

UW CSE P 501 Spring 2018 E-29

LR(O) Reduce Actions (review)

* |n a LR(O) parser, if a state contains a
reduction, it is unconditional regardless of the
next input symbol

e Algorithm:
Initialize R to empty
for each state/in T
foreachitem[A:=a.]lin/
add (/, A ::=a) toR

UW CSE P 501 Spring 2018 E-30

SLR Construction

* This is identical to LR(0) — states, etc., except for the
calculation of reduce actions

* Algorithm:
Initialize R to empty
for eachstate/in T
foreachitem[A:=a.]in/
for each terminal a in FOLLOW(A)
add (/,a,A::=a) to R
— i.e., reduce a to A in state / only on lookahead a

UW CSE P 501 Spring 2018 E-31

SLR Parser for

WN = O
—Ammwm
1

s5 g2 g3

.E$ |—,Su=E.$

. T+E
T 3

accC

s4 r2
s5 g6 g3

o U A W N =

lx — r3 r3
@ + T r1
T::=X <§>

E::=T+.E

E::=.T+E
=T+E.<LE:= T

E::=.X

UW CSE P 501 Spring 2018 E-32

On To LR(1)

 Many practical grammars are SLR
 LR(1) is more powerful yet

* Similar construction, but notion of an item is
more complex, incorporating lookahead
information

UW CSE P 501 Spring 2018 E-33

LR(1) ltems

* AnLR(1)item[A:=a.[, a]is
— A grammar production (A ::= a3)
— A right hand side position (the dot)
— A lookahead symbol (a)

* |dea: This item indicates that o is the top of
the stack and the next input is derivable

from [a.
e Full construction: see the book

UW CSE P 501 Spring 2018 E-34

LR(1) Tradeoffs

* LR(1)
— Pro: extremely precise; largest set of grammars

— Con: potentially very large parse tables with many
states

UW CSE P 501 Spring 2018 E-35

LALR(1)

e Variation of LR(1), but merge any two states
that differ only in lookahead

— Example: these two would be merged
[A::=x.,a]
[A:=x.,Db]

UW CSE P 501 Spring 2018 E-36

LALR(1) vs LR(1)

LALR(1) tables can have many fewer states than LR(1)

— Somewhat surprising result: will actually have same
number of states as SLR parsers, even though LALR(1) is
more powerful

— After the merge step, acts like SLR parser with “smarter”
FOLLOW sets (can be specific to particular handles)

* LALR(1) may have reduce conflicts where LR(1) would
not (but in practice this doesn’t happen often)

* Most practical bottom-up parser tools are LALR(1)
(e.g., yacc, bison, CUP, ...)

UW CSE P 501 Spring 2018 E-37

Language Heirarchies

unambiguous grammars ambiguous
grammars
/ LR) LR(k)\
LR(1N

(" LL(1)

)

S

UW CSE P 501 Spring 2018 E-38

Coming Attractions

Rest of Parsing...
e LL(k) Parsing — Top-Down
* Recursive Descent Parsers
— What you can do if you want a parser in a hurry

Then...
e AST construction — what do do while you parse!

* Visitor Pattern — how to traverse ASTs for further
processing (type checking, code generation, ...)

UW CSE P 501 Spring 2018 E-39

